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Abstract: The sudden outbreak of COVID-19 rapidly developed into a global pandemic, which
caused tens of millions of infections and millions of deaths. Although SARS-CoV-2 is known to
cause COVID-19, effective approaches to detect SARS-CoV-2 using a convenient, rapid, accurate,
and low-cost method are lacking. To date, most of the diagnostic methods for patients with early
infections are limited to the detection of viral nucleic acids via polymerase chain reaction (PCR),
or antigens, using an enzyme-linked immunosorbent assay or a chemiluminescence immunoassay.
This study developed a novel method that uses localized surface plasmon resonance (LSPR) sensors,
optical imaging, and artificial intelligence methods to directly detect the SARS-CoV-2 virus particles
without any sample preparation. The virus concentration can be qualitatively and quantitatively
detected in the range of 125.28 to 106 vp/mL through a few steps within 12 min with a limit of
detection (LOD) of 100 vp/mL. The accuracy of the SARS-CoV-2 positive or negative assessment
was found to be greater than 97%, and this was demonstrated by establishing a regression machine
learning model for the virus concentration prediction (R2 > 0.95).

Keywords: SARS-CoV-2; machine learning; LSPR sensor; microscopic imaging

1. Introduction

Achieving a rapid diagnosis of SARS-CoV-2 is important to prevent the spread
of the epidemic and enables early intervention in the disease [1]. Most detection tech-
niques, such as polymerase chain reaction (PCR) detection, thermal cycling, isothermal
amplification [2–4], and serum IgM/IgG antibody detection [5–8], are time-consuming,
expensive and require bulky analytical instrumentation. Moreover, well-trained laboratory
professionals and advanced medical infrastructures are required [9]. Therefore, there is an
urgent need for point-of-care (POC) detection.

Recently, some studies have applied surface plasmon resonance (SPR) and low-cost local
surface plasmon resonance (LSPR) to the rapid detection of SARS-CoV-2 particles [10–15].
However, these methods also have limitations in application. For example, virus detection
based on SPR usually requires sophisticated and expensive optomechanical systems to
monitor the changes in the refraction angle produced by molecular interactions, which
limits its large-scale application [15]. Moreover, conventional LSPR devices only extract
the global changes in the entire or partial surface optical signal, since most of them only
extract simple spectral signals, such as changes in the phase or intensity of spectral peaks,
which conceals and ignores substantial rich information regarding the temporal and spatial
distribution of the signal changes during detection [10–14]. In short, these limitations will
affect their sensitivity, specificity and accuracy in clinical detection.

A possible solution to the above problems would be to analyze the color image
information of LSPR. However, most of the current methods based on LSPR images simply
use the change in the gray value of the image, and the extraction of image information
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is not deep enough [16–18]. Therefore, a method that can fully utilize LSPR color image
information urgently needs to be established.

In this study, we introduce microscopic color imaging based on nanostructured LSPR
sensors, as well as the extraction and deep mining of image features. In addition, machine
learning is used to model the features, thereby greatly improving the accuracy, sensitiv-
ity, and repeatability, but reducing the detection cost and time during SARS-CoV-2 virus
particle detection. This technique is implemented in a one-step direct immunoassay. This
assay quantifies the concentration of SARS-CoV-2 in the range of 125.28–106 (virus parti-
cles/mL, vp/mL). The virus particles are adsorbed onto the surface of the sensors, and a
solution of Au nanoparticles labeled with SARS-CoV-2 mAb is added. When the antibody
in the solution recognizes and binds to the spike protein of SARS-CoV-2, it can cause a
strong local transmission inhibition in the far field. It results in the reduction of the overall
gray value of the color channel in the image where the spectral peak is located, and the
degree of reduction is strongly correlated with the concentration of the virus particles.
Through further analysis and mining of the image color information, the different hue
ratio data of sensor images with a large number of different virus concentrations are input
into the machine learning model. Thus, a more accurate, convenient, and inexpensive
SARS-CoV-2 detection method is established. Furthermore, we established a support vector
machine (SVM) classifier (F1 > 97%) model to determine the presence of a virus and an
SVM regression model to predict the virus concentration (R2 > 95%).

2. Materials and Methods
2.1. Material

The SARS-CoV-2,MERS (Middle East respiratory syndrome) and VSV (vesicular stom-
atitis virus) pseudovirus samples were obtained from the Shanghai Public Health Clinical
Center (Shanghai, China). The SARS-COV-2 antibody-CR3022 (catalog number CHA005)
was purchased from Sanyou Biopharmaceutical Co., Ltd. (Shanghai, China). Phosphate-
buffered saline (PBS) was purchased from Sigma-Aldrich, and the SARS-COV-2 RBD-mAbs
(GHMA 105-1, GHMA 105-2) were purchased from Goodhere Biological Technology Co.,
Ltd. (Hangzhou, China).

2.2. Preparation of the MIM Nanocup Array Device

The Au-titanium dioxide(TiO2)-Au layer to form a metal-insulator-metal (MIM)
nanocup array device was prepared using a replica molding process. Laser interference
lithography was used to fabricate a tapered nanopillar pattern on a quartz substrate. Then,
we evenly applied the ultraviolet (UV)-curing polymer (NOA-61, Sigma Aldrich, Shanghai,
China) on the mold, with a layer of polyethylene terephthalate (PET) film on top of the
mold. After curing with ultraviolet light (105 mW/cm2) for 2 min, the periodic nanopore
pattern was carefully peeled off from the mold. Titanium (9 nm) and gold (110 nm) were
deposited by applying electron-beam evaporation to fabricate the nano-plasma sensors.
The resulting nanocup array had a period of 200 nm, a diameter of 200 nm, and a height of
450 nm

2.3. Preparation of Au-NPs Labeled with SARS-CoV-2 mAb

First, the pH of the Au-NP colloidal solution was adjusted to 7.2, which was achieved
by adding 0.01 M of the dilute K2CO3 solution. Second, SARS-CoV-2 mAb, prepared in
a glycine buffer solution (100 nmol/L) with a pH of 7.0, was added dropwise to 1 mL of
the 30 nm colloidal Au-NP solution. Subsequently, the SARS-CoV-2 mAb was incubated
with Au-NPs for half an hour. After incubation, 10 µL of 1% BSA diluted in Tris-HCl was
added and incubated for 10 min. The Au-NP suspension was centrifuged for 30 min, and
the rotation speed was set to 8000 rpm. The centrifugation and resuspension steps were
performed three times. In the final resuspension step, the Au-NP pellet was resuspended in
100 µL of 1× Tris-HCl, containing 0.2% w/v PEG and 0.05% w/v Tween20. The conjugated
AuNPs were stored at 4 ◦C until further use.
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2.4. Optical Settings

An Olympus IX73 vertical fluorescence microscope operating in transmission mode
was used for the microscopic measurements. A 100 W halogen lamp was used as the
light source. The light path included a piece of ground glass, a condenser with an NA
of 0.3, and an objective lens with a magnification of 10 times and an NA of 0.3. The
RGB color images were captured with a charge-coupled device (CCD) camera that was
controlled using the cellSens software. While capturing all the images, all the camera
settings remained unchanged. The exposure time was 5 ms, and the RGB gain was set to
1. A spectrometer (iHR320 HORIBA) was used to obtain the transmission spectra. The
transmission spectrum from the sample was normalized to the light source spectrum to
obtain the final transmission data. The collection of the spectral data was controlled using
a customized LabVIEW program.

2.5. Using Au-NP Enhanced Technology to Measure the SARS-CoV-2 Pseudovirus

First, the surface of the sensor was cleaned with 70% ethanol and deionized water. The
transmission spectrum and images were obtained in the deionized water, and the collection
area was recorded. Next, we added 50 µL of the SARS-CoV-2 pseudovirus solution with
different concentrations on the sensor and captured the abovementioned area image again,
which was used as the starting point (SP) for the entire experiment. Finally, we added
10 µL of Au-NP-labeled SARS-CoV-2 mAb solution to the sensor and waited for the AuNPs
to fully bind to the different epitopes and different antibodies or proteins in the receptor
binding (RBD) of the SARS-CoV-2 spike protein. This required approximately 10–12 min,
and then we captured the image of the above area again at the end of the reaction.

2.6. Software

This study used the following software: Python 3.7, Jupyter notebook compiler, R-3.4.1,
R-studio compiler, the RNA-seq processing package limma21,22 based on the R language,
the SOM algorithm package Kohonen23 based on the R language, the image processing tool
OpenCV for Python, the machine learning tool scikit-learn 0.21.3, the plot package seaborn,
the machine learning model evaluation package Yellowbrick, and the rpy2 package that
builds the R language into Python

2.7. Image R Channel and G Channel Difference Calculation

Using the image function of the PIL library that is based on Python 3.7 to read the
acquired image, we split the RGB channels of the image and calculated the grayscale his-
togram of each channel. After that, we subtracted the gray histogram of the corresponding
R, G channel of the 12 min image with the detection antibody added and the SP images with
the detection antibody added for 0 min. The maximum value of the above corresponding
frequency difference minus the minimum value of the difference was taken as the signal
data of each sensor, and the Log10 value of signal data of the different concentrations were
further counted and linearly fitted.

2.8. Image R Channel and G Channel Ratio Calculation

We directly subtracted the image 12 min and SP images. This was done to obtain the
difference image. Cropping was performed on the difference image. The original image
size was 1920 × 2448, and it was cropped into 456 images of a size of 100 × 100 images.
Thereafter, we split each 100 × 100 image into RGB channels, counted the gray value of
each channel separately, and plotted the histogram.

By counting the mean of the corresponding frequency histograms for the R channel
and G channel of each small image, each concentration obtained 456 R and G channel
means, respectively. Next, we calculated the ratio of the R mean to the G mean for each
100 × 100 image. Then, the ratio of R to G for each concentration was plotted on a bar plot
and it was fitted by applying one-variable linear regression.
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2.9. Calculation Method of Limit of Detection

The calculation of LOD mainly depends on the following steps. First, a fitting curve
is established. Fit the value of G/R or Log10(Diff) as dependent variable (y) and virus
concentration as the independent variable (x) to get the fitted curve f. Second, calculate
the inverse function of the fitted curve, f−1. Third, determine the average value of y
(G/R, Log10(Diff)) of the blank samples plus three times the maximum standard deviation
obtained among all the experimental points (3σmax). The equation is as follows:

xLOD = f−1(yblank + 3σmax) (1)

3σmax: Standard deviation obtained among all the experimental points
yblank: Average value of negative control signal
f−1: Inverse of the fitting function
xLOD: Limit of detection of test substance

2.10. Statistics of the H Value for the Sensor Images and Calculation of logFC

First, each set consisted of six images for three sensors (we obtained two images for
each sensor after adding the detection Ab for SP and 12 min image). The images were then
converted from the RGB format into the HSV format. The converted images were split
into three channels and the H channels were retained. The images were again divided into
500 × 500-sized images, and the frequency of the H value of each segmented image was
counted and used to create a box chart.

Second, we standardized the different H frequencies of all the images in the same set
and used the standardized H frequencies to create a chart. The column name is the name of
each 500 × 500 pixels image, the row name is the different hue degree, and the value is the
frequency of the corresponding H degree. Specifically, we input each set of data that was
acquired after adding the detection Ab for 0 min and 12 min into the limma program based
on the R language to standardize the data. Then, we used the standardized data to plot a
box chart.

Third, we calculated the ratio of the frequency difference of the H degrees of SP
images and 12 min images. Specifically, in each set, we took the standardized value of the
different H degree frequencies of all the 500 × 500 pixels SP images as the control group.
Thereafter, we took the standardized value of the different H degree frequencies of all
the 500 × 500 pixels images that were acquired after the addition of the detection Ab for
12 min as the experimental group. We used the RNA-seq analysis method to count the
values for the ratio of the frequency difference of the H degrees after adding the detection
Ab for 0 min and 12 min.

2.11. Expansion of Data

To increase the number of sets, we applied permutations and combinations to reorga-
nize the data for each concentration. First, in the experiment, 23 sensors were used for each
concentration, and 3 sensors were selected randomly to obtain a set of data. As a result,
there were a total of C_23ˆ3 combinations, namely 1771 sets. Thus, a total of 8855 sets of
data were obtained for five different concentrations.

2.12. Feature Selection

The self-organizing feature map (SOM) algorithm was used to explore H with highly
similar expression patterns. The SOM cluster was constructed using the Kohonen software
package based on R 3.4.2. Specifically, we took the ratio values of 180 H as 180 input
features, and input the data into the SOM clustering model to cluster H. By observing the
trend of the ratio value of H for each neuron, the ratio value of H can be selected.
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2.13. Training and Evaluation of Machine Learning Models

The scikit-learn library and Yellowbrick library were used to train and evaluate the
model. Specifically, after obtaining the ratio of the corresponding H value, we transformed
it into a two-dimensional data frame, where the row name is the number of each group of
data (5 × 1771), and the column name is the corresponding H. Next, we entered the sorted
data into the machine learning model. First, we divided the data into training and test sets.
We used cross-validation and divided the data into five sets. Four of these were randomly
selected for model training. After training, the remaining set was used as a test set.

We applied a logistic regression and SVM classifier to train and evaluate the model
by assessing the model’s false positive rate, false negative rate, F1 value, and the receiver
operating characteristic (ROC) curve of the test sample. The model was trained using SVM
regression and linear regression, and it was evaluated based on R2, mean square error
(MSE), mean absolute error (MAE), and other indicators of the test sample.

3. Results
3.1. Fabrication of the Nanoplasmonic Resonance Sensor

The sensor was fabricated by combining a metal-insulator-metal multilayer and a
3D nanocup array structure. Figure 1a shows a schematic of the sensor manufacturing
process. The UV-curable polymer was evenly spread on the mold with a 220 nm nanocup
diameter, 500 nm depth, and 440 nm periodicity. A PET sheet was placed on top of it. After
the UV irradiation and polymer curing, the PET was peeled off. Then, a 30 nm titanium
dioxide cavity layer and a 90 nm top Au layer were deposited onto it. Figure 1b,c shows
a top-down and cross-sectional scanning electron microscope (SEM) image of the device.
We can observe that an ordered periodic array was maintained after the entire device was
manufactured. Finally, we tested the extinction spectrum of the fabricated chip with water
and different concentrations of sucrose solution; we found that the peaks of the extinction
spectrum were mainly concentrated in 600 nm (Supplementary Materials Figure S1a).
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Figure 1. Schematic of SARS-CoV-2 detection with plasmonic sensor chip under the microscope.
(a) Schematic of the fabrication of Au-TiO2-Au nanocup array chip sensor. Spread UV-curable
polymer (NOA61) on the PET sheet, solidify the NOA61 on the PET sheet through UV irradiation,
deposit metal on the surface of the NOA61 (left). (b,c) SEM images of the top view of the chip, SEM
images of the cross-sectional view of the chip. (d) Acquire the microscope image of the chip after
adding the SARS-CoV-2 virus (left) and acquire the microscope image of the chip after adding the
detection antibody (right).
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3.2. Image Acquisition of the SARS-CoV-2 Virus Particle Buffer Sensor

A schematic diagram of the SARS-CoV-2 virus particle detection method is shown in
Figure 1d. First, a series of SARS-CoV-2 virus particle buffer solutions with a concentration
ranging from 0 vp/mL to 106 vp/mL were added (50 µL) onto the sensor. In order to find
the change in the image with only virus particles added, we calculated the difference in the
frequency of the corresponding gray value of the red channel of the image 12 min after the
addition and the starting image. It was found that the addition of virus particles caused
a frequency change of the gray value corresponding to the red channel of the image, but
this change was not meaningful when distinguishing different concentrations, as shown
in Figure S1b. Then, the SARS-CoV-2-mAb-labeled Au-NPs were added (10 µL) onto the
sensor, and the image was captured again after waiting for 0 min, 5 min and 12 min.

3.3. The Changes of the Gray Value of the RGB Channels Can Be Used to Fit the Changes of the
SARS-CoV-2 Virus Concentration

Initially, we counted the frequency difference between the gray values of the two
images, SP and after 12 min (see Section 2). Specifically, we first split the RGB channel of the
images for each concentration. When the three channels of the image were split, as shown
in Figure 2a, we determined that the gray value of the pixel of the B channel was negligible;
thus, the B channel was discarded. Next, we counted the gray value frequency of the SP,
5 min, and 12 min images (105 vp/mL). As shown in Figure 2b, with the prolongation of
the reaction time between the spike protein of the virus and the detection antibody, the
gray value histogram of the R channel continued to shift to the left. Next, we subtracted the
frequency of the corresponding gray value (12 min, SP) in the R and G channels. As shown
in Figures 2c and S1c, as the SARS-CoV-2 virus concentration increased, the absolute value
of the difference in the frequency of the corresponding gray value increased. Finally, we
subtracted the maximum and minimum values of the above difference for the R channel.
Then, we took the logarithm to the base 10 and used the obtained value as the signal
value of each image to fit the virus concentration. The results are shown in Figure 2d and
R2 = 0.799, The theoretical limit of detection (LOD) of this method was 347.54 vp/mL.
Furthermore, to test the sensitivity and specificity of the device, we also tested MERS and
VSV on the device, and we found that the device had a negligible response to the two
viruses (Figure S1d).

The specific manifestation in the difference image was that the ratio of the mean
value of the frequency of the R and G gray values changed. Specifically, the SP image and
the end point image acquired after adding the detection antibody at 0 min and 12 min
were subtracted. As shown in Figure 2e, the difference images were cropped into many
100 × 100 sized images. The gray value frequencies of the R channel and G channel pixels
for each 100 × 100 sized image were obtained. Finally, the mean of gray values of the
100 × 100 size image was taken to create a scatter plot, as shown in Figure S1e. As shown in
the figure, as the concentration of the SARS-CoV-2 particles increased, the R channel average
for the difference image gradually decreased, and the G channel average also decreased. To
evaluate this change more accurately, we calculated the ratio of R and G, which was used
as a comprehensive index to describe this change. As shown in Figures 2f and S1f, as the
concentration of the virus particles increased, the G/R value gradually increased. Finally,
we linearly fitted the above ratio data to the virus concentration, as shown in Figure 2g,
where R2 = 0.843, LOD = 125.28 vp/mL.
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Figure 2. The changes in the gray value of the RGB channels can be used to fit the changes of the
SARS-CoV-2 virus concentration. (a) The histogram shows the RGB channels gray values count of
the chip image after adding the detection antibody. (b) The three histograms show the R channel
gray values count of chip image at start point (SP), and chip images 5 min and 12 min after adding
detection antibody (105 vp/mL). (c) The figure shows the difference between the 12 min image and
the SP image in each gray frequency of the R channel. (d) The fitting result of the linear regression
model established by the LogDiff of the different SARS-CoV-2 virus concentrations (R2 = 0.799).
(e) Schematic diagram of obtaining the median of the difference image. Subtract the two images
(SP,12 min) to get the difference image. (f) The histogram shows the distribution of ratio of G mean to
R mean of all cropped difference images at different virus concentrations. (g) The fitting result of the
linear regression model established by the G/R ratio of all the sets (R2 = 0.84) The red dotted line of
the y-axis is yblank + 3σmax, and the red dotted line of the x-axis is LOD.

3.4. Multiple Features Related to SARS-CoV-2 Virus Concentration Can Be Obtained from HSV
Format Images

According to the above results, although we could obtain features that have a certain
linear relationship with the change in the SARS-CoV-2 virus concentration, its quasi-
merging cannot achieve an ideal effect. For this reason, we further analyzed the image
and determined that, by increasing the SARS-CoV-2 virus concentration, this was mainly
manifested as color changes in the images. To obtain more color features, we converted the
image format into the HSV format, where H stands for the hue, S for the saturation, and V
for the brightness. The distribution range of H was 0–360◦, and each degree represents a
different color; thus, a total of 360 features could be obtained. To save computing resources,
we compressed the distribution range from 0–360◦ to 0–180◦, as shown in Figure 3a.
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Figure 3. Multiple features related to SARS-CoV-2 virus concentration can be obtained from HSV
format images. (a) Convert RGB format image of the chip (upper) to HSV format and extract
the H channel (bottom). (b) The boxplot of frequency of normalized H values of all images of
500 × 500 pixels. Each box represents the distribution of images H frequency. Red box stands for the
SP chip, while blue box stands for the 12 min chip (n_500 × 500 = 36) (c) Normalized heatmap of
ratio values at different degrees of H values in different SARS-CoV-2 concentrations. (d) Ordinary
linear fitting curves of ratio value at different H degrees with SARS-CoV-2 concentrations; the line
represents the fitting curve of a certain H (purple line H14 R2 = 0.896).

To correct the deviation of the H frequency for the entire image, we cropped the
original images of the three sensors in each set to obtain a total of 3 × 12 images of a size
of 500 × 500. We then counted the frequency of the H degree for each 500 × 500 sized
image and prepared a boxplot (Figure S2a). It was found that there was a certain intra-set
difference in the distribution of H in each set. To eliminate this difference, we normalized
the data using the limma package of the RNA-seq technology (see Section 2). As shown
in Figure S2b, after eliminating the intra-group differences, the H distribution for each
small image was consistent. The statistics exhibited a standardized H distribution, as
shown in Figure 3b (the x-axis represents different H degrees, and the y-axis represents the
corresponding H frequency for the 36 × 500 × 500 sized images). After adding the detection
Ab, the distribution of H shifted to the left, and the frequency of H45–160 was negligible.

Next, we calculated the ratio of the normalized SP image to the 12 min image that
corresponded to the mean value of the H frequency. Specifically, we randomly selected
a set of data from each concentration and used the RNA-seq analysis method again. We
regarded the different degrees of H as a different gene and calculated the average value of
the 3 × 12 × 500 × 500 frequency of H at the SP and 12 min that corresponded to a set of
data. Finally, we calculated the ratio of the two as a piece of data. As shown in Figure 3c,
the ratio increased with the rise in the SARS-CoV-2 virus concentrations for H0–10 and it
decreased with an increase in the SARS-CoV-2 concentrations for H10–20. Finally, a number
of H ratio values that had a certain linear relationship with the change in the SARS-CoV-2
virus concentration could be obtained, as shown in Figure 3d
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3.5. Accurate Machine Learning Classifier Models Can Be Obtained from Training Multiple Features

From the above, we obtained the ratios of H0–45 and H160–180 for the different
SARS-CoV-2 virus particle concentrations. We used them as image features and inputted
them to the machine learning model for training. To avoid the curse of dimensionality,
which is caused by too many features, we needed to select the features again. We used the
self-organizing neural network method to cluster H and selected the H that increased or
decreased as the SARS-CoV-2 virus concentration increased, as shown in Figure S2c.

Machine learning usually requires large data sets. In this study, we found that it was
easy to distinguish high-concentration samples from negative samples (Figures 2 and 3),
but these data did not contribute to machine learning during identification of low-
concentration positive samples. In order to enhance the recognition rate in lower concen-
trations, we performed a large number of repeated experiments on the SARS-CoV-2 virus
particle concentrations of 102, 103, 104, and 105 vp/mL (positive, 1), and 0 vp/mL (negative,
0) to obtain a large amount of data. Before inputting the data into the machine learning
model, we adopted a cross-validation method to split the data (see Section 2).

To visualize the spatial distribution of the above data, we applied the principal com-
ponent analysis (PCA) method to reduce the dimensionality of the data. As shown in
Figure 4a, the images of the different SARS-CoV-2 virus particle concentrations had a
certain linearity in the space of different H ratios.
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Figure 4. Accurate machine learning classifier models can be obtained from training multiple features.
(a) Visualization of the variation in different SARS-CoV-2 concentrations by PCA. (b) The schematic of
inputting the ratio values at different degrees of H in different SARS-CoV-2 concentrations into logistic
regression model to predict whether it contains the SARS-CoV-2 virus. (c) A schematic diagram of the
PC1 and PC2 in logistic regression model. The background color refers to the decision boundary of
the classifier (0 refers to the chip image without SARS-CoV-2 virus, and 1 refers to with SARS-CoV-2
virus). (d) The ROC and AUC curve of logistic regression, AUC = 0.95, ROC virus positive of class.
(e) A schematic diagram of the PC1 and PC2 in SVM classifier model. The background color refers to
the decision boundary of the classifier (0 refers to the chip image SARS-CoV-2 virus negative, and
1 refers to SARS-CoV-2 virus positive, gamma = 2, C = 10). (f) Confusion matrix of SVM classifier (the
+ refers to virus positive chip image, the − refers to virus negative chip image).
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The H ratio data were input into the logistic regression model for training (Figure 4b,c).
Finally, a classification model, with a prediction accuracy of 95% or more, was obtained, as
demonstrated in Figure 4d. To further improve the accuracy and precision of the model,
we adopted the SVM classification model, as shown in Figure 4e,f, and we optimized the
parameters by applying the grid search method. Finally, we obtained the optimal value
when c = 10 and gamma = 2, as shown in Table S1 and Figure S3. In addition, F1 was 0.9990
and the precision was 0.9986 for the positive model samples.

3.6. Accurate Machine Learning Regression Models Can Be Obtained from Training
Multiple Features

Finally, we inputted the SARS-CoV-2 positive data (102, 103, 104, 105 vp/mL) into the
ordinary linear regression machine learning model for training to predict the concentration
of SARS-CoV-2 in the sample, as presented in Table S2. As shown in Figure S3a, as the
input features increased, R2 also gradually increased (n_features = 56, R2 = 0.916). To
further improve the accuracy of the prediction and reduce the MSE, we adopted the SVM
regression model for training. As shown in Figure 5a,b and Table S2, in comparison to the
normal linear regression model mentioned above, the accuracy of the model was greatly
improved (R2 = 0.972). In terms of the optimization, we continued to use the above optimal
parameters. Finally, we determined that the MSE could be stabilized at approximately
100.209, where R2 reached 0.983; the prediction for the test data set is shown in Figure 5c.
The prediction result for the model was very close to the true value.
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Figure 5. Accurate machine learning regression models can be obtained from training multiple
features. (a) Validation curve for SVM regressor with increasing gamma (the blue curve stands for
training scores, while the green curve stands for cross validation scores). (b) Prediction error for SVM
regressor (the black line stands for best fit line while the gray line stands for identity line (R2 = 0.972)).
(c) Prediction of SVM regressor (The blue line stands for reality, while the green curve stands for
prediction, N_sample = 214).

4. Discussion and Conclusions

In this study, machine learning was applied to LSPR sensor images to detect the SARS-
CoV-2 virus. Studies have reported that, as the concentration of the molecules increases,
the peak of the absorption spectrum of the LSPR shifts to the right [19–22]. This suggests
that the main change in the microscopic image of the LSPR may be in the color of the image.
In our previous studies [23–26], we determined that, by increasing the concentration of
the molecules, the changes in the images were mainly in terms of the R. In this study, we
found that the gray value histograms for the R channel of the sensor image shifted to the
left (Figure 2b), and when AuNP-Ab was not added, although the frequency of pixels with
different gray values would change, it was negligible compared to the AuNP-Ab added
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(Figures S1b and 2c). We also determined that the G and R channel ratio increased with
increase in the SARS-CoV-2 virus concentrations (Figures 2f and S1e), while the signal from
the B channel showed no obvious change. This was similar to our previous results, in which
the R and G channel pixels of the image changed. Although the above two methods could
obtain the image signal value of the fitted virus concentration, the R2 of the two was not
ideal, and according to the LOD calculation equation [27], the LOD of the two was not ideal
(LOD = 347.54, 125.38). This may be because the extracted features were not fine enough.
So, more refined image feature extraction methods are in urgent need of development.

Notably, the RNA-seq analysis method played a key role in feature extraction. Gener-
ally, the RNA-seq data is standardized during the analysis, mainly to eliminate the noise
that is generated during sequencing [28,29]. When we applied this method, we determined
that this method played a vital role in eliminating the noise that was generated in the pro-
cess of plasma microscopic imaging (Figure S2a,b). In addition, we applied this method to
analyze the difference in the gene expression in the RNA-seq. This was done to analyze the
difference in the H frequency of the HSV format images that were obtained after detection
Ab were added, as shown in Figure 3c. The ratio of the H frequency could then be obtained.
The ratio of the different H values can be regarded as a set of data to be input into the
machine learning model. Figure 4b also shows that the RNA-seq method played a key role
in image feature extraction.

There are two core issues that need to be addressed. The first is how to build a labeled
LSPR sensor microscopic image dataset that is suitable for machine learning. Data and
algorithms are the two core features of artificial intelligence [30,31]. First, we need to
determine how to obtain a large number of high-quality image datasets, which are the
basis and premise of establishing a machine learning model. In this study, we cropped
the images to increase the amount of data. In addition, we arranged and combined
the images to increase the amount of data, which was a novel method to expand the
dataset. The second problem that needs to be solved is how to avoid overfitting of the
model and improve its generalization ability. As previously mentioned, we reduced
the number of data dimensions through feature screening and deletion of input data.
Specifically, we selected H using SOM [32–34] and eliminated some H degrees that had
lower frequencies (Figures 3b and S2c). Moreover, when training the model, we reduced
overfitting by constraining the complexity of the model.

To our knowledge, we have applied machine learning to open-field microscopic image
analysis while using LSPR sensors for the first time. In addition, we preprocessed and
extracted the image features through the RNA-seq method. Then, we inputted the extracted
image features, that is, the ratio value of the corresponding H degree, into the machine
learning model for training to detect the SARS-CoV-2 virus particles. We used logistic
regression to determine whether the LSPR sensor image showed the presence of SARS-CoV-
2 particles, as shown in Figure 4b,c. To further improve the prediction accuracy, we used an
SVM classification model [35,36], as shown in Figure 4g,f and Table S2. As demonstrated,
the method accuracy was much higher than when using only the R, G, and B channels
to analyze the image, as illustrated in Figure 2d,g. Finally, we built a regression machine
learning model that could predict the concentration of the virus that was contained in the
positive samples (Figure 5, Table S2).

Overall, we have established a new detection method for the SARS-CoV-2 virus. The
method is based on the detection of virus particles by LSPR, and imaging and feature
extraction of the detection are performed. Next, the extracted features are input into the
support vector machine model for training and testing, and finally a model with ideal
classification effect is obtained. This method also provides the possibility of low-cost, rapid,
and accurate detection of SARS-CoV-2 virus particles in routine clinical environments and
resource-limited settings; for example, the image collecting and analyzing systems could
both be replaced by cell phones, which is one of our group’s projects. In addition, the
method is suitable for many fields, such as the detection of disease biomarkers, as well as
drug detection.
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