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Abstract: Vascular endothelial growth factor (VEGF) is a critical biomarker in the angiogenesis of
several cancers. Nowadays, novel approaches to rapid, sensitive, and reliable VEGF detection are
urgently required for early cancer diagnosis. Cationic comb-type copolymer, poly(L-lysine)-graft-
dextran (PLL-g-Dex) accelerates DNA hybridization and chain exchange reaction while stabilizing
the DNA assembly structure. In this work, we examined the chaperone activity of PLL-g-Dex to assist
G-quadruplex-based fluorescent DNA biosensors for sensitive detection of VEGF. This convenient
and effective strategy is based on chitosan hydrogel, c-myc, Thioflavin T (ThT), VEGF aptamer, and its
partially complementary strand. The results show that chaperone copolymer PLL-g-Dex significantly
promotes the accumulation of G-quadruplex and assembles into G-wires, allowing an effective signal
amplification. Using this method, the detection limit of VEGF was as low as 23 pM, better than
many previous works on aptamer-based VEGF detection. This chaperone copolymer-assisted signal
amplification strategy has potential applications in the highly sensitive detection of target proteins,
even including viruses.

Keywords: signal amplification; chaperone copolymer; G-quadruplex; VEGF detection

1. Introduction

Vascular endothelial growth factor (VEGF) is a substance delivered by cells, simulating
the formation of new blood vessels in tissues [1,2]. It is often overexpressed in the process
of tumor growth and affects cancer metastasis due to its abnormally rapid growth and
division. In this way, VEGF has been proved to be a critical biomarker in the angiogenesis
of several cancers [3,4]. Recently, different kinds of detection strategies have been reported,
such as luminescence assays [5], fluorescence detection [6–8], colorimetric test [9], and
surface plasmon resonance [10]. However, these methods are time-consuming, expensive,
and lack sensitivity. Therefore, rapid, accessible, and highly accurate VEGF detection
biosensors are urgently required for early cancer diagnosis [11].

To date, owing to the high specificity and affinity, aptamer-based detection techniques
have been widely developed [12–16]. However, in almost all of the aptamer-based tech-
nologies, without a signal amplification strategy, a one-to-one relationship between an
aptamer and its correspondence target leads to low sensitivity and a high error rate. Thus,
various signal amplification strategies have been widely explored, such as hybrid chain
reaction (HCR), enzyme-assisted strand displacement reaction (EASD), and rolling circle
amplification (RCA) [17–22]. Although these amplification strategies improve the sensi-
tivity and lower the detection limit, they also have some potential obstacles. The HCR
technique is limited by the hybridization kinetics of complementary strands and toehold
exchange. It needs a high concentration of DNA or long sticky ends to retain the fast
dynamic reaction [23–25]. In addition, due to the restriction of enzyme sensitivity, such
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as temperature and pH, the reaction conditions of ESDA and RCA must be strictly con-
trolled [26,27]. Consequently, there is a great need to further develop a simple, rapid, and
sensitive signal amplification strategy.

G-quadruplex is a secondary structure formed from a guanine-rich sequence, stabilized
by the Hoogsteen-type pairs between guanine bases [28]. Because of both target recognition
and signal transduction, and due to the ability to bind specific metal ions, dyes, enzymes,
and proteins, G-quadruplex-based biosensors have attracted increasing interest in recent
years [29–33]. Further, in the presence of K+ (promoting the formation of initial parallel
stranded G-quadruplex) and Mg2+ (forming Mg-O coordination bond with DNA phosphate
oxygen atom, neutralizing the negative charge of DNA and promoting the accumulation
of G-quadruplex), G-quadruplex can assemble into G-quadruplex nanowires (G-wires)
through π-π stacking interaction. Thus, the self-assembled G-wires can be applied as a
signal amplifier to design optical and electrochemical biosensors [34,35].

Previously, assisted by the signal amplification strategy, we constructed a series of
DNA fluorescent and electrochemical biosensors for sensitive detection of platelet-derived
growth factor (PDGF-BB) [36], insulin [37], microRNA [38,39], adenosine triphosphate
(ATP) [40–42], and streptavidin [43]. Our group also developed an artificial molecular
chaperone for nucleic acids. A cationic comb-type copolymer poly(L-lysine)-graft-dextran
(PLL-g-Dex) accelerates DNA hybridization and chain exchange reaction while stabilizing
the multilevel DNA structure [44].

In this work, we examined the chaperone activity of CCC to assist G-quadruplex-based
fluorescent DNA biosensors for sensitive and recyclable detection and extraction of VEGF.
The purpose of this study was to design a simple, rapid, cost-effective, and sensitive assay
for biomolecule detection with a non-labeled and enzyme-free DNA probe. This convenient
and effective strategy is based on nanogel, c-myc, Thioflavin T (ThT), VEGF aptamer, and its
partially complementary strand. In addition, chaperone copolymer PLL-g-Dex significantly
promotes the accumulation of G-quadruplex and assembles into G-wires, allowing an
effective signal amplification mediator for highly sensitive detection of target molecules.

2. Materials and Methods
2.1. Reagents and Materials
2.1.1. Materials

All DNA oligomers were purchased from Bioengineering Co., Ltd. (Shanghai, China),
listed in Table 1. Chitosan was provided by Solabao Co., Ltd. (Beijing, China). Chloro-
propene and epichlorohydrin were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). VEGF was purchased from Boasen Biotechnology Co., Ltd. (Beijing,
China). Ultrapure water was purchased from Dongsheng Biotech Co., Ltd. (Guangzhou,
China). Other chemical reagents were purchased from Sigma-Aldrich (Shanghai, China).
Quantikine® QuicKit™ ELISAs were purchased from R&D Systems (Shanghai, China).

Table 1. Sequences of the oligonucleotides used in this study.

Name Sequence (from 5′ to 3′) Length (nt)

DNA1 SH-CACTGAGTCCCTGCACTCTTGTCTGGAAGACGGG 34
DNA2 AGGGTGGGGAGGGTGGGGCCCGTCTTCCAGACAAGAGTGCAGGG 44
c-myc AGGGTGGGGAGGGTGGGG 18
cDNA SH-CACTGAGTCCCTGCACTCTTGTCTGGAAGACGGG-FAM 34

2.1.2. Instrumentation

Fluorescence measurements were performed with a Model RF-6000 fluorescence spec-
trophotometer (Shimadzu, Kyoto, Japan). The fluorescence dye used was FAM with excita-
tion and emission wavelengths of 494 nm and 522 nm, respectively. The wavelength range
for spectral scanning was 494–560 nm. Circular dichroism (CD) spectra were measured
on a Chirascan VX CD spectropolarimeter (Applied Photophysics Ltd., Surrey, UK). Each
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spectrum was collected from 200–300 nm at a scan rate of 100 nm min−1 and a response
time of 2 s.

2.2. Experimental Procedures
2.2.1. Synthesis of PLL-g-Dex

Cationic comb-type copolymer PLL-g-Dex was prepared by a reductive amination
reaction of PLL·HBr (Mn = 20,000) with dextran (Mn = 5900, Dextran T-10) as described
previously [45]. The dextran content of the copolymer was 91 wt%, determined by 1H
NMR (Figure S1).

2.2.2. Synthesis of Chitosan Hydrogel Film

The mass ratio of KOH/LiOH/urea/H2O is 6.5:5:7:81.5 to dissolve chitosan. Chitosan
was dispersed into the above solution and all mixtures were stirred at 30 ◦C for 12 h. Three
milliliters of chloropropene was added into fifty grams of chitosan solution (3.5 wt%) and
then stirred at 0 ◦C away from light for 12 h to obtain allyl chitosan (AC), as shown in
Figure S2A. Epichlorohydrin was added to AC to crosslink it into hydrogels. The hydrogel
was dried to obtain AC hydrogel film (ACF), as shown in Figure S2B.

2.2.3. Sulfydryl-DNA Grafted into CHITOSAN Hydrogel Film

The chitosan film was immersed in 500 µL in different concentrations of (2 µM, 4 µM,
6 µM, 8 µM, 10 µM) sulfydryl-DNA1 with 0.05 wt% photoinitiator I2959. It was then
irradiated with ultraviolet light (365 nm) for 5 min. The films were immersed in 500 µL
ultrapure water for 2 h to remove unreacted molecules.

3. Results and Discussion

Figure 1 shows the operating principle of the G-quadruplex-based fluorescent DNA
biosensor for sensitive and recyclable detection of VEGF. Firstly, the sulfhydryl modified
DNA1 was grafted onto the chitosan hydrogel film via click chemistry reaction. Then,
DNA2 containing c-myc and VEGF aptamer was added to form the G-quadruplexes in
the presence of K+. Next, chaperone copolymer PLL-g-Dex significantly promotes the
accumulation of G-quadruplex and assembles into G-wires. Upon the addition of VEGF,
the formation of the aptamer/VEGF complex was induced, and the G-wires were released
from the chitosan hydrogel film. After centrifugation, the specific dye ThT was added to
the upper clear solution, and G-wires combined with ThT to produce a strong fluorescence
signal. In the absence of VEGF, G-wires could not be released from the hydrogel film,
resulting in weak fluorescence. Using this strategy, VEGF can be detected quantitatively.

At first, we compared G-quadruplex to other oligomers to test the specificity bind-
ing of ThT to G-quadruplex. Figure 2 shows the fluorescence spectra of some oligomers,
such as i-motif, triple-stranded DNA, double-stranded DNA, single-stranded DNA, and
G-quadruplex (c-myc). The concentration of each oligonucleotide is 3 µM. In the presence
of K+ (50 mM), c-myc folded into the G-quadruplex structure, while the dye ThT (2 µM)
specifically embedded into the G-quadruplex to emit fluorescence. We set the wavelength
range from 460 nm to 600 nm. Λ = 490 nm is the emission wavelength of ThT. Except for
c-myc, the fluorescence intensity of other oligomers is very weak. Under the same experi-
mental conditions, the fluorescence intensity of c-myc is more than 40 times that of these
oligomers. Therefore, we confirm that K+ can help c-myc fold into G-quadruplex, and ThT
specifically enters G-quadruplex to emit strong fluorescence at λ = 490 nm. Therefore, this
method can be used to construct a new method to distinguish DNA with other topological
structures from parallel stranded G-quadruplexes.
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c-myc). ([ThT] = 2 µM, [K+] = 50 mM. The concentration of each oligonucleotide is 3 µM).

As mentioned above, K+ promotes the formation of an initial parallel G-quadruplex.
Further, Mg2+ forms Mg-O coordination bond with DNA phosphate oxygen atom, neu-
tralizing the negative charge of DNA and promoting the accumulation of G-quadruplex.
Thus, in the presence of Mg2+, G-quadruplex assembles into G-wires through π-π stacking
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interaction. As shown in Figure 3, we confirmed that, in the presence of Mg2+ (1 mM), the
fluorescence value of G-quadruplex further increases. The reason is that the formation of
G-wires enables more G-quadruplex to link with the biosensors matrix, thereby amplifying
the signal. Note that other cations, such as [CO (NH3)6]3+ and arginine, can also promote
the formation of G-wires from G-quadruplex. In Figure 3, compared with Mg2+, the same
concentration (1 mM) of [CO (NH3)6]3+ or arginine can further increase the fluorescence
intensity of G-quadruplex. It may be that [CO (NH3)6]3+ or arginine with multivalent
positive charge makes G-wires more stable than magnesium ions with divalent charge does.
Therefore, we concluded that proper cations can assist the formation of G-wires. From
this point of view, we tested cationic comb-type copolymer PLL-g-Dex to accelerate the
formation of G-wires. The interesting result shows that, with a much lower concentration
of PLL-g-Dex (0.1 µM), the fluorescence intensity of G-quadruplex is significantly enhanced.
The reason is similar to our previous work, that is, PLL-g-Dex reduces the adverse anti-ion
condensation effect of entropy and reduces the energy barrier related to the breaking and
recombination of nucleic acid base pairs. Although the interaction is weakened, the cationic
copolymer can still inhibit the repulsion between DNA strands, which is enough to stabilize
the multilevel DNA structure [43]. In addition to the shielding effect on repulsion, the
Dex chain may also play a role in stabilizing the hydrogen bond between base pairs. DNA
attracted to the PLL backbone through electrostatic interaction is forced to merge with Dex
enrichment with a low dielectric constant. This low dielectric environment may enhance
the hydrogen bond between base pairs and stabilize G-wires.
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[K+] = 50 mM, [Mg2+] = 1 mM, [Co(NH3)6]3+ = 1 mM, spermine = 1 mM, PLL-g-Dex = 0.1 µM).

The formation of G-quadruplex in the sensing system was further confirmed by
CD spectroscopy (Figure 4). Adding K+, the CD spectrum shows a positive peak at
about 265 nm and a negative peak at about 240 nm, indicating the formation of a parallel
G-quadruplex. Interestingly, when the cationic polymer PLL-g-Dex is added, the negative
peak at 240 nm disappears, while the negative peak appears at 264 nm and the positive peak
appears at 295 nm, which is the signal of antiparallel G-quadruplex. That means, PLL-g-Dex
not only assembles G-quadruplex into G-wires but also changes the conformation of
G-quadruplex.
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In this work, chitosan hydrogel modified by a double bond was firstly synthesized, as
shown in Figure S2. Then, the thiol modified DNA1 was grafted onto the chitosan hydrogel
film through click chemistry reaction. DNA2 containing c-myc and VEGF aptamer was
then added into the system. The VEGF aptamer part hybrids with DNA1, and c-myc part
forms the G-quadruplex under the action of K+. Further, in the presence of chaperone
polymer PLL-g-Dex, G-quadruplex rapidly folds into extended G-wires. When the target
protein VEGF is present, the complex of aptamer/VEGF is induced, and the G-wires are
released from the gel. After centrifugation, specific dye ThT was added into the upper
clear solution, and G-wires combined with ThT to produce a strong fluorescence signal.
In the absence of VEGF, G-wires cannot be released from the gel, and fluorescence signals
are relatively weak, as shown in Figure 5A. After centrifugation, the chitosan hydrogel
was washed thoroughly with excess Milli-Q ultrapure water, and thus could be reused
next time.
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In order to test the detection performance, 1 nM of VEGF was introduced into the
biosensor system containing 0.15 mg mL−1 of chitosan hydrogel. After incubation at room
temperature for 20 min, K+ (50 mM), c-myc (2.0 µM) and PLL-g-Dex (0.1 µM) were added
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into the system. Interestingly, enhanced fluorescence intensity was observed in the presence
of VEGF. However, without DNA1 or chitosan hydrogel, fluorescence intensities were very
weak, as shown in Figure 5B, indicating that the increase in ThT fluorescence is not due
to the direct interaction between ThT and gel or VEGF. The enhancement of fluorescence
intensity is due to the specific binding of VEGF and aptamer chain, leading to the separation
of G-wires from the gel into the solution. Therefore, the feasibility of this experimental
principle is confirmed.

In order to confirm thiol modified DNA1 can be integrated into chitosan hydrogel,
the chitosan film was immersed in FAM and thiol-labeled DNA1 (cDNA), and FAM-
labeled DNA1, respectively. Then, it was irradiated with ultraviolet light for 5 min with
0.05 wt% I2959, via click chemical reaction for grafting. The gel was washed in buffer
solution to remove unreacted DNA1, observed by fluorescence microscope. The blank
control group was only chitosan hydrogel without DNA1, no fluorescence was detected
(Figure S3a). cDNA labeled with both FAM and thiol was grafted onto the gel, showing
strong fluorescence intensity (Figure S3b). Without the sulfydryl group FAM-labeled DNA1
alone can not react with the double bond in chitosan hydrogel, and thus no fluorescence will
be detected (Figure S3c). The results showed that thiol-labeled DNA1 can be successfully
integrated into the carrier by clicking chemical reactions.

In order to make the biosensor system more sensitive, we optimized the experimental
conditions by changing the variables listed as follows: concentration of K+: 0, 1, 2, 5, 10,
20, 50, and 100 mM; concentration of PLL-g-Dex: 0.005, 0.010, 0.015, 0.020, 0.030, 0.040,
0.050, 0.060, 0.070, 0.080, 0.090, 0.100, 0.110, 0.120, 0.130, and 0.140 µM; concentration of
ThT: 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 µM; concentrations of c-myc: 0, 0.4, 0.8, 1.2, 1.6, 2.0,
and 2.4 µM; temperatures: 10, 15, 20, 25, 30, 35, 40, 45, and 50 ◦C; pH: 4, 5, 6, 7, and 8.
Without target, the optimized condition is used to carry out the following experiment. The
fluorescence intensity is used as the baseline of the target detection. The results showed that
a highly sensitive VEGF detection platform was constructed under the following conditions:
K+ (50 mM), PLL-g-Dex (0.1 µM), ThT (0.2 µM), c-myc (2.0 µM), temperature (25 ◦C), and
pH 7.0, as shown in Figure 6.

We carried out the detection of VEGF concentration under the optimized condi-
tions. Reasonably, the fluorescence signal of ThT increased with the increase in VEGF
concentration (Figure 7A). The platform showed that the linear range detection of VEGF
was 0.025–0.3 nM, and the maximum fluorescence intensity increased by about 17 times
(Figure 7B). Using 3σmethods, the detection limit of VEGF was as low as 23 pM, better
than many previous works on aptamer-based VEGF detection systems, listed in Table 2.

Table 2. Comparison of the proposed assay with other published methods for VEGF detection.

Detection Method Strategy Linear Range Detection Limit Refs.

Luminescence Aptamer controlled catalysis of a
Porphyrin Probe 0–25 nM 50 pM [5]

Fluorescence Fluorescence polarization based on
recognition reaction 0.32–5.0 nM 0.32 nM [6]

Fluorescence Microchip electrophoresis 5.00–150.0 nM 2.48 nM [7]
Fluorescence PNA bound/free separation system 5–50 nM 25 nM [8]

Colorimetric Strand displacement
amplification

24.00 pM to
11.25 nM 1.70 pM [9]

Surface Plasmon
Resonance Plastic optical fiber (POF)-SPR - 3 nM [10]

Fluorescence Chaperone copolymer-assisted signal
amplification 0.025–0.3 nM 23 pM This

work
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of c-myc (0–2.4 µM); (E) different temperatures (10–50 ◦C); (F) different pH (4, 5, 6, 7 and 8).

Compared with other protein detection methods, such as platelet-derived growth
factor (PDGF-BB), bovine serum albumin (BSA), trypsin, adenosine, immunoglobulin G
(IgG), and lysozyme, the selectivity of VEGF detection assay was studied. The results
showed that the fluorescence intensity of the VEGF platform is significantly higher than
that of even a 10-fold excess amount of other proteins by more than 15 times (Figure 8).
Compared with other proteins, the high selectivity of the VEGF platform is attributed to
the specific binding between VEGF and its aptamer.

To determine whether the system is suitable for biological matrix, we tested 1% (v/v)
human serum samples with different VEGF concentrations, and the results are listed in
Table 3 (outside parentheses). Using the proposed method, we obtained a recovery of
about 99.71% in human serum samples. The recovery (between 98.46% and 100.69%)
and relative standard deviation (RSD) (between 0.1% and 3.24%) are feasible. The results
showed that the detection platform has potential advantages in the analysis and detection of
complex biological samples. At present, antibody-based detection methods such as enzyme-
linked immunosorbent assay (ELISA) are the only commercially available VEGF detection
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kits. The data in parentheses were measured by ELISA, as listed in Table 3. Compared
with the proposed method in this work, ELISA-based detection has many disadvantages,
such as expensive antibodies, long incubation time, and complicated schemes. More
importantly, compared with the chaperone copolymer-assisted signal amplification strategy,
the sensitivity of ELISA is quite limited. Therefore, according to the data measured by
chaperone copolymer-assisted G-quadruplex-based biosensor and compared with the
current commercial VEGF detection kit, the proposed method is more rapid, sensitive, and
reliable. In addition, different from the antibody-based detection protocol, the chaperone
copolymer-assisted signal amplification strategy can become a promising tool in early
cancer diagnosis.
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The chitosan hydrogel was collected by centrifugation and redispersed in the new
solution. After washing with excess Milli-Q ultrapure water, the hydrogel was collected
and recycled. 0.025–0.6 nM of VEGF was added to verify the sensitivity of the recovered
hydrogel. The results showed that the fluorescence intensity in 490 nm combined with the
above standard curve equation, indicating that the hydrogel has almost recovered to its
original structure. In addition, there was no significant difference in the standard curve
of the four cycles, as shown in Figure 9. So, chitosan hydrogel can be used as a carrier
many times.
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Table 3. Detection of VEGF in 1% (v/v) human serum with the proposed method (outside parentheses)
and with Quantikine® ELISA (in parentheses).

Sample No. Added (pM) Found (pM) Recovery (%) RSD (%, n = 4) Assay Time

1 50.00 49.23 (48.51) 98.46 (97.02) 3.24 (4.35)

5 min (4.5 h)
2 75.00 74.08 (72.64) 98.77 (96.85) 0.78 (4.02)
3 100.00 100.50 (96.32) 100.50 (96.32) 0.10 (3.38)
4 200.00 200.33 (196.48) 100.16 (98.24) 0.59 (4.26)
5 500.00 502.96 (484.25) 100.59 (96.85) 1.07 (5.67)
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4. Conclusions

We developed a novel method for rapid, sensitive, and reliable VEGF detection. This
method is based on chitosan hydrogel, c-myc, Thioflavin T (ThT), VEGF aptamer, and its
partially complementary strand. Chaperone copolymer PLL-g-Dex significantly promotes
G-quadruplex assembled into G-wires. VEGF binds with aptamer, and the G-wires are
released from the chitosan hydrogel film. After centrifugation, G-wires combined with
ThT to produce a strong fluorescence signal. Using this strategy, VEGF can be detected
sensitively. The platform shows that the linear range detection of VEGF is 0.025–0.3 nM
and the detection limit of VEGF is as low as 23 pM, better than many previous works on
aptamer-based VEGF detection. This chaperone copolymer-assisted signal amplification
strategy has potential applications in early cancer diagnosis.
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//www.mdpi.com/article/10.3390/bios12050262/s1, Figure S1: (A) Structural formula of poly(L-
lysine)-graft-dextran (PLL-g-Dex) copolymer. (B) 1H-NMR spectra of PLL, Dex and PLL-g-Dex
in D2O. The dextran content of the copolymer was calculated from 1H-NMR signals assigned
to PLL(ε-CH2) and dextran(C1-H, a).; Figure S2: (A) Allylation of chitosan in KOH/LiOH/urea
solution. (B) Schematic representation of ECH cross-link AC to prepare hydrogel film; Figure S3:
Fluorescent images the gels formed (a) without DNA1, (b) with FAM/SH-labeled DNA1, (c) with
FAM-labeled DNA.
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