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Abstract: Campylobacter jejuni is one of the most important causes of food-borne infectious disease,
and poses challenges to food safety and public health. Establishing a rapid, accurate, sensitive, and
simple detection method for C. jejuni enables early diagnosis, early intervention, and prevention
of pathogen transmission. In this study, an immunocapture magnetic bead (ICB)-enhanced loop-
mediated isothermal amplification (LAMP) CRISPR/Cas12a method (ICB-LAMP-CRISPR/Cas12a)
was developed for the rapid and visual detection of C. jejuni. Using the ICB-LAMP-CRISPR/Cas12a
method, C. jejuni was first captured by ICB, and the bacterial genomic DNA was then released by
heating and used in the LAMP reaction. After the LAMP reaction, LAMP products were mixed and
detected by the CRISPR/Cas12a cleavage mixture. This ICB-LAMP-CRISPR/Cas12a method could
detect a minimum of 8 CFU/mL of C. jejuni within 70 min. Additionally, the method was performed
in a closed tube in addition to ICB capture, which eliminates the need to separate preamplification
and transfer of amplified products to avoid aerosol pollution. The ICB-LAMP-CRISPR/Cas12a
method was further validated by testing 31 C. jejuni-positive fecal samples from different layer farms.
This method is an all-in-one, simple, rapid, ultrasensitive, ultraspecific, visual detection method for
instrument-free diagnosis of C. jejuni, and has wide application potential in future work.

Keywords: Campylobacter jejuni; food-borne pathogens; ICB-LAMP-CRISPR/Cas12a; point of care;
visual detection

1. Introduction

Campylobacter jejuni (C. jejuni) is a foodborne bacterial pathogen that causes gastroen-
teritis in humans [1]. As a zoonotic pathogen, C. jejuni is widely distributed in food animal
species, especially chickens, and it is transmitted to humans primarily through the food-
borne route [2,3]. C. jejuni infection generally causes self-limited diarrhea in humans;
however, it may induce severe or systemic infections in immunocompromised or young
and elderly patients [3]. Approximately 550 million people suffer from diarrhea every year,
including 220 million children under the age of five years old [3]. In the U.S., it is estimated
that Campylobacter is responsible for more than 1.3 million cases of illnesses each year [4].
In England, the total cost of Campylobacter species infection was estimated to be 116 million
dollars each year [5]. Therefore, rapid and accurate detection of foodborne pathogens, such
as C. jejuni, could help to improve public health and increase food safety.
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National (GB 4789.9-2014) and international (ISO 10272-1-2017) standards for the
detection of C. jejuni include conventional enrichment culture and biochemical identification
methods [6–8]. However, these methods are time-consuming and expensive, with high
rates of false negatives. Thus, a rapid and accurate detection method for C. jejuni would be
an important improvement to current standards for human food safety.

Molecular diagnostic methods targeting nucleic acids, such as polymerase chain reac-
tion (PCR), quantitative polymerase chain reaction (qPCR), droplet digital PCR (ddPCR),
next-generation sequencing (NGS), and loop-mediated isothermal amplification (LAMP),
are often used in pathogen screening, and are presented in a large number of industry
and local standards (http://www.cssn.net.cn/cssn/front/listpage.jsp (accessed on 1 Oc-
tober 2021)) [9–13]. However, PCR, qPCR, ddPCR, and other alternating temperature,
amplification-based detection techniques require trained personnel, expensive equipment,
and long reaction times. These requirements make them unsuitable for simple, fast, and
point-of-care (POC) molecular diagnosis [14–16]. NGS technology has emerged as a promis-
ing approach for pathogen detection due to its high-throughput and superior sensitivity
and specificity [17]. However, the sequencing costs, the time associated with NGS, and the
requirement for professional bioinformatics personnel limit its widespread application [18].
In contrast, LAMP-based isothermal amplification technology (IAT) is a possible substitute
for PCR [19]. Compared to other alternating temperature amplification technologies, IAT
has the advantages of being rapid, efficient, specific, and equipment-free, and is now
considered to be comparable to PCR [20]. However, it is challenging to use IAT for accurate
and reliable POC testing due to undesired amplification signals, which can lead to false-
positive results [21]. Additionally, the resulting output of the IAT requires considerable
improvement before practical use is possible [22,23]. On the basis of IAT, further improving
accuracy and reducing false positives are conducive to ensuring accurate detection.

CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR
associated)-based methods, which have the properties of being ultrasensitive and portable
for diagnostic tests, may revolutionize methods for nucleic acid detection [24]. The
CRISPR/Cas detection system is composed of Cas endonucleases and a programmable
single guide RNA (sgRNA). sgRNAs are single-stranded RNAs that complement to a
specific target sequence, which guides Cas endonucleases to cleave target fragments specif-
ically [25,26]. The target of CRISPR/Cas detection systems varies by the type of Cas
endonucleases used in a given system. The most commonly used Cas endonucleases are
Cas9, Cas12a, Cas13a, and Cas14 [27]. Cas9 and Cas12a target double-stranded DNA,
Cas13a targets RNA, and Cas14 targets single-stranded DNA.

The CRISPR/Cas system has shown great promise for the development of next-
generation POC molecular diagnostic technology due to its high specificity and reliabil-
ity [28]. The combination of a CRISPR/Cas detection system and IAT may thus improve
the detection sensitivity and specificity of a POC nucleic acid detection system. Chen et al.
established a DETECTR detection system based on CRISPR/Cas12 for the detection of
SARS-CoV-2 [29]. Gootenberg et al. developed the virus detection technology SHERLOCK
based on CRISPR/Cas13, and applied SHERLOCK to detect SARS-CoV-2 [30,31]. Li et al.
developed a Cas12a-based HOLMES method for the rapid detection of target DNA and
RNA within 1 h [32]. Although these methods had high specificity and sensitivity, they
could still be optimized methodologically to improve the specificity and sensitivity. Joung
et al. modified the SHERLOCK detection method by adding magnetic beads to enrich the
RNA in samples during the process of sample preparation [33]. The sensitivity was further
improved by increasing the number of initial templates for nucleic acid amplification [33].

In this study, we report a method for the detection of C. jejuni that integrates immuno-
capture magnetic beads (ICB), LAMP, and CRISPR/Cas12a (ICB-LAMP-CRISPR/Cas12a)
to enhance the sensitivity and specificity of this method. This method is an all-in-one,
simple, rapid, ultrasensitive, and ultraspecific visual detection method for instrument-free
diagnosis of C. jejuni.

http://www.cssn.net.cn/cssn/front/listpage.jsp
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2. Materials and Methods
2.1. Materials

NHS-magnetic beads and a magnetic separator were purchased from BEAVER (Suzhou,
China). Skirrow selective medium was purchased from Beijing Land Bridge Technology Co.,
Ltd. (Beijing, China). Brucella medium, Luria broth medium, and C. jejuni polyclonal anti-
bodies were purchased from Thermo Fisher Scientific, Inc. (Shanghai, China). Phosphate
buffer saline (PBS) and mineral oil were purchased from Sangon Biotech Co., Ltd. (Shang-
hai, China). Bst 3.0 DNA polymerase and EnGen® Lba Cas12a (Cpf1) were purchased
from New England Biolabs Inc (Ipswich, MA, USA). RNase inhibitor and T-green transillu-
minator were purchased from TIANGEN Biotech Co., Ltd. (Beijing, China). A dry bath
incubator was purchased from Hangzhou Miu Instruments Co., Ltd. (Hangzhou, China).
Primers, ssDNA-FQ probes, and sgRNAs were synthesized by Tsingke Biotechnology Co.,
Ltd. (Beijing, China). Taq premix for PCR and qPCR premix were purchased from TransGen
Biotech Co., Ltd. (Beijing, China). The CFX96 Touch Real-Time PCR Detection System was
purchased from Bio-Rad Laboratories, Inc. (Hercules, CA, USA). A UVP UVsolo Touch
was purchased from Analytik Jena AG (Jena, Germany). All the tested strains, including C.
jejuni NCTC 11168, Campylobacter coli, Escherichia coli, Shigella flexneri, Klebsiella pneumoniae,
Proteus mirabilis, S. enteritidis, and 31 C. jejuni-positive fecal samples from different layer
farms were stored in our laboratory. C. jejuni NCTC 11168 and Campylobacter coli were
cultured in Brucella medium using the following growth conditions (42 ◦C, 5% O2, 10%
CO2, and 85% N2, 44–48 h). The other non-C. jejuni were cultured in Luria broth medium
(37 ◦C for 24 h).

2.2. Preparation and Evaluation of ICB

ICB were prepared according to the manufacturer’s instructions of the BeaverBeads™ Mag
NHS Kit. Briefly, 500 µL of NHS-magnetic beads (10 mg/mL) was mixed with 500 µL of C.
jejuni polyclonal antibody (0.6 mg/mL) and coated at room temperature for 2 h in a shaking
incubator (80 rpm). After magnetic separation, the remainder of the antibody in the tubes
was removed and washed three times with PBS. Then, the ICB was resuspended in PBS
and stored at 4 ◦C until further use. The C. jejuni capture time of the ICB was determined
by the optical density (OD) changes. One milliliters of C. jejuni (8 × 103 CFU/mL) was
mixed with ten milliliters of ICB and incubated at room temperature for 60 min in a shaking
incubator (80 rpm). The OD in the supernatant was measured every 10 min after magnetic
separation. The C. jejuni capture efficiency of ICB was determined by gradient dilutions
and plate counting. C. jejuni bacterial solutions (8 × 101–8 × 103 CFU/mL) were mixed
with 10 µL of ICB. After incubation and magnetic separation, the remaining liquid was
coated on Brucella medium solid plates and incubated for 44 h (42 ◦C, 5% O2, 10% CO2,
and 85% N2). Plate counts were performed to evaluate the capture efficiency of ICB.

2.3. Primers, sgRNAs, and ssDNA Probe Design

The hipO (hippurate hydrolase) gene (NC_002163.1:c919731-918580) is a conserved gene
in C. jejuni, and is commonly used for C. jejuni identification [34,35]. The LAMP primers
(outer primers: F3, B3; inner primers: FIP, BIP) and sgRNAs used in this study were de-
signed based on the hipO gene. These LAMP primers were designed using Primer Explorer
V5 software (http://primerexplorer.jp/lampv5/index.html (accessed on 1 October 2021)),
and sgRNAs were designed in CHOPCHOP (http://chopchop.cbu.uib.no/ (accessed on 1
October 2021)). The outer primers for LAMP can be used in PCR and qPCR amplification.
The inner primer FIP was composed of F2 and F1c, while BIP was composed of B2 and
B1c. The ssDNA probe was determined based on the Cas endonucleases used, which was a
six-nucleotide (nt) single-stranded DNA (5′-TTTTTT-3′) labeled by 5′ 6-FAM (Fluorescein)
and a 3′ Iowa Black FQ quencher. The sequence information of all primers, sgRNAs, and
ssDNA probes used are listed in Table S2.

http://primerexplorer.jp/lampv5/index.html
http://chopchop.cbu.uib.no/
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2.4. LAMP/PCR/qPCR Amplification Reaction

The optimized LAMP reaction system contained 1 µL of isothermal amplification
buffer II, 6 mM Mg2+, 320 U/mL of Bst 3.0 DNA polymerase, 1.2 mM of deoxyribonu-
cleotide (dNTPs), 0.2 µM of outer primer (F3/B3), 1.6 µM of inner primer (FIP/BIP),
genomic DNA (2 µL for routine LAMP, and 5 µL for ICB-LAMP), and nuclease-free water
up to 10 µL. This system was incubated at 65 ◦C for 30 min. To reduce heat transfer and
prevent contamination, this 10 µL LAMP reaction system was covered with 20 µL of mineral
oil. For PCR amplification, the 25 µL PCR mixtures were composed of 1 µL of forward and
reverse primers (0.4 µM), 12.5 µL of Taq premix, 2 µL of template DNA, and nuclease-free
water to the final reaction volume. These reaction mixtures were then incubated in a ther-
mocycler using a three-step PCR protocol: 95 ◦C, 10 min for predenaturation; 95 ◦C, 10 s
for denaturation; 54 ◦C, 10 s for annealing; 72 ◦C, 30 s for elongation; 30 cycles, and 72 ◦C,
10 min for final elongation. Both LAMP and PCR products can be verified using gel elec-
trophoresis on a 3% agarose gel at 120 V for 30 min, and can be visualized using a gel image
analysis system (UVP UVsolo Touch, Jena, Germany). For qPCR amplification, 20 µL of
the qPCR mixture was composed of 0.4 µL of forward and reverse primers (0.2 µM), 10 µL
of premix, 2 µL template of DNA, and nuclease-free water to the final reaction volume.
The reaction mixture was incubated in a CFX96 Touch Real-Time PCR Detection System
using a three-step qPCR protocol over 40 cycles: 95 ◦C, 30 s for denaturation; 95 ◦C, 5 s for
denaturation; 54 ◦C, 15 s for annealing; and 72 ◦C, 10 s for elongation. After amplification,
melt curve analysis was performed using the default program.

2.5. Formation of the ICB-LAMP-CRISPR/Cas12a Detection System

Traditionally, nucleic acid amplification products are often separated and identified by
agarose gel electrophoresis. However, it is time-consuming, and non-specific visual results
may be caused by nucleic acid dyes [36]. A specific CRISPR/Cas12a cleavage reaction
was introduced into the ICB-LAMP system (Figure 1A), which improved the specificity of
detection and improved the reading method for the results. The CRISPR/Cas12a cleavage
reaction was composed of three key components: Cas12a, sgRNA, and a ssDNA-FQ probe.
Cas12a acted as a molecular scissors, which could break the target DNA using its cis-
cleavage activity and non-target DNA by trans-cleavage activity [24]. The cis-cleavage
activity of Cas12a was guided by the sgRNA, which was designed to specifically recognize
target DNA. A ssDNA-FQ probe (Table S2) was used as non-target DNA, and could
be interrupted by the trans-cleavage activity of Cas12a. Due to the different operating
temperatures, this LAMP-CRISPR/Cas12a method was divided into 2 parts: LAMP and
CRISPR/Cas12a. The LAMP reaction system was placed in the bottom of the tube and
incubated at 65 ◦C for 30 min. The CRISPR/Cas12a cleavage system was placed in the lid of
the tube and mixed with the LAMP system once LAMP was finished, and then the reaction
occurred at 37 ◦C for 10 min. The fluorescent results were visually observed immediately
under LED blue light. To optimize the CRISPR/Cas12a cleavage system, each reaction
was performed at 37 ◦C for 30 min. The final fluorescent results were visually observed
under LED blue light, and real-time monitoring was performed by using a CFX96 Touch
Real-Time PCR Detection System.

To test the ICB-LAMP-CRISPR/Cas12a detection system, 1 mL of C. jejuni (8× 103 CFU/mL)
was mixed with 10 µL of ICB and incubated at room temperature for 20 min. Then, the
captured C. jejuni was resuspended in 5 µL of ddH2O for template DNA release at 100 ◦C
for 10 min. All the template DNA was used as a template in the LAMP reaction, which was
placed at the bottom of the tube. The 10 µL LAMP products were used as the substrate for
the CRISPR/Cas12a reaction system, which was added to the lid, and contained 2 µL of
NEB 2.1 reaction buffer (10×), 166.67 nM of EnGen Lba Cas12a, 1.5 µM of sgRNA, 1.67 µM
of ssDNA-FQ probe, 4 U/µL of RNase inhibitor, and up to 20 µL of nuclease-free water.
After 30 min of LAMP amplification, the CRISPR/Cas12a cleavage system was mixed
with the LAMP products by shaking. Then, the CRISPR/Cas12a cleavage reaction was
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conducted at 37 ◦C for 10 min, and fluorescence results were visually observed immediately
under LED blue light.
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Figure 1. Design and working principle of the ICB-LAMP-CRISPR/Cas12a method. (A) Schematic of
the ICB-LAMP-CRISPR/Cas12a method. Campylobacter jejuni was captured by the prepared ICB and
separated magnetically. Five microliters of template DNA of C. jejuni was added to the LAMP mixture,
which was placed at the bottom of the tube and sealed with 20 µL of mineral oil. The CRISPR/Cas12a
reaction reagents are added inside the lid. After 30 min of LAMP amplification at 65 ◦C, the tube
was shaken to mix with Cas12a reagents for cleavage. Once the Cas12a nuclease is activated by
recognizing the DNA target, it splits the quenched fluorescent ssDNA-FQ probe indiscriminately,
generating a fluorescence signal visible to the naked eye under blue light. (B) Enhanced sensitivity of
the ICB-LAMP-CRISPR/Cas12a method. The sensitivity was enhanced in three parts: the enrichment
of ICB, the high efficiency of LAMP amplification, and the indiscriminate cleavage of the fluorescent
ssDNA-FQ probe. (C) Enhanced specificity of the ICB-LAMP-CRISPR/Cas12a method. The specificity
was enhanced from three parts: the specific antibodies of C. jejuni coated in the magnetic beads, the
LAMP primers designed based on the conserved hipO gene, and the cleavage activity of Cas12a
guide by the specific sgRNA. (D) Work conditions of the nearly instrument-free POC diagnostics.
Equipment and consumables needed for running the ICB-LAMP-CRISPR/Cas12a method include a
heat block, pipettes, pipette tips, sample tubes, and T-green transilluminator.

2.6. Specificity and Sensitivity Evaluation of ICB-LAMP-CRISPR/Cas12a

To verify the specificity of ICB-LAMP-CRISPR/Cas12a method, C. jejuni NCTC 11168
was used as a positive control strain, 6 non-C. jejuni (C. coli, E. coli, S. flexneri, K. pneumoniae, P.
mirabilis, S. enteritidis) were used as negative controls, and ddH2O was used as a no-template
control. Cultures of the test strains (1 mL) were incubated with 10 µL of ICB at room
temperature for 20 min. After magnetic separation, the remaining ICB was resuspended
in 5 µL of ddH2O, and the template DNA was released by boiling at 100 ◦C for 10 min.
Five microliters of template DNA was added to the LAMP reaction and incubated at 65 ◦C
for 30 min, mixed with the CRISPR/Cas12a cleavage system and incubated at 37 ◦C for
10 min, after which the fluorescence results were visually observed under LED blue light.
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To verify the sensitivity of ICB-LAMP-CRISPR/Cas12a method, serial tenfold dilutions of
C. jejuni (8 × 101–8 × 103 CFU/mL) were incubated with 10 µL of ICB at room temperature
for 20 min. After magnetic separation, the remaining operations were the same as those
used in the specificity evaluation.

3. Results
3.1. Construction of the ICB-LAMP Reaction System

The ICB-LAMP reaction system was composed of ICB capture and LAMP reactions. Be-
cause the NHS-magnetic beads were coated with C. jejuni polyclonal antibody (Figure 1A),
C. jejuni was captured by ICB and then resuspended in 5 µL of ddH2O, and the template
DNA was released at 100 ◦C for 10 min after magnetic separation. Approximately 5 µL
gDNA was added to the LAMP reaction, and this reaction mix was incubated for 30 min at
65 ◦C in a dry bath incubator.

To determine the capture ability of ICB, the binding efficiency and capture time were
evaluated. The OD600 change was negatively correlated with the incubation time and
no significant difference was observed after 20 min of incubation (Figure 2A). Hence, the cap-
ture time of ICB was 20 min. Three original bacterial solutions with 8 × 101–8 × 103 CFU/mL
were used to determine the binding efficiency. After 20 min of incubation and magnetic sep-
aration, the remaining liquid was coated on Brucella medium solid plates (100 µL/culture
dish, three repetitions); these plates were incubated for 44 h at 42 ◦C (5% O2, 10% CO2,
and 85% N2). Plate counting was used to evaluate the average binding efficiency of ICB.
Table S1 shows that the binding efficiency of ICB depended on the concentration of the bac-
terial solution used. The lower the bacterial concentration, the higher the capture efficiency.
The average binding efficiency of ICB was 92.4%, indicating that the prepared ICB could
capture 92.4% of C. jejuni in solution within 20 min.

To obtain a better LAMP reaction, the LAMP components, including primers, Mg2+,
and dNTPs, were optimized. Five groups of LAMP primers (Primers 1–5) based on the
hipO gene were designed and tested (Table S2) to determine the optimal primers. As
shown in Figure 2B, primer 2 was confirmed for use in the following tests, and the primer
binding sites are shown in Figure 2C. Mg2+ was optimized from 2 µM to 12 mM, and
6 µM was chosen as the final concentration (Figure S1A). The levels of dNTPs in the LAMP
reaction were then optimized from 1 mM to 2 mM, and 1.4 mM was selected as the final
concentration (Figure S1B).

3.2. Establishment of the ICB-LAMP-CRISPR/Cas12a Method

Six sgRNAs were designed based on the target DNA (Table S2), and only sgRNA
4 worked well in the standard program, producing strong fluorescence under LED blue
light (Figure 3A). The binding site is shown in Figure 2C. The real-time monitor in the
CFX96 Touch Real-Time PCR Detection System also showed that the endpoint fluorescence
was highest for sgRNA 4, and this reaction reached its fluorescent threshold (1000) in less
than 4 min (Figure 3B). To systematically evaluate the ICB-LAMP-CRISPR/Cas12a method,
we tested eight reaction systems (reactions 1–8) with various components (Figure 4). The
LAMP products of C. jejuni were used as the target sequence. After incubation at 37 ◦C for
30 min, only reaction 4, containing the target nucleic acid sequence, sgRNA, Cas12a, and
the ssDNA-FQ reporter, produced a superbright fluorescent signal that could be directly
visualized under LED blue light. In addition, in the real-time fluorescence monitoring
experiments, only reaction 4 showed a significantly increased fluorescence signal and
a short time to fluorescent threshold (1000). To improve the reaction performance and
reduce the reaction volume, the concentrations of sgRNA, Cas12a, and the ssDNA-FQ
probe, as well as the substrate volume, were optimized to obtain high cleavage activity.
Figure S2 shows that the substrate volume (Figure S2A) was optimized from 5 µL to
25 µL, the sgRNA concentration (Figure S2B) was optimized from 0.67 µM to 1.83 µM,
the Cas12a concentration (Figure S2C) was optimized from 50 nM to 166.67 nM, and the
ssDNA-FQ probe concentration (Figure S2D) was optimized from 0.5 µM to 1.67 µM.
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Finally, a 10 µL substrate volume, 1.83 µM of sgRNA, 166.67 nM of Cas12a, and a 1.67 µM
of ssDNA probe were used in the follow-up studies. These results showed that the ICB-
LAMP-CRISPR method provides a rapid, one-container approach for the detection of
target-specific nucleic acids.

Biosensors 2022, 12, x FOR PEER REVIEW 7 of 17 
 

 
Figure 2. Construction of the ICB-LAMP reaction system. (A) Capture time evaluation of ICB. One 
milliliter of C. jejuni (8 × 103 CFU/mL) was mixed with 10 μL of ICB, and the optical density (OD) in 
the supernatant was measured every 10 min. No significant difference was observed after 20 min of 
incubation. (B) LAMP primer selection. Five groups of LAMP primers based on the hipO gene were 
obtained and used in the LAMP reaction, and primer 2 had the best amplification effect. (C) LAMP 
primers and sgRNA binding sites. 

3.2. Establishment of the ICB-LAMP-CRISPR/Cas12a Method 
Six sgRNAs were designed based on the target DNA (Table S2), and only sgRNA 4 

worked well in the standard program, producing strong fluorescence under LED blue 
light (Figure 3A). The binding site is shown in Figure 2C. The real-time monitor in the 
CFX96 Touch Real-Time PCR Detection System also showed that the endpoint fluores-
cence was highest for sgRNA 4, and this reaction reached its fluorescent threshold (1000) 
in less than 4 min (Figure 3B). To systematically evaluate the ICB-LAMP-CRISPR/Cas12a 
method, we tested eight reaction systems (reactions 1–8) with various components (Figure 4). 
The LAMP products of C. jejuni were used as the target sequence. After incubation at 37 

Figure 2. Construction of the ICB-LAMP reaction system. (A) Capture time evaluation of ICB.
One milliliter of C. jejuni (8 × 103 CFU/mL) was mixed with 10 µL of ICB, and the optical density
(OD) in the supernatant was measured every 10 min. No significant difference was observed after
20 min of incubation. (B) LAMP primer selection. Five groups of LAMP primers based on the hipO
gene were obtained and used in the LAMP reaction, and primer 2 had the best amplification effect.
(C) LAMP primers and sgRNA binding sites.
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Figure 3. sgRNA screening. (A) Endpoint CRISPR/Cas12a for sgRNA screening. Six sgRNAs
were designed based on the target DNA and used in CRISPR/Cas12a at 37 ◦C for 30 min, and
sgRNA 4 worked well in the standard program, with strong fluorescent light under LED blue light.
(B) Real-time CRISPR/Cas12a for sgRNA screening. The real-time monitoring was conducted in a
CFX96 Touch Real-Time PCR Detection System for 30 min, and the endpoint fluorescence intensity
and time with a fluorescence threshold of 1000 were monitored. Each experiment was repeated three
times with similar results.
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Figure 4. Evaluation of eight CRISPR/Cas12a reactions (R) with various components through
endpoint imaging after 30 min of incubation and real-time fluorescence detection. The LAMP
products, Cas12a, sgRNA, and the ssDNA-FQ reporter were tested. After incubation at 37 ◦C
for 30 min, only reaction 4, containing the target nucleic acid sequence, sgRNA, Cas12a, and the
ssDNA-FQ reporter, produced a superbright fluorescence signal under LED blue light. The real-time
monitoring was conducted in a CFX96 Touch Real-Time PCR Detection System for 30 min, and the
endpoint fluorescence intensity and time with a fluorescence threshold of 1000 were monitored.
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3.3. Specificity Evaluation of ICB-LAMP-CRISPR/Cas12a

The specificity of ICB-LAMP-CRISPR/Cas12a was compared with PCR, qPCR, and
LAMP. C. jejuni and six non-C. jejuni (C. coli, E. coli, S. flexneri, K. pneumoniae, P. mirabilis,
and S. enteritidis) were incubated with ICB for 20 min, and then resuspended in 5 µL of
ddH2O after magnetic separation. The template DNA of these tested strains was used in the
specificity evaluation. Figure 5 shows that C. jejuni could be identified by PCR (Figure 5A),
qPCR (Figure 5B), LAMP (Figure 5C), and ICB-LAMP-CRISPR/Cas12a (Figure 5D), without
false positives or cross reactions to non-C. jejuni. The ICB-LAMP-CRISPR/Cas12a method
appeared to possess the same specificity as PCR, qPCR, and LAMP.
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Figure 5. Specificity evaluation ICB-LAMP-CRISPR/Cas12a method. The specificity of ICB-LAMP-
CRISPR/Cas12a was compared with PCR, qPCR, and LAMP. C. jejuni NCTC 11168 and 6 non-C. jejuni
(C. coli, E. coli, S. flexneri, K. pneumoniae, P. mirabilis, and S. enteritidis) were used as the tested sample.
The specificity evaluation results of PCR and LAMP were shown by agarose gel electrophoresis. The
specificity evaluation results of qPCR and ICB-LAMP-CRISPR/Cas12a are shown by the real-time
amplification curve and end-point fluorescence. (A) The specificity evaluation of PCR. (B) The
specificity evaluation of qPCR. (C) The specificity evaluation of LAMP. (D) The specificity evaluation
of the ICB-LAMP-CRISPR/Cas12a method.



Biosensors 2022, 12, 154 10 of 16

3.4. Sensitivity and Time Evaluation of ICB-LAMP-CRISPR/Cas12a

In the ICB-LAMP-CRISPR/Cas12a method, all ICB capture, LAMP, and the trans-
cleavage activity of Cas12a contributed to signal amplification (Figure 1C). In the specificity
evaluation, the sensitivity of the ICB-LAMP-CRISPR/Cas12a method was compared to PCR,
qPCR, LAMP, and ICB-LAMP. Serial tenfold dilutions of C. jejuni (8 × 100–8 × 1010 CFU/mL)
were used for sensitivity evaluation. Figure 6 shows that the limit of detection (LOD) of PCR
(Figure 6A) was 8 × 103 CFU/mL, the LOD of qPCR (Figure 6B) was 8 × 102 CFU/mL, the
LOD of LAMP (Figure 6C) was 8 × 103 CFU/mL, and the LOD of ICB-LAMP (Figure 6D)
and ICB-LAMP-CRISPR/Cas12a (Figure 6E) was 8 × 100 CFU/mL. These results were
confirmed by agarose gel electrophoresis and real-time monitoring. The ICB-LAMP-
CRISPR/Cas12a method appeared to possess extremely high sensitivity compared with
PCR, qPCR, and LAMP.
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Figure 6. Sensitivity evaluation ICB-LAMP-CRISPR/Cas12a. The sensitivity of ICB-LAMP-
CRISPR/Cas12a was compared with- that of PCR, qPCR, LAMP, and ICB-LAMP. Serial tenfold
dilutions of C. jejuni (8 × 100–8 × 1010 CFU/mL) were used for the sensitivity evaluation. The
sensitivity evaluation results of PCR, LAMP, and ICB-LAMP were shown by agarose gel electrophore-
sis. The sensitivity evaluation results of qPCR and ICB-LAMP-CRISPR/Cas12a are shown by the
real-time amplification curve and end-point fluorescence. (A) The sensitivity evaluation of PCR.
(B) The sensitivity evaluation of qPCR. (C) The sensitivity evaluation of LAMP. (D) The sensitivity
evaluation of ICB-LAMP. (E) The sensitivity evaluation of ICB-LAMP-CRISPR/Cas12a.

To confirm the time of fluorescent signal production, the cleavage procedure of
CRISPR/Cas12a was monitored using a CFX96 Touch Real-Time PCR Detection System
and real-time photograph detection. A 1 mL sample of C. jejuni (8 × 103 CFU/mL) was
detected via the ICB-LAMP-CRISPR/Cas12a method. A visible fluorescence signal was
produced at 3 min, and then the fluorescence signal became stronger with time (Figure 7).
To cover as many unexpected conditions as possible (especially low concentration samples),
increase the error-tolerance rate, and maximize the cutting effect of Cas12a, 10 min was
chosen in the following tests.
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3.5. C. jejuni-Positive Fecal Sample Detection by ICB-LAMP-CRISPR/Cas12a

After a series of experimental optimizations, the finalized conditions of the ICB-
LAMP-CRISPR/Cas12a method were obtained. The C. jejuni-positive fecal samples (n = 31)
from different layer farms were used for the actual sample evaluation of ICB-LAMP-
CRISPR/Cas12a. One hundred milligrams of fecal sample were resuspended in 1 mL
of PBS, which was then captured by ICB for 20 min and resuspended in 5 µL of ddH2O.
After magnetic separation, the template DNA was released at 100 ◦C for 10 min. The
template DNA was used as a template for the LAMP reaction, which was incubated at
65 ◦C for 30 min and then mixed with the CRISPR/Cas12a system at 37 ◦C for 10 min.
All operations could be completed in any environment, with the use of heat blocks, a
magnetic separator, pipettes, tips, and a T-green transilluminator (Figure 1D). All results
were visible under LED blue light. All 31 C. jejuni-positive fecal samples were detected by
ICB-LAMP-CRISPR/Cas12a in 70 min (Figure 8). These results illustrate the simplicity and
versatility of the ICB-LAMP-CRISPR/Cas12a method.
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Figure 7. The time evaluation ICB-LAMP-CRISPR/Cas12a. A total of 1 mL 8 × 103 CFU/mL C.
jejuni was detected by the ICB-LAMP-CRISPR/Cas12a method, and monitored by a CFX96 Touch
Real-Time PCR Detection System and real-time photograph detection for 30 min.
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4. Discussion

C. jejuni is often associated with food contamination [37–39]. Over the past decade,
infections caused by C. jejuni have been reported in many regions, including Europe, North
America, Australia, the Middle East, Africa, and Asia, and their incidence rates have
been increasing [40]. With the increase in C. jejuni resistance, the infection caused by C.
jejuni becoming harder to treat [41]. Therefore, the development of a rapid and sensitive
diagnostic method to detect and reduce the spread of C. jejuni is important for public health.
For pathogen detection and early warning, the quick and direct detection of low levels of
pathogens is required.

A novel detection method (ICB-LAMP-CRISPR/Cas12a) was constructed, which im-
proved the sensitivity and specificity in three different aspects. The ICB-LAMP-CRISPR/
Cas12a method developed herein could specifically recognize and capture free C. jejuni in
fecal samples within 20 min using the C. jejuni antibody-coated magnetic beads. This im-
proved the sensitivity and specificity from the source of the detection method (Figure 1) [42].
Conventional nucleic acid amplification methods require at least 1 × 103 CFU/mL of
colonies as a template to perform normal amplification [43,44], while sample enrich-
ment by ICB in the ICB-LAMP-CRISPR/Cas12a method could reach a detection limit
of 8 × 100 CFU/mL. For the captured C. jejuni, template DNA was released by direct
heating cleavage and used for the amplification of target DNA. LAMP primers ensure
the specificity, and the efficient Bst 3.0 enzyme ensures the sensitivity. LAMP-amplified
target DNA was mixed with the CRISPR/Cas12a system for specific cleavage and efficient
fluorescence production. Cas12a endonuclease cut the target DNA under the guidance of
a specific sgRNA, and stimulated the trans-cleavage activity to cut the ssDNA-FQ probe
to generate fluorescence for signal amplification [45]. The whole detection process was
composed of four parts: ICB capture for 20 min, gDNA release for 10 min, LAMP ampli-
fication for 30 min, and CRISPR/Cas12a digestion for 10 min, for a total time of 70 min.
The temperatures required were 100 ◦C for gDNA release, 65 ◦C for LAMP amplification,
and 37 ◦C for CRISPR/Cas12a digestion. Due to the difference between LAMP and Cas12a
endonuclease working temperatures, the LAMP amplification system was placed in the
bottom of the tube and the CRISPR/Cas12a system was placed in the tube lid. When the
LAMP reaction was completed, the CRISPR/Cas12a system was mixed by inversion. As
the ICB-LAMP-CRISPR/Cas12a method was completed in a stepwise manner, there was no
need for separate and complex manual operations. These results could be visualized under
an LED light, thereby significantly simplifying the detection process and eliminating the
need for separate lateral flow-based detection [46,47]. Compared to traditional IAT-CRISPR
nucleic acid detection methods, ICB-LAMP-CRISPR/Cas12a has several advantages and
provides a single tube detection system. First, in the ICB-LAMP-CRISPR/Cas12a system,
ICB is used for sample pretreatment to enrich free pathogens, which greatly improves the
sensitivity and specificity of detection. Second, LAMP-CRISPR/Cas12a occurs in a single
tube and is mixed by inversion, thus avoiding aerosol pollution. By cutting fluorescent
probes with Cas12a, the detection results can be visually analyzed, which avoids the need to
display results by lateral flow strips or other methods [48]. When LAMP-CRISPR/Cas12a
was used in actual fecal sample detection, the LAMP amplification reagent was prepack-
aged into the bottom of the PCR tube. Thus, only the sample suspension was prepared, the
CRISPR/Cas12a digestion system was added to the lid of the PCR tube, and the steps for
rapid visual detection were followed.

The ICB-LAMP-CRISPR/Cas12a assay developed in this study was characterized by
high sensitivity and specificity, a short detection time, and nondependent instruments.
However, this method can be further improved for more applications in POC. For exam-
ple, the ICB-LAMP-CRISPR/Cas12a assay could introduce reverse transcriptase into the
LAMP system for the detection of RNA pathogens [49]. More conservative target genes
or sequences can be obtained by rigorous genome alignment for pathogen detection [50].
The detection objects can be enriched by changing the types of primers used. Integrating
recombinase polymerase amplification with the Cas12a enzyme at a common working tem-
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perature and realizing a real one-tube detection mixture could completely circumvent the
separate preamplification of target nucleic acids and the separation of the Cas enzyme [51].
The LAMP and CRISPR/Cas12a reagents in the ICB-LAMP-CRISPR/Cas12a assay could
be lyophilized and stored at room temperature, reducing the cost of cold preservation and
transportation of reagents [52]. Alternatively, this ICB-LAMP-CRISPR/Cas12a method
could be integrated into a microfluidic chip to enable full integration, sample to result,
and multiplexed detection [53,54]. This microfluidic chip, combined with a lyophilized
process, can maximize the detection throughput by pre-embedding detection reagents,
and the visual detection results can be digitized by mobile phone photography [55,56].
Even, by introducing different fluorescent probes, multiple pathogens in the same reaction
vessel can be detected, which would reduce the cost and time for detecting cooccurring
pathogens [57]. Furthermore, digital fluorescence signals can promote the application of
CRISPR/Cas technology in quantitative detection.

5. Conclusions

In summary, an ICB-LAMP-CRISPR/Cas12a detection strategy that can ultrasensi-
tively and timely detect C. jejuni in fecal samples based on ICB, LAMP, and the trans-
cleavage activity of CRISPR/Cas12a was established. The C. jejuni polyclonal antibody-
coated ICB was first built for the specific capture of C. jejuni. At the same time, the hipO
(hippurate hydrolase) gene (NC_002163.1:c919731-918580) of C. jejuni was used as the iden-
tification object, and a set of high-efficiency LAMP systems was optimized and obtained.
Based on this, CRISPR/Cas12a was designed and introduced to recognize LAMP am-
plification products. The results showed that the combination of ICB, LAMP, and the
CRISPR/Cas12a system can significantly improve the sensitivity and specificity detection
of C. jejuni. The results could be observed directly under LED blue light. This simple and
robust method has potential for the future development of next-generation POC molecu-
lar diagnostic technology for the rapid detection of infectious diseases at home or in the
breeding industry or clinics.
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