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Abstract: Two-dimensional quantum dots (2D-QDs) derived from two-dimensional sheets have
received increasing interest owing to their unique properties, such as large specific surface areas,
abundant active sites, good aqueous dispersibility, excellent electrical property, easy functionalization,
and so on. A variety of 2D-QDs have been developed based on different materials including graphene,
black phosphorus, nitrides, transition metal dichalcogenides, transition metal oxides, and MXenes.
These 2D-QDs share some common features due to the quantum confinement effects and they
also possess unique properties owing to their structural differences. In this review, we discuss the
categories, properties, and synthetic routes of these 2D-QDs and emphasize their applications in
electrochemical biosensors. We deeply hope that this review not only stimulates more interest in 2D-
QDs, but also promotes further development and applications of 2D-QDs in various research fields.

Keywords: two-dimensional quantum dots (2D-QDs); synthesis methods; electrochemical biosensors;
DNA sensors; immunological sensors; enzyme sensors; aptasensors

1. Introduction

Graphene has greatly influenced many fields since its inception in 2004, and its success
has also sparked the enthusiasm of researchers to explore other two-dimensional (2D)
layered inorganic nanomaterials. Over time, more 2D materials have been discovered,
such as hexagonal boron nitride (h-BN) [1,2], black phosphorus (BP) [3,4], graphitic carbon
nitride (g-C3N4) [5–7], MXene [8,9], transition metal dichalcogenides (TMDCs) [10,11], and
transition metal oxides (TMOs) [12,13], to meet the new application requirements. In their
thick bulk form, the atoms in each layer are firmly linked together by covalent bonds,
coordinate covalent bonds or ionic bonds, and the layers are connected by relatively weak
van der Waals forces. When the lateral dimension of these 2D materials is reduced below
100 nm (typically < 10 nm), the 2D quantum dots (2D-QDs) can be generated due to the
strong quantum confinement effect [14,15]. Thus, the 2D-QDs generally refers to quantum
dots derived from 2D materials [15].

Sometimes these 2D-QDs are considered zero-dimensional (0D) materials, but in
essence, the 2D-QDs are just smaller forms of 2D-layered materials and still maintain their
two-dimensional lattices. Compared with the original forms, the 2D-QDs have better
solubility and dispersion, and a larger surface volume ratio, which are more easily doped
and functionalized with retaining the original advantages of low toxicity, chemical inertia,
and excellent electronic properties. Diverse properties and properties enable the 2D-QDs to
be readily applied in various fields, including catalysis, energy storage, and optoelectronics
to sensing, bioimaging, and cancer therapy [16–19].

From disease diagnosis to detecting biological agents in the environment, biosensors
are closely relevant to our modern life. Among various biosensors, the electrochemical
biosensors have demonstrated the advantages of high sensitivity, high signal-to-noise ratio,
relative simplicity, and fast response times in the detection of target analytes. The elec-
trochemical biosensors combine the analytical capabilities of electrochemical techniques
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with the specificity of recognition processes. For the basic principle of electrochemical
biosensors, the biomolecules immobilized on electrodes chemically react with analytes to
generate or consume ions or electrons, resulting in changes in electrical signals, including
potential, current, and impedance. Based on the different molecular recognition elements,
the electrochemical biosensors can be mainly classified into electrochemical DNA sensors,
electrochemical immunological sensors, electrochemical enzyme sensors, electrochemical
aptasensor, and so on. Moreover, the development of nanomaterials provides a wide range
of candidates to improve the stability, selectivity, and sensitivity of electrochemical sen-
sors. The versatile nanomaterials can synergistically enhance the catalytic activity, signal
transduction, and selectivity of electrochemical biosensors. In particular, the emergence of
2D-nanomaterials provides new opportunities to improve the performance of biosensors.
Compared to other nanomaterials, two-dimensional nanomaterials have large specific
surface area and excellent optical/electrical properties, making them the preferred choice
for sensor design. More importantly, due to the excellent electrical conductivity and high
current response sensitivity, 2D-QDs have greatly promoted the development of electro-
chemical biosensors (Figure 1) [20–24]. Although different 2D-QDs vary in the prominent
properties, they share some common features that make them promising for constructing
electrochemical biosensors: (1) electrochemical activity; (2) electrical conductivity; (3) large
surface-to-volume ratio; (4) ease of functionalization. Due to these properties, the utilization
of 2D-QDs in electroanalysis can greatly improve the detection performance.
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During the past decade, although the 2D-QD-based electrochemical sensors have
received extensive attention and research, there are only a few reviews focusing on the
application of 2D-QDs in electrochemical biosensors. In this review, we introduced the
category and synthesis of 2D-QDs and summarized the recent advances of 2D-QD-based
electrochemical sensors for the detection of biomolecules in the last five years, hoping
to provide new insights and ideas for the design and construction of electrochemical
devices. In addition, we also point out the challenges and future perspectives related to the
development of 2D-QD-based electrochemical biosensors.

2. Categories of 2D-QDs

In the past decade, thanks to the rapid development of two-dimensional materials, a
large number of 2D-QDs have been synthesized. In theory, all QDs could be generated from
their native bulk-layered forms. Compared with the original 2D form, 2D-QDs are not only
reduced versions of them, but they also exhibit some new characteristics and properties
due to the quantum confinement effect and edge effect. In this section, we discuss the
existing 2D-QDs based on different 2D materials, including graphene, black phosphorus,
nitrides, TMDCs, TMOs, and MXenes, and their unique properties.
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2.1. 2D Graphene QDs

Graphene is a honeycomb-shaped 2D material composed of a single layer of carbon
atoms. The highly ordered and closely packed structure of graphene determines its unique
properties [25]. One of these properties is the zero-energy bandgap, which arises from
the infinite physical dimension and defect-free crystal structure of graphene. This prop-
erty highly impedes the application of graphene in optoelectronic and electronic fields.
Therefore, by limiting the size and introducing defects, the bandgap of graphene can be
tuned from 0 eV to higher states, eventually forming non-zero bandgap materials, such as
graphene QDs (GQDs) [26]. Generally, the thickness of GQDs is less than 10 nm and the
transverse dimension is less than 100 nm. In fact, GQDs are considered to be size-reduced
graphene sheets. However, due to the significant change in physical size, GQDs show more
advanced properties compared to graphene, such as larger specific surface areas, greater
surface active sites, and more available edges [27,28]. Owing to the quantum confinement
and edge effects, GQDs exhibit faster electron transport and higher conductivity, making
them high-performance electron transporters. In addition, the larger specific surface area
enlarges the contact of GQDs with analytes, which facilitates the interaction between GQDs
and electroactive species, and also promotes the direct electron transfer (DET) from en-
zymes and proteins. Therefore, the introduction of GQDs has significant effects, i.e., in
improving the electrochemical reaction rate. Moreover, the functional groups contained in
GQDs allow them not only to obtain excellent solubility, but more importantly, to get more
powerful capabilities to functionalize with organic, inorganic, or biological moieties, which
is crucial for the design of electrochemical biosensors [20,26–30].

2.2. Nitride-Based 2D-QDs

Graphitic carbon nitride and h-BN-based QDs (BNQDs) are the two most popular
nitride-based QDs. Theoretical calculation results demonstrate that the graphitic carbon
nitride exists in five forms, α-C3N4, β-C3N4, g-C3N4, cubic C3N4 and pseudo-cubic-C3N4,
in which the g-C3N4 is the most stable allotrope among them [31]. The structure of g-C3N4
is similar to that of graphene, which can be regarded as N heteroatoms, substitute C atoms
in the graphene skeleton with the formation of a π-conjugated system containing sp2

hybridized N and C atoms. Although g-C3N4 sheets and graphene sheets share the similar
two-dimensional structure, their properties are significantly different (and so as to their
QDs). For example, the photoluminescence quantum yield of g-C3N4 QDs is higher than
that of GQDs, making them promising candidates as biosensors [32,33]. In BNQDs, boron
and nitrogen atoms are alternately linked by covalent bonds to form a hexagonal structure
similar to GQDs, so BNQDs are also called “white graphene QDs” [34]. BNQDs have
fascinating physical and chemical properties, such as high thermal conductivity, exceptional
chemical stability, low toxicity, excellent biocompatibility, and selectivity [35]. In particular,
the electronic, magnetic, and optical properties of h-BN QDs are highly tunable.

2.3. Black Phosphorus 2D-QDs

Phosphorene is a black phosphorus (BP) crystal with an atomically-thin layer, in
which each phosphorus (P) atom covalently binds with three other atoms to form a folded
honeycomb structure. In 2015, Zhang and coworkers first reported the preparation of
BPQDs from bulk black phosphorus crystals using a facile top-down method in a solution
phase [36]. Compared to traditional 2D BP nanosheets, the emerging BPQDs exhibit some
unique properties and demonstrate great potential for a broad range of research fields,
including sensing, catalysis, biotechnology, and biomedicine [37]. Phosphorene and its QDs
are sensitive to both water and air, which is a hindrance to the synthesis, characterization,
and application of BPQDs [38–40]. However, it can be used in energy devices, such as
lithium-ion batteries or sodium-ion batteries that work in anhydrous and oxygen-free
conditions. Interestingly, oxidized BPQDs have better water solubility and near-infrared
absorption, which can be exploited for photothermal therapy [41,42].
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2.4. TMDCs-Based 2D-QDs

TMDCs are a fascinating family of 2D materials with an X-M-X sandwich structure,
where M, representing metal ions, is generally Ti, Zr, V, Nb, Mo, W, Hf, Ta, and X, rep-
resenting chalcogen atoms, is usually S, Se, or Te, respectively. At the atomic level, the
chalcogen atoms and metal atoms within the same layer are stably held together by cova-
lent bonds. However, the different layers connect each other only by weak van der Waals
forces [43]. The structures and properties of these TMDCs QDs are quite stable, and their
electron mobility is even comparable to that of silicon, allowing them to be used to fabri-
cate transistors. In contrast with TMDCs, TMDC QDs exhibit many fresh characteristics,
including higher bandgap, a large surface to volume ratio, abundant active sites, good
electrical conductivity, and fast heterogeneous electron transfer. These excellent advantages
have made TMDC-based 2D QDs potential candidates for future electrochemical sensor
devices [44,45].

2.5. TMO-Based 2D-QDs

TMO-based 2D-QDs, where M is usually Ti, Zr, V, Nb, Mo, and W, are different
from TMO-based 2D-QDs because of their relatively smaller band gaps. Here, the most
investigated TMO-based 2D-QDs are MoOx (x < 3) and WO3−x, both of which show semi-
conductor characteristics. Generally, the synthesis of MoOx QDs is achieved with H2O2 and
MoS2 as precursors. In addition, the MoOx QDs have excellent photoluminescence prop-
erties, so they can be used as photoluminescence probes in chemical sensing [46–48]. The
reported WO3−x QDs mainly exist in the form of WO3 and W18O49. WO3−x QDs have ex-
cellent optical and thermal stability and electrical properties, which can be used for sensing,
bio-imaging, solar cells, electromagnetic wave absorption, and other applications [49].

2.6. MXenes-Based 2D-QDs

MXenes, a large family of two-dimensional transition metal carbides, carbonitrides,
and nitrides, have attracted great interest in sensing owing to their structural similarity to
graphene. MXenes are formed by selective etching A-element from their MAX phases with
the chemical formula Mn+1Xn (n = 1, 2, or 3), where M represents the early transition metals
of Mo, Ti, Sc, Zr, V, Hf, Ta, Nb, Cr, etc., A is mainly III-A and IV-A group elements, and X
is usually the carbon and/or nitrogen element. This special structure enables MXenes to
possess metal-like properties, namely high electrical and thermal conductivity. Regarding
their 2D-QDs, the ultra-thin size corresponds to a large specific surface area and high
density of functional groups, which enables higher density to bind biomolecules, thereby
enhancing the performance of biosensor [24].

3. Synthetic Methods of 2D-QDs

In general, the synthesis methods of 2D-QDs can be divided into two broad categories:
top-down approaches, which synthesize 2D-QDs by cleavage of relatively large bulk
precursors (Table 1), and bottom-up approaches, which synthesize 2D-QDs by aggregation
and growth of small organic or inorganic molecules (Table 2).

Table 1. Synthesis of 2D-QDs by top-down methods.

Method Product Type Precursors Size [nm] Ref.

Ultrasonication assisted
method

PGQDs Natural graphite powder
2–4 [50]EGQDs Expanded graphite powder

GOQDs Graphite oxide powder
BPQDs Black phosphorus 4.9 ± 1.6 [36]
BPQDs Black phosphorus <20 [51]

g-C3N4 QDs Cyanuric acid
2,4-diamino-6-phenyl-1,3,5-triazine <100 [52]

g-C3N4 QDs Recrystallized dicyandiamide 5–200 [53]
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Table 1. Cont.

Method Product Type Precursors Size [nm] Ref.

BNQDs h-BN 7.71–13.2 [54]
MoS2 QDs Molybdenum disulfide powder 4.2 ± 0.1 [55]

Hydro/
Solvothermal method

WO3−x QDs WCl6 3.25 ± 0.25 [49]
N, S-GQDs Citric acid, thiourea 3.10 ± 0.54 [56]

N-MXene QDs Layered Ti3C2 nanosheet 3.4 [57]
MoS2/WS2 dots MoS2/WS2 powder 3 [58]

Ti3C2 QDs Ti3C2 MXene 2.9/3.7/6.2 [59]
BNQDs h-BN powder 1.7–10.9 [60]

Ion intercalation-
assisted method

MoS2 QDs MoS2 powder 3 [61]
MoS2 QDs MoS2 bulk crystal 3.5 [62]

BN QDs h-BN flakes 10 [63]

Microwave-
assisted method

g-CNQDs g-C3N4 3.5 ± 0.5 [64]
BNQDs h-BN powder 1.98–7.05 [65]

Table 2. Synthesis of 2D-QDs by bottom-up methods.

Method Product Type Precursors Size (nm) Ref.

Hydro/Solvothermal
Method

N-GQDs Citric acid, urea 4.7±0.5 [66]
N, S-GQDs Citric acid, thiourea 4.8 ± 0.5 [67]

External Microwave
and Laser Assisted

Method

g-CNQDs Guanidine hydrochloride, EDTA 5 [68]
S-BN QDsT Boric acid, melamine, thiourea 9.8

[69]
S-BN QDsL Boric acid, melamine, L-cysteine 9.2

3.1. Top-Down Methods
3.1.1. Ultrasonication-Assisted Methods

Sonication is one of the most versatile methods for 2D-QDs synthesis, and most
layered materials can be transformed into 2D quantum dots by this method. Briefly,
the bulk raw material is sonicated in the appropriate solvent, and sometimes the high
temperature or high pressure is also required. In this method, the sonication induces liquid
cavitation and generates bubbles in the solution. Moreover, the collapse of bubbles will
cause the violent tensile stress on the surface of layered bulk materials to destroy the bonds,
realizing the exfoliation of these crystals and finally forming the 2D-QDs [70]. Most 2D-QDs
can be obtained by this method, such as GQDs [50], BPQDs [36,51], g-C3N4 QDs[52,53],
BNQDs [54], and MoS2 QDs [55]. Despite the advantages of simplicity and ease of operation,
the ultrasound-assisted methods are usually carried out in organic phases, which limit the
application of QDs in aqueous solutions. Therefore, several methods to fabricate 2D-QDs
in aqueous environments have been developed over the years. For instance, using natural
graphite, expanded graphite, and graphite oxide as raw materials, Gao and coworkers
synthesized three kinds of GQDs: pristine graphene quantum dots (PGQDs), expanded
graphene quantum dots (EGQDs), and graphene oxide quantum dots (GOQDs), in an
ultrasound-assisted supercritical CO2/H2O system [50]. Both the intense knocking force
generated from the high-pressure acoustic cavitation and the superior penetration ability of
scCO2 are the keys to obtaining these products. In addition, Lee and coworkers obtained a
new class of fluorescent BPQDs from black phosphorus using an exfoliated solution method
with sonication in an aqueous phase [51]. The BPQDs were able to keep stable for 10 days
in an aqueous solution and exhibited excitation wavelength-dependent photoluminescence
characteristics, which have great potential for biomedical applications.

3.1.2. Hydro/Solvothermal Methods

Hydrothermal and solvothermal methods are the most practical techniques with great
flexibility and controllability, which have been widely used in the synthesis of various
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QDs in the past decade [56–58]. In brief, after the precursor is dispersed in the solvent, the
operation is carried out in a closed container and reacts at a high temperature. The principle
of this method is to destroy the bonds by thermal shear force under high temperature and
high pressure to exfoliate the layered 2D flakes into ultrasmall QDs. Importantly, the
characteristics and properties of solvothermally synthesized 2D-QDs are closely related to
the reaction temperature, solution/reactor volume ratio, processing time, concentration,
solvent type, etc. For example, Xue et al. developed a size-tunable monolayered Ti3C2
MXene QDs through the facile hydrothermal method [59]. By adjusting the reaction
temperatures, the MXene QDs with different sizes and atomic concentrations of Ti can
be obtained. Furthermore, the hydrothermal and solvothermal methods can be used
to synthesize heteroatom-doped 2D-QDs. Xu et al. produced an MXene QD with high
photoluminescence quantum yield using Ti3C2 as a precursor and ethylenediamine as a
nitrogen source by the hydrothermal method [57]. The as-synthesized Ti3C2 QDs can be
applied for highly sensitive detection of heavy metal ions (Fe3+) and hydrogen peroxide,
which demonstrate broad prospects in the field of biosensing.

3.1.3. Ion Intercalation-Assisted Methods

As a typical top-down approach, the ion intercalation-assisted strategy is widely used
to cleavage layered bulk 2D materials into 2D-QDs. The basic principle is to intercalate
cations into the interlayer gaps, thereby increasing the interspace and weakening the van der
Waals forces. Thus, these layered materials can be easily exfoliated into single or multiple
layers. The unique mechanism has sparked enthusiasm to explore the synthesis of 2D-QDs
by this method, such as MoS2 QDs [61,62], BNQDs [63], and MXenes QDs [71]. For the
preparation process, the bulk raw material is first immersed in a solution containing metal
cations for the intercalation of ion, and the exfoliation is then performed using mechanical
force. This strategy has the significant advantages in the preparation of single-layer 2D-QDs,
but the production yield is relatively low. Moreover, the process is relatively complicated
and the obtained product requires additional purification to remove the introduced cations.
For instance, Qiao and coworkers demonstrated an effective multi-exfoliation method to
prepare monolayer MoS2 QDs from MoS2 powder via lithium intercalation [61]. Pristine
MoS2 powder was immerged in n-butyl lithium solution to obtain LixMoS2 for the first
intercalation, and the exfoliation was achieved by ultrasonicating LixMoS2 in water. The
intermediate product was then subjected to the same two-step procedure twice to obtain
the final MoS2 QDs. The as-synthesized QDs were monolayer with a lateral size around
3 nm. In addition, Zhu et al. proposed a method to prepare single-layered Ti3C2 QDs from
multilayered MXenes by ion-intercalation in aqueous tetramethylammonium hydroxide
(TMAOH) [71]. The reaction with TMAOH induced both intralayer cutting and interlayer
delamination, which facilitated the conversion into small pieces and monolayers. The
resulting product exhibited bright and tunable fluorescence with a monolayer thickness of
1 nm, while the original chemical structure was well preserved. Moreover, this method is
also applicable to the synthesis of other MXene 2D-QDs.

3.1.4. Microwave-Assisted Methods

Microwave-assisted methods are one of the most efficient and economical processes
used for synthesizing 2D-QDs, in which the heat generated by microwave can weaken the
bonds and interlayer van der Waals forces. This method can greatly reduce the time to
synthesize the 2D-QDs, which can be obtained in a few minutes. More importantly, the QDs
synthesized by the microwave-assisted method have relatively high quantum yields [64,65].
For example, through a microwave-assisted pathway, Yin and coworkers synthesized the
g-C3N4 QDs with high crystallinity by direct transformation of bulk g-C3N4 [66]. In a
typical run, the g-C3N4 powder was added to the alumina crucible and a beaker was
placed upside down on the crucible. The whole apparatus was then microwaved in a
household microwave oven for 5 min. Finally, the sediment on the inner wall of the beaker
was collected and dispersed with ethanol, followed by removing the large particles by
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centrifugation. The collected products with an average diameter of 3.5 ± 0.5 nm exhibited
excellent photoluminescence characteristics with a quantum yield of ∼17%.

3.2. Bottom-Up Methods

The most significant difference between top-down and bottom-up approaches is the
precursor difference. In contrast to the bulk crystals used in the top-down approach,
the bottom-up approach typically involves the fusion of small precursor molecules into
larger structures to form QDs, which has demonstrated the significant advantages in
surface modification and particle size distribution control of quantum dots. The hydrother-
mal/solvothermal method is the most common one for bottom-up synthesis of QDs. During
the hydrothermal/solvothermal synthesis, the high temperature and pressure conditions
are used to crystallize precursors into the desired material in the solvent, which is relatively
easy to introduce heteroatom doping. For example, Ganganboina et al. synthesized a
nitrogen atom-doped GQDs (N-GQDs) using citric acid and urea as raw materials, in
which urea was used as the nitrogen source [66]. The highly fluorescent N-GQDs with a
quantum yield of 0.34 were then deposited onto V2O5 nanosheets for highly selective and
sensitive fluorescence detection of cysteine. In another study, nitrogen and sulfur doped
GQDs (N, S-GQDs) were synthesized by adjusting the mass ratio of thiourea:citric acid
to 1:1 [67]. Equal masses of citric acid and thiourea were dissolved in deionized water
with stirring, and the solution was then continuously heated in the autoclave to obtain
the final product. The average lateral size of the as-prepared N, S-GQDs was 4.8 ± 0.5
nm and the lattice fringes were 0.21 nm, which was consistent with the (100) plane of
GQDs, demonstrating the successful synthesis of N, S-GQDs. The external microwave and
laser assisted for synthesizing quantum dots also have broad applications in top-down
pathways and various 2D-QDs have been fabricated by this way, such as GQDs, g-C3N4
QDs, and BNQDs. This approach relies on the dense and uniform energy provided by
microwaves and lasers to accelerate the chemical reactions that convert precursors into
2D-QDs. For example, using guanidine hydrochloride and EDTA as the precursors, Tang
et al. prepared g-C3N4 quantum dots with strong fluorescence and high quantum yield
under the assistance of microwave [68]. The as-prepared g-C3N4 QDs were able to exhibit
the chemiluminescence ability in the presence of NaClO, widely expanding the applica-
tion of g-C3N4 QDs in chemiluminescence and providing a new insight into the optical
characteristics of the g-C3N4 QDs. In addition, Liu et al. synthesized two sulfur-regulated
BNQDs (S-BN QDsT and S-BN QDsL) by the microwave-assisted hydrothermal method
using boric acid and melamine as boron and nitrogen sources, and thiourea and L-cysteine
as two different sulfur sources [69]. The average diameter of S-BN QDsT (9.8 nm) was
slightly larger than that of S-BN QDsL (9.2 nm), and the corresponding lattice fringes were
0.76 nm and 0.72 nm, respectively. Moreover, since the functional groups introduced by
thiourea and L-cysteine on the surface of BN QDs were different, the electrooptic properties
of the two QDs were also different from each other. The ECL intensities of S-BN QDsT and
S-BN QDsL were increased by 1.67 and 2.59 times compared with BN QDs, respectively.

However, most bottom-up methods are only applicable to the synthesis of a few 2D-
QDs and lack universality. Moreover, most of these methods are based on the wet synthesis
and the experimental parameters, such as the precursor concentration, reaction tempera-
ture, solvent system, and surfactant used, have a great influence on the morphology and
properties of 2D-QDs. Therefore, many bottom-up approaches require further development
compared to top-down synthetic routes.

4. Applications of 2D-QDs in Electrochemical Biosensors

In recent years, 2D-QDs have been widely applied in the construction of electro-
chemical DNA biosensors, benefiting from their advantages of easy immobilization of
biomolecules, good biocompatibility, and high multifunctionality. In this section, we will
focus on recent research on the 2D-QD-based electrochemical biosensors, including DNA
sensors, immunological sensors, enzyme sensors, and aptasensors (Table 3).
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Table 3. Applications of 2D-QDs in electrochemical biosensors.

Type Sensors Analyte LOD Linear Range Ref.

DNA Sensors

AuNPs/GQDs/GO/SPCE
microRNA-21 0.04 fM 10−15–10−9 M

[21]microRNA-155 0.33 fM 10−15–10−9 M
microRNA-210 0.28 fM 10−15–10−9 M

H2N-GQD/GCE microRNA-25 0.95 pM 0.3 nM–1.0 µM [22]
S-BNQDs/GCE BRAF 0.3 pM 1 pM–1.5 nM [69]

NH2-DNA/GQDs/HRP/GE microRNA-155 0.14 fM 10−15–10−10 M [72]
GQDs/PGE microRNA-541 0.7 fM 1 fM–1 nM [73]

BNQDs/Ru/PtNPs/Nafion/GCE microRNA-21 0.33 aM 10−18–10−10 M [74]
BNQDs/GCE BRCA 0.33 fM 10−16–10−9 M [75]

N,S-GQDs@AuNP/GE DNA 9.4 fM 10−14–10−6 M [76]
Zn-doped MoS2 QDs/GCE HPV 16 DNA 0.03 nM 0.1 nM–0.2 µM [77]

BNQDs/BPE microRNA-141 0.1 aM 10−17–10−7 M [78]

Immunological
Sensors

Ab1/g-CNQDs/Ag@TCM/GCE PSA 6.9 fg/mL 10 fg/mL–0.1 pg/mL [23]
N-Ti3C2 QDs/GCE MUC1 0.31 fg/mL 1 fg/mL–1 ng/mL [24]

WS2-B QDs/SPE Ferritin 3.8 ng/mL 10 ng/mL–1.5 µg/mL [45]
N,S-GQDs@Au/PANI/Pt CEA 10 pg/mL 0.5 ng/mL–1 µg/mL [67]

HRP-Strept-Biotin-Ab-HSP70/
PAGD/GCE HSP70 0.05 ng/mL 0.0976–100 ng/mL [79]

Au@N-GQDs/GCE PSA 3 fg/mL 10 pg/mL–0.1 µg/mL [80]
GQDs@AuNP-

Ab2/CEA/BSA/Ab1/
AuNP/P5FIn/erGO/GE

CEA 3.78 fg/mL 0.1 pg/mL–10 ng/mL [81]

CMCNT-PDDA-AuNC/ GCE Okadaic acid 0.25 ng/mL 0.01–20 ng/mL [82]
AuPdCu/N-GQDs@PS/GCE HBsAg 3.3 fg/mL 10 fg/mL–50 ng/mL [83]
C-TiO2@g-CNQDs-Ab2/SFN/

Ab1/AuNPs/PVPTiO2@PFBT/GCE SFN 0.33 fg/mL 1 fg/mL–100 pg/mL [84]

Enzyme Sensors

GCE/GQDs/Laccase Epinephrine 83 nM 1–120 µM [85]
GOx-GQD/GCE Glucose 1.35 µM 10–250 µM [86]

PEDOT:PSS/Ti3C2/GQD/GOx/SPCE Glucose 65.0 µM 0−500 µM [87]

Tyr/GQDs@PEDOT NPs/SPE
Catechol 0.002 µM 0.005–11 µM

[88]Epinephrine 0.065 µM 0.2–12 µM
norepinephrine 0.035 µM 0.1–2.5 µM

Nafion/GOx/GQD–luminol–
AgNP/GCE Glucose 8 µM 25–250 µM [89]

GOx-CeO2@Ag-GQDs/GCE Concanavalin A 0.16 pg/mL 0.0005–1.0 ng/mL [90]

Aptasensors

AuNPs/GQD-SH/GCE STR 33 fg/mL 0.1 pg/mL–0.7 ng/mL [91]

GQDs/SPEs HIV 51.7 pg/mL 0.93 ng/mL–93
mg/mL [92]

GQDs -IL-NF/GCE CEA 0.34 fg/mL 0.5 fg/mL–0.5 ng mL [93]
MoS2QDs@g-C3N4@CS-

AuNPs/AE PSA 0.72 ng/mL 1.0 ng/mL–0.25
ng/mL [94]

BSAN/DNA/probe/GE Lysozyme 29 fg/mL 0.1 pg/mL–0.1 ng/mL [95]
Fc-aptamer/BPQDs/RuNDs/GCE MUC1 6.2 pg/mL 20 pg/mL–10 ng/mL [96]

Aptamer/CoPc/NGQDs/GCE PSA 1.54 pM 34 pg/mL–57 pg/mL [97]
GODs@AgNCs@Apt/GE PGDF-BB 0.82 pg/mL 32.3 fM–1.61 pM [98]

VS2 QDs-GNP/CMWCNTs/GCE Diazinon 2.0 fM 10−14–1.0–10−8 M [99]
g-C3N4 QDs-graphene

hydrogel/GCE Kanamycin 0.33 pM 1 pM–50 nM [100]

4.1. 2D-QD-Based Electrochemical DNA Sensors

The detection of DNA/RNA with high specificity and sensitivity is of great signifi-
cance in the fields of biochemistry and biomedicine, such as gene profiling, drug diffusion,
and clinical diagnostics [101,102]. Over the past decade, a wide variety of DNA sensing
methods and techniques have been developed, among which electrochemical sensing is par-
ticularly popular because of its advantages of high sensitivity, strong specificity, low limits
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of detection (LOD), and wide linear range [103]. In addition, the emergence of functional-
ized nanomaterials further drives the development of electrochemical biosensors [104]. The
combination of electrochemical biosensors with conductive micron/nanoscale materials
will increase the sensitivity and selectivity of sensors. In this context, the 2D-QDs hold great
potential in electrochemical sensing due to their unique characteristics, such as high surface
activity, strong adsorption capacity, improved electron transfer efficiency, easy functional-
ization, and immobilization of biomolecules. For instance, Hu et al. designed a GQD-based
electrochemical biosensor for sensitive detection of microRNA-155 (Figure 2A) [72]. The
abundant carboxyl groups at the edge of GQDs were linked to the NH2-DNA on the
electrode through amide bonds, and served as the carriers for immobilizing horseradish
peroxidase (HRP). Due to the catalysis of GQDs and enzyme, the GQD-based electrochemi-
cal biosensor obtained a good linear range (1 fM–100 pM) and low LOD (0.14 fM) in the
determination of microRNA-155. Based on a GQD-modified pencil graphite electrode
(GQDs/PGE), Akbarnia and coworkers reported a label-free DNA assay for the detection of
microRNA-541 [73]. To fabricate the biosensor, GQDs were electrodeposited on the surface
of a bare PGE, and the probe was immobilized on the GQDs/PGE through the reaction
between –NH2 of the probe and –COOH of GQDs. Then, the probe was hybridized with
microRNA-541 and treated with Hinf1. The electrochemical response of the genosensor
was achieved through monitoring the intrinsic electroactivity of guanine in the remaining
dsDNA. The presence of GQDs favored the oxidation of guanine and adenine due to their
high mobility for charge carriers. The proposed method can distinguish the microRNA-
541 sequence from the non-complementary sequence with the single-base mismatch at
recognition sites. In addition, a voltammetry method based on amino functionalized GQDs
(NH2-GQDs) was constructed to detect microRNA-25 [22]. In this work, the NH2-GQDs
were used to modify glassy carbon electrodes (GCE) to generate amplified electrochemical
signals and provide a large active site to capture amino-linked DNA probes on the electrode
surface. The results showed that the electrochemical biosensor can well discriminate the
microRNA-25 with other non-target microRNAs even with single-base mismatch. The
proposed GQD-based electrochemical biosensor offered a linear range from 0.3 nM to
1.0 µM with a LOD of 95.0 pM for microRNA-25.
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Recently, the researchers have found that the synergistic effect of the 2D-QDs and
other nanomaterials can further improve the performance of electrochemical biosensors.
For example, Ounnunkad’s group constructed an AuNPs/GQDs/GO nanocomposites
modified three-screen-printed carbon electrode (3SPCE) array for simultaneous detection of
three microRNAs [21]. Benefiting from the synergetic effect of AuNPs, GQDs, and GO, the
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highest oxidation peak current and the lowest peak-to-peak separation were observed from
the AuNPs/GQDs/GO nanocomposite-modified 3SPCE surface, resulting in the LODs
as low as fM level. In addition, the 2D-QDs have also played an important role in the
design and improvement of electrochemiluminescence (ECL)-based sensors. However,
the long electron transfer distance between the 2D-QDs in the solution and luminophore
on the electrodes often reduce the ECL efficiency. To overcome this issue, Zhang et al.
prepared a nanocomposite (BNQDs/Ru/PtNPs/Nafion) by dispersing Ru(bpy)3

2+ and
BNQDs in Nafion solution containing Pt nanoparticles (Figure 2B) [74]. Because of the
shortened electron transfer distance between BNQDs and Ru(bpy)3

2+, a strong initial ECL
response was achieved. In addition, the synergistic effect of 2D-QDs and nanoparticles also
induces the surface plasmon oscillations when the electrochemically induced excited-state
luminescence is coupled to the noble metal surface, which can effectively enhance the
ECL signal of QDs. More importantly, a 3D DNA network structure based on catalytic
hairpin assembly was designed for target signal amplification in this work, resulting in
an ultralow LOD of 0.33 aM for microRNA-21. In addition, a novel ECL biosensor was
developed to detect breast cancer-related genes BRCA1 and BRCA2 simultaneously based
on the polarization characteristics of surface plasmon-coupled ECL (SPC-ECL) [75]. In
this work, the BNQDs were used as the ECL emitters, and Au NPs and gold-coated silver
nanoparticles (Ag@Au NPs) served as the surface plasmon materials. The Au NPs and
Ag@Au NPs not only ameliorated the ECL intensity of BNQDs, but also affect the emission
polarization mode of QDs due to the SPC effect. As a result, based on the polarization
angle-resolved ECL sensor, the BRCA1 and BRCA2 can be detected simultaneously at a
single electrode interface.

Introducing heteroatoms into the 2D-QDs is another effective way to improve the
performance of electrochemical sensor [76,77]. For example, through a bottom-up synthetic
route, the zinc ion-doped MoS2 QDs were obtained by Nie and coworkers using ammo-
nium molybdate tetrahydrate and reduced glutathione as the precursors and zinc nitrate
hexahydrate as the zinc source [77]. For the fabrication of the ECL system, reduced Cu(I)
particles with arm-DNA and capture-DNA (cDNA) were first immobilized on the electrode
surface. After introducing pDNA and hybridizing it to the QD-DNA, the system could
generate an improved ECL signal in H2O2, resulting from the attachment of H2O2 on the
sulfur vacancies of Zn-doped MoS2 QDs and the coordination with transition metal ions.
When target DNA was captured by cDNA, the arm-DNA also bound to QD-DNA. Upon
the addition of T7 exonuclease, the arm-DNA was released again as a DNA walker to bind
with another QD-DNA. During the cycling of the DNA walker, the Zn-doped MoS2 QDs
were continuously released from the electrode surface, thereby amplifying the quenching
effect of ECL signal. Based on the enhanced ECL intensity of Zn-doped MoS2 QDs and
reductive Cu(I) particles, the enzyme-assisted DNA walker strategy showed a linear range
of HPV 16 DNA from 0.1 to 200 nM with a LOD of 0.03 nM.

4.2. 2D-QD-Based Electrochemical Immunological Sensors

Based on the antigen–antibody immunoreactivity, the electrochemical immunological
sensor is one of the most common electrochemical methods in the fields of environmen-
tal monitoring, medical clinical trials, and protein analysis. Due to the combination of
traditional immunoassays with modern electrochemical assays, the electrochemical im-
munological sensor exhibits both high selectivity and sensitivity. Significantly, the 2D-QDs
are able to enhance the performance of immunological sensors by improving the immo-
bilization of biomolecules (e.g., enzymes, antibodies, or DNA) and labels, facilitating the
electron transfer, and amplifying the electrochemical signals.

For example, Sun et al. reported a novel electrochemical immunological sensor based
on the polyaniline functionalized GQDs (PAGD) for the detection of the heat shock pro-
tein 70 (HSP70) [79]. The PAGD composites were prepared using GQDs and aniline as
precursors, which were further dropped on the surface of GCE to obtain PAGD/GCE
electrode. Compared with GQDs, PAGDs exhibited better electrical conductivity, which can
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increase the electron transfer rate on the electrode and improve the sensitivity of the biosen-
sor. Then, the PAGD/GCE electrode was incubated with the HSP70 sample to obtain the
HSP70/PAGD/GCE basic electrode, which was then incubated with the biotin HSP70 anti-
body and horseradish peroxidase conjugate streptavidin (HRP-Strept) in sequence. Finally,
the electrochemical immunological sensor (HRP-Strept-Biotin-Ab-HSP70/PAGD/GCE)
was fabricated. Since HSP70 in the sample can compete with the HRP-labeled HSP70 anti-
body, the concentration of HSP70 in the sample is negatively correlated with the detection
signal of the electrochemical immunological sensor. Under the optimized conditions, HSP70
can be sensitively determined in the range of 0.0976–100 ng/mL with a LOD of 0.05 ng/mL.
Recently, an electrochemical immunological sensor was developed by Dutta et al. based
on the N-GQDs and single-walled carbon nanohorns (SWCNHs) for the determination of
α-fetoprotein (AFP) (Figure 3A) [105]. By assembling N-GQDs and SWCNHs, a hybrid
architecture (N-GQD@SWCNHs) was obtained and used to immobilize primary antibodies,
anti-AFP. The electrochemical immunological sensor was fabricated by distributing the
bioconjugates (N-GQD@SWCNHs/anti-AFP) dispersion on the surface of GCE. Notably,
the conductivity and sensitivity of this electrochemical immunological sensor were signif-
icantly improved due to the cooperation of N-GQDs and SWCNHs. As a result, a good
linear relationship was observed between the cathodic and anodic peak currents and the
concentration of AFP from 0.001 to 200 ng mL−1 with a LOD of 0.25 pg mL−1. In addition,
a label-free method for electrochemical ferritin sensing using WS2 QDs was reported by
Garg and coworkers [45]. In this work, WS2 QDs were used for the modification of SPE
and as the carriers for the ferritin antibody immobilization. Due to the specific recognition
of ferritin antibodies to ferritin, the prepared immunological sensor has high selectivity
and reproducibility for the detection of ferritin.

The 2D-QD-based sandwich-type electrochemical immunological sensor is also widely
applied in clinical diagnosis and biochemical analysis. For example, Yang et al. devel-
oped an ultrasensitive sandwich-type electrochemical immunological sensor (Figure 3B), in
which Au@N-GQDs and Au@AgCu2O were employed as the substrate material and the
label of secondary antibody (Ab2), respectively [80]. On the one hand, the Au@N-GQDs
NPs can immobilize on the GCE surface through the π–π conjugation effect, which further
improve the conductivity of GCE. On the other hand, the Au@Ag-Cu2O was not only used
as the label of Ab2, but it also exhibited good electrocatalytic activity towards the reduc-
tion of H2O2, so as to effectively amplify the current signal for prostate-specific antigen
(PSA) detection. This immunological sensor showed an excellent dynamic concentration
range from 0.01 pg mL−1 to 100 ng−1 with a LOD of 0.003 pg mL−1. In addition, as
the substrate materials to modify electrodes, the 2D-QDs can also employ the emitters,
antibody labels, and co-reactants [23,81]. For example, Nie and coworkers developed a
novel ECL immunological sensor based on poly(5-formylindole)/reduced graphene ox-
ide nanocomposite (P5FIn/erGO) and AuNP decorated GQDs (GQDs@AuNP) [81]. In
this case, the GQDs@AuNP was used to immobilize Ab2 and serve as the ECL probe
with improved electron transfer capability and stable ECL intensity. Moreover, the elec-
trochemical impedance spectroscopy (EIS) results showed that after the connection of
GQDs@AuNP-Ab2 to the modified electrode, the diameter of the semicircular domain
was significantly reduced owing to the high conductivity of GQDs. The obtained ECL
immunological sensor exhibited a wide linear range from 0.1 pg mL−1 to 10 ng mL−1 and
a LOD of 3.78 fg mL−1 for the ultrasensitive detection of carcinoembryonic antigen (CEA).
Peng et al. prepared a kind of phosphorus and sulfur co-doped GQDs (P, S-GQDs) by
electrolysis of a graphite electrode in a solution containing sodium phytate and sodium
sulfide [82]. In the presence of K2S2O8, P, S-GQDs exhibited higher ECL activity than
GQDs, P-GQDs, and S-GQDs, which can be used as the bright signal indicators after the
monoclonal antibody labeling of okadaic acid (anti-OA-MAb). The ECL immunological
sensor was fabricated for highly sensitive detection of OA using carboxylated multiwall
carbon nanotubes-poly(diallyldimethylammonium) chloride-Au nanocluster composites,
modified GCE as the sensing platform and P, S-GQDs as the efficient ECL markers. The
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determination of OA was achieved in the range 0.01–20 ng mL−1 with a low LOD of
5 pg mL−1

. In addition, Jiang et al. constructed an ECL immunological sensor for sensitive
determination of mucin 1 (MUC1) based on the nitrogen-doped titanium carbide QDs (N-
Ti3C2 QDs) (Figure 3C) [24]. The N-doped MXene QDs were synthesized via a top-down
route by hydrothermal method, which exhibited an enhanced ECL property and possessed
higher ECL quantum efficiency than that of Ti3C2 QDs. For the fabrication of the ECL
immunological sensor, the AuNPs-modified electrodes were used to immobilize the MUC1
antibodies. The ECL signaling probe was prepared using AgPt nanospheres to immobilize
N-Ti3C2 QDs, and the MUC1 antibody was linked onto the surface of nanospheres by Ag–N
and Pt–N bonds. Moreover, the ECL signal could be further enhanced due to the generation
of sulfate radicals. Consequently, the ECL immunological sensor system realized sensitive
determination of MUC1 with a low LOD of 0.31 fg mL−1.
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4.3. 2D-QD-Based Electrochemical Enzyme Sensors

Electrochemical enzyme biosensors can present the electron transfer caused by the
biochemical reaction between enzymes and analytes as an electrochemical signal for quan-
titative analysis. The 2D-QDs have stronger affinity for enzymes compared to other 2D
materials, such as graphene oxide and reduced graphene oxide [106]. Therefore, the 2D-
QDs with large specific surface areas have been widely utilized to immobilize enzymes on
electrodes in electrochemical biosensors. In addition, the 2D-QDs as electrode modifiers can
accelerate the electron transfer rate and the electrocatalytic activity of enzymatic reactions
on the electrode, thereby improving the performance of the biosensor.

Due to the advantages of 2D-QDs, such as good conductivity, renewable/reusable elec-
trode surfaces, and low costs, the 2D-QDs can be directly used for enzyme immobilization
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and electrode modification with simple steps. For example, Baluta and coworkers designed
an electrochemical sensing approach for epinephrine detection based on GQDs and laccase
modified GCE 85]. For the fabrication of the biosensor, GQDs were firstly spread onto the
electrode surface and physically adsorbed for a day to obtain the GQDs/GCE. Then, the
laccase was directly dropped onto the modified electrode crosslinked with glutaraldehyde.
In addition, the similar procedures can also be used for immobilization of glucose oxidase
(GOx) and horseradish peroxidase (HRP) as well as the modification of electrodes [86]. The
biggest advantage of this method is simple and cost-effective. However, the sensitivity and
stability are issues. Therefore, utilizing the synergistic effect between different 2D-QDs
and other materials to further enhance the performance of biosensors is a more preferable
strategy. Recently, a label free glucose electrochemical biosensor was developed for the de-
tection of glucose [87]. As shown in Figure 4A, GOx was immobilized on the nanomaterial
(PEDOT:PSS/Ti3C2/GQD)-modified SPCE by a noncovalent interaction strategy. In the
presence of glucose, the direct electrochemistry of GOx on the electrode was observed. The
presence of Ti3C2 and GQDs could provide the additional active surface area, resulting in
more electroactive sites exposure. Moreover, due to the excellent electrical conductivity
and the synergy effect of GQDs, Ti3C2, and PEDOT:PSS, there was an accelerated electron
transfer rate at the electrode/electrolyte interface, which significantly improved the elec-
trochemical behavior of the enzymatic biosensor, achieving a LOD of 65 µM and a high
sensitivity of 21.64 µAmM−1 cm−2. Erkmen et al. reported an amperometric nanobiosensor
for the quantitative analysis of phenolic compounds, catechol, epinephrine, and nore-
pinephrine [88]. For electrode modification, GQDs, poly(3,4-ethylenedioxythiophene)
nanoparticles (PEDOT NPs) and tyrosinase were dropped onto the surface of a screen
printed electrode (SPE) in sequence with 0.25 % glutaraldehyde as the crosslinking agent.
As the additional conductive layer provided by GQDs, the SPE/GQDs exhibited stronger
current responses and smaller electron transfer resistance compared to the bare SPE. More-
over, due to the superior conductance of PEDOT NPs, the performance of the nanobiosensor
was further improved. Under the optimized conditions, the LOD were determined as 0.002,
0.065, and 0.035 µM for catechol, epinephrine, and norepinephrine, respectively. In addition,
Salehnia and coworkers prepared a novel nanocomposite (GQD–luminol–AgNP) through a
one-step strategy [89]. For the design of the ECL-based biosensor, the nanocomposites and
GOx were dropped on the surface of GEC in turn and then dried at room temperature to
form the GCE/GQD–luminol–AgNP/GOx. Finally, the Nafion solution was poured on the
modified electrode to achieve enzyme immobilization. The increase in ECL signal intensity
for luminol could be attributed to the following two aspects: (1) the presence of GQDs
increased the specific surface area of electrode; (2) AgNP on the surface of GQDs could
provide more active sites with higher electrocatalytic activity. The proposed ECL biosensor
displayed the excellent performance towards glucose detection in the concentration range
from 25 to 250 mM with a low LOD of 8 mM.

Besides serving as the modifiers of electrodes, the excellent optical properties of 2D-
QDs allow them to act as luminophores in ECL sensors. Zuo et al. reported a solid-state
ECL biosensor for the detection of Concanavalin A using GQDs as the luminophore [90].
As shown in Figure 4B, the immobilization of GQDs was achieved through the interaction
between –NH2 of CeO2@Ag NPs and –COOH of GQDs, and the nanocomposites were
further modified with GOx to obtain the signal probes (GOx-CeO2@Ag-GQDs). GOx on
the electrode acted as a recognition element to capture Concanavalin A, which further
bound with the signal probe to form a sandwich structure. After that, the ground-state
GQDs were electrochemically reduced to GQDs−, while S2O8

2− was reduced to SO4
−

radicals. Then, the GQDs− and SO4
− radicals underwent the electron transfer annihilation

reaction to generate the excited state GQDs*, which emitted ECL signals when GQDs* fell
to the ground state. Both the high loading of GQD luminophore and the good electrical
conductivity of Ag NPs were critical to enhance the ECL intensity of GQDs. As a result, the
constructed ECL biosensor exhibited the excellent sensitivity to Concanavalin A with a low
LOD of 0.16 pg/mL.
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4.4. 2D-QD-Based Electrochemical Aptasensors

Aptamer is a single-stranded DNA or RNA with high affinity for the targets. Com-
pared with antibodies, aptamers have the advantages of high affinity, low costs, easy
synthesis and modification, significant target diversity, and good stability. In electrochem-
ical aptasensors, the immobilization of aptamers on electrodes is a very important part.
In recent years, 2D-QDs have been widely used to immobilize aptamers by covalent or
non-covalent methods in the construction of an electrochemical aptasensor due to their
advantages of large specific surface areas and easy functionalization [97,98]. Moreover, the
unique electronic properties of 2D-QDs also allow them to be used as the co-reactants and
emitters in ECL biosensors [95,96].

For example, Ghanbari et al. proposed a novel electrochemical aptasensor for highly
sensitive detection of streptomycin (STR) based on AuNPs and thiol GQDs (GQD-SH)
(Figure 5A) [91]. The AuNPs and GQDs were connected together by Au-S bonds to form
the nanocomposites which can be further used to immobilize the aptamers, and the con-
structed electrochemical aptasensor demonstrated good selectivity and specificity for the
determination of STR. However, the stability of this sensor needs to be further improved.
Recently, L. Gogola et al. developed a label-free electrochemical aptasensor for the detection
of p24-HIV [92]. For the construction of biosensors, GQDs were first immobilized on the
SPE by electrodeposition, and the aptamers then linked to the carboxyl group of GQDs
via the EDC/NHS reaction. Due to the specific binding of the aptamer to p24-HIV pro-
tein, this electrochemical biosensor demonstrated a high selectivity for p24-HIV detection.
Khosropour et al. reported an ultrasensitive electrochemical aptasensor for diazinon detec-
tion [99]. A new group of nanocomposite (VS2 QDs-graphene nanoplatelets/carboxylated
multiwalled carbon nanotubes, VS2 QDs-GNP/CMWCNTs) was prepared to modify the
electrode and immobilize the aptamers. Importantly, all of the VS2 QDs, GNP, and CMWC-
NTs have the ability to increase the surface area and conductivity of electrodes. Due to
the synergistic superposition effect of VS2 QDs, GNP, and CMWCNTs, the constructed
modified electrode showed the excellent conductivity and high electron transfer rate. When
the target diazinon specifically bound to the aptamer, the electron transfer on electrode was
limited, resulting in the decrease of the DPV peak current and the enhancement of RCT in
EIS. As a result, the established electrochemical aptasensor achieved a high sensitivity for
quantitative detection of diazinon with a LOD of 11.0 fM and 2.0 fM using DPV and EIS
methods, respectively. Huang and coworkers developed an electrochemical aptasensor
based on the Pb2+-dependent DNAzyme-assisted signal amplification (Figure 5B) [93].
The GQDs-IL-NF composite film composed of Nafion, ionic liquid, and GQDs was used
to fabricate the electrode, and meanwhile served as a carrier for DNA immobilization
through non-covalent π–π stacking interaction. This aptasensor exhibited greatly enhanced
sensitivity due to the signal amplification strategy, which achieved good linearity for CEA
detection in the range of 0.5 fg mL−1 to 0.5 ng mL−1 with a detection limit as low as
0.34 fg mL−1.
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In recent years, the 2D-QDs, as a class of emerging emitters in the ECL aptasensor sys-
tem, have received great attention [55,94]. For example, Duan et al. reported a bifunctional
aptasensor of SPR and electrochemical techniques for selective and sensitive detection of
PSA (Figure 5C) [94]. The 2D g-C3N4 nanosheets embedded with MoS2 QDs and Au NPs
were used as the sensitive layers of aptasensor. Thus, the aptamer strands can be immo-
bilized on the surface of nanocomposites through the strong p–p* interaction originating
from the g-C3N4 nanosheets and the high bioaffinity induced by MoS2 QDs and Au NPs.
In the presence of targets, the aptamer can combine with them to form the aptamer–PSA
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complex, which can induce an increase in the thickness of the SPR chip or a change in
the electrochemical activity of the modified electrode, resulting in a change in SPR or the
electrochemical signal. Therefore, the MoS2QDs@g-C3N4@CS-AuNPs nanocomposite was
demonstrated as a powerful bifunctional adaptive sensor for the sensitive detection of
PSA. In addition, Jiang et al. developed an ultrasensitive all-solid-state ECL platform for
kanamycin determination based on a g-C3N4 QDs/3D graphene hydrogel nanocomposites
(CNGH) [100]. For the preparation of CNGH, the g-C3N4 QDs were first anchored on the
GO surface via electrostatic interactions to form g-C3N4 QD–GO materials, which then
self-assembled to form CNGH nanocomposites under the hydrothermal conditions. Then,
the CNGH nanocomposites was employed to modify the electrode and immobilize the
aptamer. On the one hand, the abundant pore channels in hydrogels can facilitate the
mass transport and electron transport in confined spaces, resulting in an enhanced ECL
signal emission of g-C3N4 QDs. On the other hand, the electrochemical activity of CNGH
nanocomposites was improved due to the introduction of g-C3N4 QDs. Therefore, the
performance of the ECL platform was significantly improved due to the synergy of g-C3N4
QDs and graphene hydrogel. As a consequence, the developed ECL sensor achieved the
detection of KAN from 1 pM to 50 nM with a LOD of 0.33 pM.

5. Summary and Perspectives

The development of 2D nanomaterials is driving the research of 2D-QDs. The 2D-
QDs have been successfully prepared by various methods, such as top-down approaches
(e.g., ultrasonication-assisted methods, hydro/solvothermal methods, ion intercalation-
assisted methods, microwave-assisted methods, and so on) and bottom-up approaches
(e.g., hydro/solvothermal methods, external microwave, and laser assisted method, and
so on). The 2D-QDs have demonstrated many unique advantages, such as large specific
surface areas, easy modification, high electrical conductivity, and good biocompatibility,
making them promising candidates in the biological fields. Due to their excellent optical
and electrical properties, as well as the high affinity for biomolecules, 2D-QDs have been
widely applied in the construction of electrochemical biosensors through serving as the
modifiers of electrodes, the carriers of sensitive elements, electron transfer accelerators,
luminophores, and so on. Although great progress has been made in the research on
2D-QDs, more efforts are required to further address the challenges as follows. (1) Further
understanding of the catalytic, electrochemical, optical, and electrical properties of 2D
QDs is needed. (2) The controllable synthesis of 2D-QDs is still quite challenging and new
synthetic methods are desired. (3) The research into 2D-QDs has been much less studied
than their bulk form. Further, the GQDs dominate the current research on 2D-QDs. The
development of 2D-QDs needs more attention and investment. In summary, the current
challenges are also opportunities for the development of electrochemical biosensors based
on 2D-QDs. For example, the unique properties of ultra-small sizes and large specific
surface areas make 2D-QDs promising candidates in the design of wearable electrochemical
sensors and devices. In addition, implantable electrochemical biosensors will also be a
future research direction. We firmly believe that 2D-QDs will play an important role in
future advancements and developments in the fields of chemistry, biomedicine, physiology,
and nanomaterials.
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