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Abstract: Lanthanide-doped nanoparticles possess numerous advantages including tunable lumines-
cence emission, narrow peak width and excellent optical and thermal stability, especially concerning
the long lifetime from microseconds to milliseconds. Differing from other shorter-lifetime fluorescent
nanomaterials, the long lifetime of lanthanide-doped nanomaterials is independent with background
fluorescence interference and biological tissue depth. This review presents the recent advances in
approaches to regulating the lifetime and applications of bioimaging and biodetection. We begin with
the introduction of the strategies for regulating the lifetime by modulating the core–shell structure,
adjusting the concentration of sensitizer and emitter, changing energy transfer channel, establishing a
fluorescence resonance energy transfer pathway and changing temperature. We then summarize the
applications of these nanoparticles in biosensing, including ion and molecule detecting, DNA and pro-
tease detection, cell labeling, organ imaging and thermal and pH sensing. Finally, the prospects and
challenges of the lanthanide lifetime regulation for fundamental research and practical applications
are also discussed.

Keywords: luminescence lifetime; lanthanide-doped nanoparticles; lifetime regulation; bioimaging;
biodetection; biosensing

1. Introduction

A central goal in biology and medicine is to develop excellent imaging and detection
technology [1]. Researchers have devoted massive efforts to developing fluorescence
imaging technology through fluorescent nanomaterials, including quantum dots (QDs) [2],
upconversion nanomaterials (UCNPs) [3], carbon-based nanomaterials [4], stoichiometric
metal oxides [5], perovskite [6], metal nanomaterials [7] and other materials [8]. In addition,
biological images were obtained in a non-invasive manner under laser excitation [9], which
has great labeling ability, high signal strength, fast imaging speed and a wide range of
applications [10–13]. However, there are numerous limitations based on conventional
fluorescence imaging technology, including low sensitivity, shallow detective depth and
substantial interference caused by background autofluorescence [14,15]. Among the large
number of nanomaterials, lanthanide-doped nanoparticles feature a longer lifetime than
other fluorescence materials, whose emission could last for milliseconds [16]. Based on
these nanoparticles, lifetime imaging and detection platform were proposed to resolve the
difficulty of conventional fluorescence imaging [17,18].

Unsusceptible to the concentration of nanoparticles [19], laser intensity [20] and bi-
ological tissue thickness [21], the quality of luminescence lifetime imaging is better than
traditional luminescence imaging in the cell or tissue microenvironment [22]. Moreover,
the sensitivity of time-gated imaging with an optical chopper offers more than one order
of magnitude than that of the traditional method using optical band-pass filters [23]. The
luminescence lifetime of lanthanides depends on their intrinsic properties and the localized
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microenvironment, involving pH value, doped ion concentration, protein interaction and
other factors affecting the decay process [24]. Therefore, lifetime encoding was achieved by
nanostructural engineering, while lifetime sensing was produced by changing the relying
circumstances. Correspondingly, the time-resolved technology was developed rapidly due
to its unique properties [25].

In this review, we focus on the recent advances in the regulating lifetime of lanthanide
for biosensing and imaging (Figure 1). In Section 1, we introduce the strategies of lifetime
modulation for lanthanide-doped nanoparticles, involving core–shell structure design,
concentration adjusting, energy transfer channel controlling and temperature controlling.
In Section 2, we discuss the use of the probes for ions and molecules, DNA and protease
sensing, cell labeling, organ imaging and thermal and pH sensing. Finally, we discuss the
prospects and challenges for possible development directions and application scenarios.
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Figure 1. Schematic illustrations of lanthanide-doped nanoparticle lifetime regulation for biosensing.
The approaches to regulating lifetime include varying core–shell structure, dopant concentration,
energy transfer channel, temperature and setting a fluorescence resonance energy transfer (FRET)
system. The relevant applications include ions, molecules, DNA, protease, thermal and pH sensing,
as well as cell labeling and organ imaging.

2. Lifetime Regulation

Luminescence lifetime refers to the average time the molecule spends in the excited
state returning to the ground state [26]. The lifetime of a phosphor, τ, refers to the time at
which the intensity decays to 1/e of its maximum [27]. The decay of one emitting state
in an upconversion energy transfer process is determined by its intrinsic decay and the
intermediate states [28]. Susceptive to their intrinsic properties and local environment, the
lifetime of lanthanide-doped nanoparticles could be tuned by adjusting core–shell structure,
the content of sensitizer and emitter, internal energy transfer channel, FRET system and
temperature. Nanocrystals with a controllable lifetime have been widely used in biosensing
to eliminate background autofluorescence and light scattering interference. However, the
reported methods allow only a limited range of lifetime adjustments.
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2.1. Variation of Core–Shell Structures

Core–shell engineering is generally utilized to reduce surface quenching effects [29].
Shell passivation could promote the upconversion process by promoting the occurrence
of energy hopping in higher-lying excited states [30]. Therefore, lifetime is affected by the
shell layers, including the shell thickness and shell composition.

2.1.1. Core Size

The defect density of core nanoparticles doped with sensitizers and emitters decreases
as the nanoparticle’s size increases. Jin et al. found an increase in the lifetime of Yb,
Er-doped UCNPs with the increase of their size by comparing the lifetime of these nanopar-
ticles ranging from 6 nm to 45 nm (Figure 2a). With the assistance of a mathematical
model, it was verified that the decay time was related to surface-to-volume ratio and shell
thickness. In addition, the lifetime of β-phase particles has significant relationships with
surface defect, solvent and vibration energy of surface ligands, while defect density only
matters for α-phase nanocrystals [31]. Liu et al. compared the decay curves of different
sizes of NaYF4: 20%Yb,2%Er ranging from 15.3 nm to 27.2 nm, exhibiting the increase in
the lifetime of both Er3+ and Yb3+ at 540 nm and 985 nm, respectively, as the nanoparticle
dimension expanded [32].

2.1.2. Inert Shell Passivation

The epitaxial shell could protect the excitation energy from trapping by surface ligands
or solvent molecules, leading to a long-lived lifetime. Su et al. designed a core–shell–
shell heterostructure to prolong the lifetime of upconversion emitters. An optically inert
NaYF4 shell on the surface of NaGdF4@NaGdF4 core–shell nanoparticle could efficiently
block the energy transfer from Gd3+ to surface quenchers, thereby promoting efficient
upconversion emission and long lifetimes of Gd3+ [33]. Mao et al. successively compared
the decay curves of NaYF4: Yb/Er/Mn (Cd), NaYF4@NaYF4: Yb/Er/Mn (C/Sd), NaYF4:
Yb/Er/Mn@NaYF4 (Cd/S) and NaYF4@NaYF4: Yb/Er/Mn@NaYF4 (C/Sd/S), finding the
lifetime became longer. Amongst them, the C/Sd/S structure has two layers of NaYF4
interface contacting the active shell, which reduced surface defects and thus enhanced the
upconversion process. Therefore, the lifetime can be prolonged by reducing energy defects
and increasing the energy transfer rate [34].

CaF2 is a biocompatible and fluoride-rich matrix that is well used as a shell in upcon-
version nanomaterials, which can simultaneously suppress the interfacial diffusion of Ln3+

and surface quenching [35]. After heterogenous CaF2 layer was coated on the NaGdF4:
Yb,Er, the lifetime of Er3+ at 532 nm prolonged from 89 µs to 162 µs, accompanied by the
green (2H11/2, 4S3/2→4I15/2) and red (4I15/2→4I15/2) emissions of Er3+ enhanced 24.2 and
55.5 times, respectively [36]. When CaF2 grew on the core of NaYF4: 10%Yb,30% Nd, the
lifetime of Yb3+ at 1000 nm increased from 51 µs up to 833 µs, indicating the surface lattice
defects were minimized [37].

Interestingly, Su et al. provided an upconverted excitation lock-in (UCEL) mode to
block the energy consumption of Gd3+ caused by lattice defects and impurities. NaYF4-
based interlayer can effectively suppress the energy loss within the nanoparticles induced
by inner lattice defects and promote energy recycling in the core domain. Therefore, the
lifetime and the emission intensity of the heterogeneous structure significantly increased
compared with the homogeneous counterparts (Figure 2b) [38].

Increasing shell thickness could suppress the non-radiative effect and cross-relaxation.
Liu et al. synthesized NaYF4: Yb3+,Er3+@mNaYF4 (m = 0, 1, 2, 3, 4, 5) core–shell nanopar-
ticles with different shell thicknesses (7.5 nm, 9 nm, 10 nm, 11 nm, 11.8 nm and 16.5 nm).
The corresponding lifetimes of these nanoparticles were measured to be 10.10 µs, 11.57 µs,
15.78 µs, 19.77 µs, 23.51 µs and 26.52 µs due to the protection of shell [39]. Furthermore,
increasing heterogenous shell thickness could minimize surface quenching. Coating a
CaF2 shell with a range of thickness from 0 nm to 5.3 nm on the NaYbF4, the lifetime of
Yb3+ of 980 nm increased from 33 µs to 2.18 ms, excited at 920 nm measured by an optical
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parametric oscillator (OPO) laser. Therein, when the CaF2 shell thickness reached 2.6 nm,
the luminescence lifetime value was approximate to the radiative lifetime of Yb3+ [40].

2.1.3. Active Shell

With regard to the active shell, Liu et al. proved that increasing the concentration
of sensitizer in the shell had adverse impacts on the luminescence intensity and lifetime
enhancement. In a NaYF4: 20%Yb,2%Er@NaYF4: m%Yb (m = 0, 10, 20) nanoparticle, the
lifetime of Er3+ and Yb3+ at 540 nm and 985 nm decreased when the concentration of Yb3+

in the shell increased. This can be attributed to the fact that more sensitizers in the shell
increased the possibility of energy trapped by the surface defect. In addition, a lower
energy transfer efficiency was observed due to the longer distance between sensitizer and
emitter compared with that in the counterpart consisting of inner sensitizers [32].

A longer migration distance imparted by thicker energy migration layers or an in-
creased number of migration steps may prolong luminescence lifetime. In a core/multishell
NaYF4@NaYbF4@NaYF4: Yb3+/Tm3+@NaYF4 nanoparticle, the thickness of the energy
migration layer (NaYbF4) increased from 0, 1.5, 3.0, 5.0 to 8.0 nm gradually, and the lifetime
at 808 nm increased from 867, 1027, 1162, 1201 to 1282 µs, respectively [41]. When the thick-
ness of the shell doped with sensitizers (i.e., Yb3+) increased, the lifetime of activators was
longer in the core due to Yb energy migration. Increasing the thickness of the second layer
in the β-NaGdF4: 25%Yb,1%Tm@NaYF4: 10%Yb@ NaNdF4: 10%Yb@NaYF4 from 1.5 nm
to 5.4 nm, the lifetime at 475 nm prolonged from 632 µs to 836 µs [42]. In addition, with
NaGdF4@NaGdF4: Yb,Er@NaYF4: Yb@NaNdF4: Yb used as an experimental model, the
lifetime at 1525 nm was enhanced when increasing the thickness of the energy relay layer
(NaYF4: Yb), which was attributed to the enlarged distance from sensitizers to emitters.
A similar trend was also observed in Ho3+-doped nanoparticles (Figure 2c). Meanwhile,
a certain Yb3+-doped shell thickness corresponded to the determined capacity of Yb3+

sublattice. Therefore, increasing the concentration of emitters could accelerate the stored
energy into luminescence emission, resulting in a shortened lifetime. As the proportion of
Er3+ rose from 0.5% up to 32%, the lifetime at 540 nm decreased from 101 µs to 13 µs [43].

2.2. Changing Concentration of Sensitizer and Emitter

Excessive emitters would increase the probability of cross-relaxation, leading to con-
centration quenching. For a Yb3+-Er3+-Ho3+ tri-doped nanoparticle, higher content of Ho3+

could shorten the interionic distances of Yb3+-Er3+/Ho3+, Er3+-Ho3+ and Ho3+-Ho3+, which
could enhance the non-radiative process and energy transfer (ET) sensitization. A decrease
in the lifetime of Ho3+ (643 nm, 750 nm, 895 nm), Er3+(525 nm, 545 nm, 655 nm, 810 nm,
845 nm) and Yb3+ (1020 nm) was observed when increasing the concentration of Ho3+ [44].
Similarly, as the mole content of Tm3+ rose from 0.2% to 8% in NaYF4: 20%Yb,x%Tm
(40 nm), the lifetime of the blue emission was reduced from 662.4 µs to 25.6 µs (Figure 3a).
Meanwhile, as the mole percentage of Yb3+ rose from 10% to 30% in NaYF4: x%Yb,1%Tm,
the lifetime of the same blue emission decreased from 206.7 µs to 120.2 µs [20]. The higher
concentration of part of emitters would likely cause self-aggregation and cross relaxation,
resulting in a shortened lifetime. When the Er3+ concentration was varying from 1% to 70%
in the β-NaYbF4@NaY0.8−xErxGd0.2F4@ NaY0.8Gd0.2F4, the lifetime of Er3+ at the level of
4S3/2 (540 nm) decreased sequentially. The shorter lifetime was attributed to the noneffec-
tive passivation on the surface when dopant with a higher concentration of emitters. Due
to the greater energy from Yb3+ (2F5/2) being transferred to Er3+ (4S3/2, 4S9/2), the lifetime
of Yb3+ was shortened. With the lack of cross-relaxation pathways for the 4S9/2 level
of Er3+, the lifetime rarely has significant changes with the Er3+ concentration variation.
Interestingly, the lifetime of Er3+ at 654 nm in the β-NaYbF4@NaY0.8−xErxGd0.2F4 structure
had a long lifetime due to more incredible energy transferring to the surface [45].
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Simultaneous excitation of two Yb3+ ions can produce Yb3+ dimers with higher excita-
tion energy, which could upconvert photons to Tb3+. To study the composition-dependent
emission lifetimes and the effect on the energy transfer efficiency, Yan et al. employed the
Tb3+-Yb3+-Nd3+ co-doped NaGdF4: 80%Yb,10%Tb@NaGdF4: 50%Nd,10%Yb nanoparticles
with varied doping concentrations as the study model. The lifetime of Tb3+ reached 1.76 ms
when the content of Yb3+ rose from 20% to 80% because more Yb3+ facilitated the formation
of Yb3+ dimer. The lifetime at 542 nm is slightly prolonged by 0.06 ms when the proportion
of Tb3+ increased from 5% to 10% due to promoted energy transfer from Yb3+ dimer to
Tb3+. In addition, when the content of Nd3+ increased from 10% to 50%, near-infrared
absorption intensity improved, the lifetime of Tb3+ at 542 nm and Yb3+ at 1000 nm both
increased, indicating more energy was transferred to Tb3+ and Yb3+ [46].

A constant lifetime can be obtained when the doping content of the sensitizer is
changed. To investigate the relationship between lifetime decay behavior and lumi-
nescence emission intensity, core–shell structure of NaYF4@NaYF4: x%Yb,1%Tm@ NaYF4:
y%Yb@NaYF4 nanoparticles was developed by Zhang et al. Changing the mole content
of Yb3+ in the first shell from 20% up to 80%, the emissive intensity changed while the
luminescence lifetime at 475 nm kept constant, suggesting a constant lifetime with different
emissive intensity could be obtained. When the concentration of Yb3+ in the first and
second shell layers was changed, the varied lifetime (1256 ms to 310 ms) was obtained
with a constant emission intensity (Figure 3b) [47]. For the mentioned nanoparticles, the
declined Yb3+ concentration increased the mean value of the distance between Yb3+ and
Tm3+ ions, leading to a longer lifetime due to the weakened back energy transfer process.
The Yb3+ concentration in the energy transfer upconversion layers was decreased from
99%, 70%, 50%, 40%, 20% to 10%, resulting in the lifetime at 808 nm being increased from
1282, 1315, 1481, 1618, 1721 to 2157 µs, respectively [41]. Besides, the Tm3+ could be served
as sensitizers and transfer energy to Yb3+, Ho3+ and Er3+ when excited at 808 nm and
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1208 nm, respectively. The lifetime of Yb3+ (980 nm), Ho3+ (1180 nm) and Er3+ (1525 nm)
decreased with the increase of the Tm3+ molar ratio [48].
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2.3. Adjusting the Energy Transfer Channel

The decay process of an excited state is inversely proportional to the energy trans-
fer rate and the radiative and non-radiative transition rates. Tri-doped nanoparticles of
NaYF4@NaYF4: Er3+/Yb3+/Mn2+@NaYF4 were synthesized by Mao et al., exhibiting the
new energy transfer process between Mn2+ and Er3+. With a non-radiative energy transfer
channel created between the level of Mn2+ (4T1) and Er3+ (2H11/2 and 4S3/2), the overall
transition rate increased owing to the resonance energy transfer, leading to a reduced
lifetime of Er3+ at 550 nm. The presence of Mn2+ ions promoted the relaxation of the
4S3/2 energy level, and the red emission of Er3+ increased with the shortening of the decay
time. Therefore, the increased population density of Mn2+ caused the decreased radia-
tive transition rate of Er3+ (4S3/2 and 2H11/2) turning down to ground state, resulting in
an enhancement of red emission due to energy transfer from Mn2+ (4T1) to Er3+ (4F9/2)
(Figure 4a). Meanwhile, the increased lifetime of Er3+ at 650 nm also verified the role of
Mn2+ in energy transfer trace according to the decay curves of various content of Mn2+(0%,
10%, 20%, 30%) (Figure 4b) [34].

Introducing transition metal ions with a long lifetime into conventional UCNPs is
particularly attractive. The lifetime of Mn2+ ions could be modulated by crystal-site
engineering. Liu et al. tuned the luminescence properties of Mn2+ in core–multishell
nanoparticles by doping Ca2+ or Mg2+, changing the output color from green to yellow
and prolonging its lifetime [49]. The spin-forbidden transition of Mn2+ occurs between
4T1→6A1, allowing a longer fluorescence lifetime than lanthanide emitters. Because of
the larger energy mismatch between Yb3+ and Mn2+, the Yb3+-Mn2+ dimer is difficult to
form. However, Zhang et al. reported the successful preparation of Yb3+-Mn2+ dimers,
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obtaining a substantial long lifetime of Eu3+ (91 ms), while the normal UC lifetime of Eu3+

is only about 7 ms. In addition, there is a dynamic population balance between the energy
state |2F7/2,4T1(4G)〉(Yb3+–Mn2+ dimers) and 5D0 (Eu3+), causing the sustained energy
transferring from Yb3+–Mn2+ dimers to Eu3+ [50].

The long-lived Mn2+ integrated with the short-lived lanthanide particle platform could
establish a new energy transfer pathway, and then affect the whole decay process. In a
NaGdF4: 30%Mn@NaGdF4: 49%Yb,1%Tm@NaYF4 nanoparticle, Gd sublattice-mediated
energy migration facilitates Mn2+ upconversion luminescence, leading to a decrease in
the lifetime of Gd3+ at 311 nm (6P7/2→8S7/2) from 6.5 to 4 ms (Figure 4c) [51]. As a result,
the lifetime of lanthanide ions may be affected when the external ions introduced and
interfered with the energy transfer channels.
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Figure 4. (a) The diagram for energy transfer mechanism among Yb3+, Er3+ and Mn2+ under 980 nm
excitation. (b) Luminescence decay curves of Er3+ at 550 nm and 650 nm in NaYF4: Yb3+/Er3+

nanoparticles with different Mn2+ concentrations (0, 10, 20 and 30 mol%). Reproduced with permis-
sion from [34]. Copyright 2016, Royal Society of Chemistry. (c) Structural design of core–multishell
nanoparticle and the energy transfer pathway among the Yb3+, Tm3+, Gd3+ and Mn2+ ions for
the short- and long-lived upconversion luminescence under 980 nm excitation. Reproduced with
permission from [51]. Copyright 2017, Nature Publishing Group.

Doping various amounts of Gd3+ into the NaYF4 host nanocrystals could regulate
the upconversion photoluminescence lifetimes. Xie et al. prolonged the lifetime of Er3+

(4S3/2→4I15/2, 4F9/2→4I15/2) by utilizing the Gd3+, substituting for Y3+ and Yb3+ in the
crystal lattice of NaYF4 host, which attributed to the energy transfer rate decrease caused
by the average sensitizer-activator separation increasing [52].

2.4. Fluorescence Resonance Energy Transfer

An efficient energy transfer pathway could be established in fluorescence dye-loaded
rare-earth nanocrystals, which enables luminescence lifetime tuning [53]. In contrast to
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conventional molecular donor–acceptor pairs, the energy transfer efficiency is related to
the distances between lanthanide-doped nanoparticles, and thus significantly depends
on the nanoparticle diameter. Hirsch et al. synthesized NaYF4: 20%Yb,2%Er with the
precisely controlled size spanning from 10 to 43 nm, and coated with sulforhodamine B
and rose bengal by ligand exchange. The nanoparticles with a mean diameter ranging
from 20 to 25 nm possessed an optimum efficiency of 50–60%. The lifetime of Er3+ at
600 nm decreased primarily due to the competition of non-radiative surface deactivation
at the smaller surface-to-volume ratios (Figure 5a) [54]. Li et al. loaded the IR-820 on
NaYF4: Tm to construct a FRET system. Luminescence decay from 3H6→3H4 transition
was used as a detection signal. When the energy accepter (IR-820) was attached to the
donor (Tm3+: 3H4) under 785 nm excitation, the lifetime of Tm3+ at 800 nm decreased
because of luminescence resonance energy transfer (Figure 5b) [55]. Su et al. loaded the
IR-806 on the NaGdF4: 49%Yb,1%Tm@NaYF4: 20%Yb@NaGdF4: 50%Nd,10%Yb@NaGdF4
nanoparticles to improve the ultraviolet luminescence intensity. With the back energy
transferred from the nanoparticles to dye molecules, the decreased lifetimes of Gd3+ and
Tm3+ ions were observed at 253, 276, 290, 310, 360 and 475 nm [56]. An organic fluorescent
dye as an antenna could be used to broaden and increase absorption for UCNPs, allowing
the energy to flow to dye molecules. Meanwhile, the hybrid system between dye molecules
and UCNPs creates a new energy diffusion pathway, increasing the radiative transition
process. Li et al. added the Cy3-SO3 into a NaYF4: 20%Yb,2%Er@CaF2 solution to construct
an energy dissipation channel, which could transfer energy to the dye by the radiative
transition. As a result, the luminescence lifetime of Er3+ at 488 nm decreased with the
concentration of Cy3-SO3 increase (0.67, 2, 4, and 5.33 µM). The reduced lifetime value
verified the non-radiative energy transfer process between Er3+ and Cy3-SO3 [57].

The triplet excitons could be trapped by inter- or intra-molecular interactions and
prolong organic phosphorescence. For example, Yb3+ luminescence could be generated by
organic Yb3+ complexes and hybrid organic-conjugated Yb3+-doped nanoparticles. Ye et al.
prepared a composite thin film, in which the Yb3+ ions are incorporated with tetrakis-
(pentafluorophenyl)imidodiphosphinate to form the Yb(F-TPIP)3 chelate, while zinc salt
of 2-(tetrafluoro-2-hydroxyphenyl)tetrafluorobenzothiazole (Zn(F-BTZ)2) served as the
organic chromophore. The Zn(F-BTZ)2 possessed the emission ranging from 450 nm to
900 nm under 405 nm excitation, and gave rise of the Yb3+ emission centered at 975 nm
from the transition of Yb3+: 2F5/2→2F7/2. Note that the intrinsic lifetime of Yb3+ at 1 µm
is about ~1 ms. The lifetime of sensitized organic Yb3+ compounds could prolong up to
~0.3 s. The prolonged emission lifetime was demonstrated by dynamic equilibrium due to
the energy transfer process from long-lived organic triplet excitons [58].

The surface ligand coordination could reconstruct the crystal-field splitting and orbital
hybridization, and narrow the gap of the 4d orbitals between inner and surface lanthanide
sensitizers. For example, after the bidentate picolinic acid (2PA) molecules coordinated to
NaGdF4: Yb nanoparticles, a longer lifetime (289 µs) at 980 nm was observed. The results
confirmed that 2PA molecules could activate the dark surface layers and facilitate energy
migration in the Yb3+ sublattices. The Yb3+-2PA coupling facilitated energy migration
by 4f-orbital energy resonance within the ytterbium sublattice, which can reduce surface
defects to hinder energy diffusion. Density functional theory (DFT) verified that 2PA
coating could narrow the gap between the superficial and inner Yb3+ by lowering the
empty 4f levels. Rigid ligands also stabilized the excited state of superficial Yb3+, prevented
the superficial lanthanide ions from the solvent and fluoride vacancy-induced quenching,
and thus significantly suppressing multiphonon non-radiative decay (Figure 5c) [59].
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Figure 5. (a) Schematic diagram of the lifetime changing due to the existence of FRET process from UC-
NPs to dye molecules. Reproduced with permission from [54]. Copyright 2017, American Chemical
Society. (b) Schematic representation of the structure of the NaYF4: Tm@PC-IR-820 nanocomposites,
the absorbance and emission in the same transition (3H6–3H4) of NaYF4: Tm nanoparticles and the
variation of lifetime affected by the amount of IR-820 dye molecules. Reproduced with permission
from [55]. Copyright 2019, WILEY-VCH. (c) The optimized structure shows ytterbium atoms located
in the interior (Ybin) and exterior (Ybsurf) position, the simulated 4f energy levels of ytterbium atoms,
the spatial distribution of the charge densities for coupling states and the lifetime decay curves of
Yb3+ at 980 nm with and without 2PA capping on the NaGdF4: 5%Yb nanoparticles (10 nm) excited
at 965 nm. Reproduced with permission from [59]. Copyright 2021, Nature Publishing Group.

2.5. Changing Temperature

The synthesized process would affect the crystallinity, phase state and volume of
nanoparticles and thus influence the decay behaviors. Vatsa et al. studied the decay process
of GdVO4: Dy3+ nanoparticles after heat treatment. When heated from 500 ◦C to 900 ◦C,
the lifetime of Dy3+ (4F9/2 level) extended from 114 µs to 260 µs due to the reduction of
the non-radiative process by surface inhomogeneities. This increase in lifetime can also be
ascribed to the decrease in the surface defects with the particle size increases in the heat
treatment process (Figure 6a) [60]. For YVO4: Ln3+ (Ln3+ = Dy3+, Eu3+) nanoparticles, the
increase in covalent bond interaction caused by heat treatment led to a red shift in V–O
charge transfer (CT). Similarly, the lifetimes of Dy3+ at 4F9/2 and Eu3+ at 5D0 increase with
temperature from 500 ◦C to 900 ◦C due to the reduction of the non-radiative process on the
surface of the particles [61].

As is well known, the decay time constant is inversely proportional to the radiative
and non-radiative transition rates in the cross-relaxation process. The luminescence lifetime
decreases with the increase of ambient temperature in most cases. The decay time with
specific emissions produced by radiative transition rarely varies with temperature, while
the non-radiative decay rate changes significantly with temperature [62]. For example,
the lifetime of Yb3+ at 1000 nm reduced from 470 ± 11 µs to 390 ± 12 µs in NaYF4: Nd3+,
Yb3+ nanoparticles as the temperature rose from 25 ◦C to 45 ◦C. While the thermal coef-
ficient ατ calculated by the TGI system was almost unchanged (−0.0092~−0.010 ◦C−1)
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(Figure 6b,e) [63]. Moreover, cross-relaxation between Tm3+ (1G4) usually occurs when
raising the emitter concentration or temperature. Yu et al. compared the sensitivity of β-
PbF2: Tm3+/Yb3+ with different Tm3+ doping concentrations. They found that the relative
sensitivity maximum values of 1G4 state lifetime in 0.0005Tm, 0.01Tm and 0.05Tm nanopar-
ticles are 0.16%K−1, 0.26%K−1 and 0.46%K−1 at 488K, respectively, indicating the potential
ability as an indicator of upconversion luminescence lifetime-based thermometer [64].

In addition, the host matrix has a significant effect on thermal sensitivity. Díaz et al.
found that oxide materials are more sensitive than fluoride ones by comparing the decay
curves of NaYF4: Er,Yb and NaY2F5O: Er,Yb nanoparticles at room temperature and
60 ◦C. [65]. The temperature dependency of Yb3+ emission lifetime in NaYF4@NaYF4: Yb3+,
Nd3+@CaF2 nanoparticles was determined by the energy transfer and back energy transfer
rate, the energy migration process (among Yb3+), as well as radiative and non-radiative
transition. Both the concentration of Nd3+ and Yb3+ affected the temperature sensitivity
by changing the distance of Yb3+-Yb3+ and Yb3+-Nd3+, which in turn affected the back
energy transfer processes from Yb3+ to Nd3+ and energy migration between Yb3+ ions.
NaYF4@NaYF4: 20%Yb3+,60%Nd3+@CaF2 as the nanoprobe possessed optimum thermal
sensitivity through varying doping concentrations of Yb3+ and Nd3+, in which the lifetime
of Yb3+ at 980 nm descended from 898 µs to 450 µs when the temperature increased from
10 ◦C to 64 ◦C. (Figure 6c,f) [66].

Interestingly, Li et al. demonstrate the lifetime compensation with temperature in
NaErF4@NaGdF4 core–shell nanoparticles. The temperature-independent lifetime is at-
tributed to the balance between lattice expansion (prolonging the lifetime) and thermal
quenching (shortening the lifetime). A considerable energy migration process occurs in
the high-doping concentration of Er3+, and the efficiency is proportional inversely to the
average donor-acceptor distance with sixth order of magnitude. As a consequence, ele-
vated temperature induces the lattice to expand, leading to a longer transfer distance, and
ultimately prolonging the lifetime of Er3+. However, the prolonged lifetime caused by
lattice expansion compensated for the difference value of the shorter lifetime aroused by
thermal quenching, resulting in the temperature-independent lifetime (Figure 6d) [67].
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from [60]. Copyright 2009, AIP Publishing. (b) Luminescence decay curves of NaYF4: Nd3+,Yb3+ at
different experimental temperatures and (e) the corresponding calibration curve of temperature vs.
luminescence lifetime. Reproduced with permission from [63]. Copyright 2019, Nature Publishing
Group. (c) The decay curves of the measured NaYF4@NaYF4: 20%Yb3+,60%Nd3+@CaF2 nanoprobe
at various temperatures and (f) corresponding nonlinear fitted curves between measured lifetime
and temperature ranging from 10 ◦C to 70 ◦C. Reproduced with permission from [66]. Copyright
2020, WILEY-VCH. (d) Negative correlation curves of the lifetime of Er3+ at 4S3/2 versus ambient
temperature for NaErF4@NaGdF4 and NaErF4: 18%Yb,2%Er@NaGdF4 nanoparticles. Reproduced
with permission from [67]. Copyright 2020, MDPI.

3. Bioapplications

With proper surface functionalization, lanthanide-doped nanoparticles possessed good
biocompatibility and low toxicity [68]. Additionally, the pulsed laser illumination has a
lower thermal effect than continuous-wave laser emission, which was harmful in biological
applications [23]. Therefore, lanthanide-doped nanoprobes combined with lifetime sensing
technology involving time-gated and lifetime coded imaging is widely used in biology and
medicine [18]. This review gives a perspective of lifetime-based sensing and imaging in
biological applications at molecule, cell, organ and living body levels.

3.1. Ions and Molecules Detection

The quantitative detection of targets based on intensity was unreliable due to the
inhomogeneous scattering and absorption. Utilizing the lifetime variation of donor and
acceptor, lifetime sensing based on the FRET mechanism could monitor ions’ concentration
accurately. Zhang et al. integrated the Nd3+-doped nanoparticle (energy donor) and MY-
1057 (energy acceptor) to detect peroxynitrite (ONOO−) in the tumor-microenvironment
based on the lifetime of NIR-II emission. The luminescence lifetime of the nanosensor
at 1060 nm shortened with the increase in the amount of the surface dye molecules. The
energy acceptor MY-1057 was destructed after reacting with reactive nitrogen species (es-
pecially ONOO−), resulting in the lifetime being recovered. Furthermore, the lifetime
of the nanosensor would recover from 202 µs to 303 µs continuously after ONOO− ad-
dition, showing linearity corresponding to ONOO− concentration while independent of
the penetration depth (0, 2, 5 mm). As a result, the ONOO− concentration could be mea-
sured under unknown tissue penetration depth on a basis of standard curve due to the
reliable lifetime-based ONOO− detection (Figure 7a) [69]. Besides, Li et al. synthesized a
lifetime-responsive nanocomposite consisting of NaYF4: Tm nanoparticles and IR-820 dye
molecules. The energy transfer from Tm3+-doped nanocrystal to IR-820 provided a tunable
luminescence lifetime. ClO– can destruct the dye and recover the lifetime of Tm3+. Based
on lifetime changes, the concentration of ClO– could be detected (Figure 7c) [55].

Time-resolved fluorescence microscopy could monitor target fluorescence by distin-
guishing the differences of fluorescence lifetimes in the nanosecond regime. For metal
ions, Zhang et al. utilized the time-resolved fluorescence signals of BSA/Tb3+ to detect
metal ions, involving Cu2+, Co2+, Zn2+, Mn2+, Ni2+, Pb2+, Ag+, Li+, Na+, Fe3+, Ca2+, Mg2+,
Al3+, K+, Cd2+, Cr3+ and Hg2+ in two pH buffers (7.4 and 8.5). A 2000 µs gate time and a
50 µs delay time were settled for time-resolved fluorescence spectra by recording at 548 nm.
Furthermore, the sensing platform could distinguish the various concentrations of the iden-
tical metal ions and the variety of metal ions mixture, even in biofluids [70]. Nagano et al.
designed luminescent Eu3+ complexes (Eu-7) for time-resolved, long-lived luminescence
microscopy (TRLLM). With Eu-7 injecting into a single Hela cell, the lifetime window
centered at 617 ± 37 nm of Eu3+-based luminescence was collected under 360 ± 40 nm
excitation. An increased luminescence enhancement was observed when the intracellular
Zn2+ mixed with pyrithione, and decreased with the addition of cell-membrane-permeable
chelator TPEN (N,N,N’,N’-tetrakis(2-picolyl)ethylenediamine). As the delay times prior
to counting and gate time were 70 and 808 µs, respectively, the intracellular Zn2+ con-
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centration variation in living cells could be examined by using the TRLLM system with
Zn2+-sensitive luminescent lanthanide probe [Eu-7] (Figure 7b) [71].

Li et al. designed a water-soluble nanocomposite NaYF4: 5%Nd and dye Cy860
enveloped by phosphatidylcholine (NPs@dye@PC). The Cy860 dye can quench the lu-
minescence of lanthanide-doped nanoparticles. After hypochlorous acid (HCIO) reacted
with organic dye molecules, the quenching process was broken, and the luminescence of
lanthanide-doped nanoparticles was recovered. Meanwhile, the lifetime of Nd3+ at 893 nm
was shortened from 51 µs to 16 µs due to the FRET and inner filter effect. Utilizing the
time-gated technique and signal collection method, they used NaYF4: Nd@Cy860@PC
nanoprobe to detect the concentration of HCIO in a living mouse model. Of note, the
average relative deviations of HCIO concentration were only 0.61% and 1.74% via ratio-
metric detection, while the tissue depth increased up to 2mm and 3 mm, respectively
(Figure 7d) [72]. Yuan et al. designed and synthesized a time-gated luminescence TGL
probe (TR-HCIO) for specific detection of HCIO, in which luminescent Tb3+ (energy donor)
nanoparticles were conjugated with a rhodamine derivative (energy acceptor). After react-
ing with HCIO, the rhodamine emission at 580 nm increased while the Tb3+ emission at
540 nm decreased, resulting in an increase in the TGL intensity proportion of rhodamine
to Tb3+ (I560/I540) up to ~9-fold. The luminescence lifetime of Tb3+ decreased from 588 µs
to 254 µs due to the FRET process and has excellent linearity of the variation of HCIO
concentration from 0.5 µM to 30 µM (r = 0.99). With dual signal outputting by ratiometric
TGL and luminescence lifetime, TR- HCIO was applied to determine HCIO in HepG2
cells [73].
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Figure 7. (a) Schematic diagram of nanosensor DSNP@MY-1057-GPC responding to ONOO−. Re-
produced with permission from [69]. Copyright 2020, WILEY-VCH. (b) Time-resolved luminescence
imaging of Zn2+ in living HeLa cells. Reproduced with permission from [71]. Copyright 2007, Ameri-
can Chemical Society. (c) Simulated luminescence lifetime imaging of the detection of responsive
ClO−. Reproduced with permission from [55]. Copyright 2019, WILEY-VCH. (d) The images of living
mice in vivo with injection of 25 µL sodium hypochlorite solution and 25 µL NaYF4: Nd@Cy860@PC
aqueous solution (3 mol/L). Reproduced with permission from [72]. Copyright 2019, American
Chemical Society.

Vitamin C distribution and dynamic activities could be monitored by the time-gated
luminescence microscopy. Yuan et al. developed a probe responding to ascorbic acid
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(vitamin C) conjugating two nitroxide radicals and a luminescent europium complex. The
nitroxide radicals prevented the probes from emitting luminescence until vitamin C was
added to form a hydroxylamine derivative. The probes responded to vitamin C concentra-
tion linearly with a limit of detection (LOD) of 9.1 nM, which is lower than electrochemical
methods by two orders of magnitude. The method of time-gated luminescence microscopy
enabled real-time and specific monitoring of the cellular uptake, endogenous production
and mapping of vitamin C in living Daphnia magna with free background [74].

3.2. DNA Detection

The pathogen DNA strands could be detected by using lifetime coding and decoding
with downconversion lanthanide luminescence in microspheres. Jin et al. encapsulated
a trivalent europium complex of thenoyltrifluoroacetonate Eu (donor) and a hexafluo-
rophosphate salt of cationic coumarin 50 (acceptor dyes) into porous polystyrene beads by
solvent swelling. The average donor-to-acceptor distance could be manipulated by step-
wise varying their concentrations, achieving the fine-tuned lifetimes of the microspheres.
They carried out a biological experiment for high-throughput simultaneous detection
of different pathogen DNAs (single strands), including human immunodeficiency virus,
Ebola virus, hepatitis B virus and human papillomavirus (HPV) 16. The pathogen DNAs
were added into the test panel composed of five types of conjugated microspheres en-
coded with different life spans, and Qdot 565 was added as a reporter dye. With the
time-resolved orthogonal scanning automated microscopy analysis, the lifetime of Eu3+

complex in lanthanide-encoded microspheres were recovered by detecting the time-gated
luminescence, which can identify their types of pathogen DNAs by decoding the lifetimes
(Figure 8a) [75].

Similarly, Zhang et al. synthesized a series of nanoparticles with a settled lifetime by
regulating the doped proportion of activators and the thickness of the energy migration
layer. These nanoparticles were loaded into microspheres and modified by the DNA probe
with nine high-risk HPV subtypes. With fluorescence dye 6-carboxyfluorescein as the
reporter for DNA detection, the nanoparticles modified with DNA probe were added into a
solution including PCR amplified DNAs of HPV targets. The HPV positive sample both of
HPV 16 and HPV 18 could be distinguished by using the time-resolved imaging scanning
system (Figure 8b) [42].
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sequences, in which the microspheres and amounts of pathogen DNAs were confirmed by the
luminescence decay curves of Eu3+ and reporter fluorescence intensities, respectively. Reproduced
with permission from [75]. Copyright 2014, Nature Publishing Group. (b) Schematic diagram of
τλ-M for detecting HPV subtypes, and the confocal images with the corresponding lifetime images
after incubating complementary target DNAs, respectively. Reproduced with permission from [42].
Copyright 2018, WILEY-VCH.
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3.3. Protein Detection

A strategy to detect protease is to utilize lanthanide nanoprobes, which exhibit the long
lifetimes and strong luminescence in the presence of an amino group, and a reverse trend
with the protection of acyl groups. Kikuchi et al. synthesized lanthanide-based antenna-
chelator conjugates with aniline derivative groups as the antennas. This conjugation has
strong luminescence and a long lifetime (1.5 ms) at 350 nm when calpain I and leucine
aminopeptidase (LAP) are added. These probes could exclude background fluorescence
signals, suitable for detecting protease activities such as LAP and calpain I by time-resolved
assays [76].

Similarly, Kikuchi et al. prepared a luminescent lanthanide probe TPA-Eu using time-
resolved luminescence microscopy for protein imaging. The lifetime was 1.25 ms at 616 nm,
which could be applied to detect TPA-Eu labeled on cell-surface proteins. The long lifetime
could effectively separate the live-cell imaging from background signals (Figure 9a) [77].
Vuojola et al. constructed a hybrid FRET system consisting of Tb3+ with lanthanide-binding
peptide (LBP) and green fluorescent protein (GFP). LBP can prolong the emission lifetime
and can be applied in time-gated detection. After LBP and GFP were digested by enzyme,
the long-lived sensitized acceptors were removed. The variation of the time-gated signals
of terbium at 545 nm and the sensitized acceptor emission at 520 nm were monitored and
used to detect the presence of caspase-3 inhibitor Z-DEVD-FMK [78].

The time-resolved detection could trace the biomolecules such as avidin with FRET
biosensor, which can eliminate the background signals and improve the sensitivity. Chen
et al. designed a hybrid system; NaYF4: Ce/Tb nanocrystals could transfer the energy to
fluorescein isothiocyanate (FITC). The lifetime of Tb3+ at 5D4 decreased with the concentra-
tion of avidin improving from 0 to 500 nM. Using the model system, they could achieve an
LOD of 5 nM (Figure 9b) [79]. By utilizing time-resolved fluorescence resonance energy
transfer (TR-FRET), the avidin could be detected with the detection limit of 3.0 nM by using
ZrO2 NP bioprobes [80]. In addition, Chen et al. synthesized CaF2: Ln3+ (Ln = Ce, Tb;
Yb, Er; Yb, Tm) NPs with a size of sub-10 nm, which could sensitively detect avidin in
homogeneous TR-FRET bioassays. Due to great spectral overlap, amino terminal fragment
(ATF) coupled with CaF2: Ce, Tb NP (emitting at 491 nm) labeled FITC (emitting at 490 nm)
for TR-FRET detection. Therefore, the excitation energy of CaF2: Ln3+ could be transferred
to nearby FITC on account of the specific bond between avidin and biotin. The TR-FRET
signal was enhanced gradually at the expense of the Tb3+ signal as the amount of avidin
increased. The calibration curve for avidin concentrations from 0.1 nM to 430 nM exhibits
that the signal of FITC/Tb in TR-FRET increases with the avidin concentration. The LOD is
approximately 164 pM, which is the lowest detection limit for bioprobes on the basis of
Ln3+-doped inorganic nanoparticles. Specially, they designed a system to detect soluble
urokinase plasminogen activator receptor with ATF-coupled nanoparticles as the probes,
whose LOD of tumor marker suPAR is 328 pM [81].

On the basis of the FRET mechanism, lanthanide nanoparticles can provide sensitive
detection by using their decay time signals. Zhang et al. designed a hybrid system of UCNP-
aptamer/ssDNA-pyropheophorbide-a (PPA)-doxorubicin (DOX) [UAS-PD] with 540 nm
and 655 nm emission for targeted cancer therapy. The Black Hole Quencher-1 (BHQ-1) bore
on ssDNA without the target cell. It could quench the luminescence of UCNPs at 540 nm
due to FRET, but had a limited effect on 655 nm emission. A spontaneous conformational
reorganization would occur when approaching specific cancer cells, moving ssDNA away
from UCNPs and making PPA close to UCNPs. PPA decreased the luminescence intensity
at 655 nm and recovered 540 nm emission due to FRET. Meanwhile, it affected the lifetime
of both 540 nm and 655 nm. As a result, an extracellular cancer-specific biomarker PTK7
was developed to activate the UAS-PD as a probe. The lifetime of UAS-PD at 540 nm and
655 nm was measured to be 339.22 µs and 668.61 µs, respectively. Nevertheless, in the
presence of PKT7, the lifetime of hybrid system increased by 476.33 µs at 540 nm, while the
decay times at 655 nm decreased to 404.52 µs due to FRET from UAS-PD to BHQ-1 and



Biosensors 2022, 12, 131 15 of 25

PPA. Specially, the ratiometric lifetime signal provided an extremely low LOD of 3.9 nM
for PTK7 [82].
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Figure 9. (a) Schematic representation of mutant β-lactamase-based protein labeling system, in
which the luminescent lanthanide probe (TPA-Eu) was used for imaging cell-surface proteins (POIs).
Reproduced with permission from [77]. Copyright 2011, WILEY-VCH. (b) Schematic diagram of TR-
FRET detecting of avidin by employing biotinylated NCs (donor) and FITC (acceptor). Reproduced
with permission from [79]. Copyright 2011, WILEY-VCH.

The sensitivity of immunoassays could be improved by using lanthanide-labeled
nanoparticles with time-resolved immunofluorometric assays (TrIFA). Li et al. coated the
luminescent Eu3+ and Tb3+ chelates covalently on the surface of silica nanoparticles to
conjugate the antibodies or bind antibodies. As a comparison, the lifetime was no longer
than 0.3 ms for Eu3+-BHHCT after encapsulation in silica nanoparticles, while the lifetime of
Tb3+-BPTA chelates decreased prominently from 2.68 ms to 1.52 ms after encapsulation. The
as-prepared conjugates in TrIFA could detect hepatitis B e antigen (HBeAg) and hepatitis
B surface antigen (HBsAg). Utilizing the conjugates, the TrIFA for HBsAg possessed a
comparable or lower LOD (0.0092 µg/L) than ELISA while the TrIFA for HBeAg possessed
a much lower LOD (10.0 National Centre Unit (NCU)/L) than ELISA. By synchronizing
TrIFA, the detection limits reached 0.033 µg/L for HBsAg and 27.0 NCU/L for HBeAg,
which is close to those of the individual assays [83].

3.4. Cell Labeling

Lanthanide bioprobes with time-gated detection enable rapid identification and quan-
tification of cells bearing low-abundance surface biomarkers. CD34+ cells are the hematopoi-
etic stem cells, whose surface possesses the specific expression of CD34 protein. Jin et al.
synthesized functionalized polystyrene nanoparticles containing europium and stained
CD34+ cells with a streptavidin–europium complex conjugate. Biotinylated anti-CD34
antibodies stained CD34+ cells, and were imaged by time-gated luminescence, suppressing
autofluorescence background signal (Figure 10a). As a result, the signal intensity was
improved by a factor of ~20, which could quantify the surface antigens of low expression
on a single cell. Furthermore, with the assistance of an orthogonal scanning automated
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microscopy, they obtained the quantitative statistical data of numerous CD4 cells on mi-
croscopy slides. They separated 98% target cell population from stained cells with a
coefficient of variation of 31% [84].

Precise detection of tumor cells is critical for diagnosing early-stage cancer, forcing
researchers to develop highly sensitive methods. The lifetime-resolved luminescent lan-
thanide technology could obtain high signal intensity by suppressing the background
fluorescence. Chen et al. synthesized anti-EpCAM-antibody-modified NaEuF4 NPs
(NaEuF4–Ab) to detect circulating tumor cells (CTCs) in whole blood samples without
CTC enrichment. This amplified the signal through enhanced dissolution of time-resolved
photoluminescence and elimination of short-lived autofluorescence interference. The de-
tection of blood breast cells had a LOD of 1 cell/well in a 96-well plate. As a result, the
direct detection of blood breast cancer cells has a detection rate of 93.9% (14/15 patients) in
cancer patients. The time-resolved photoluminescence could improve the signal to noise
ratio of the confocal laser scanning microscope (CLSM). It amplified the signal through the
enhanced dissolution of time-resolved photoluminescence and elimination of short-lived
autofluorescence interference. Comparing CLSM images of EpCAM-positive MCF-7 and
EpCAM-negative HeLa cells incubated with NaEuF4–Ab–TRITC for 1.5 h, the surface
of MCF-7 cells emitted intense red luminescence but the surface of HeLa cells did not
(Figure 10b) [85].
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To increase the luminescent sensitivity, an effective strategy is to attach lanthanide
chelates onto carrier molecules such as antibodies, which then were used to label surface
antigens on cancer cells. Packer et al. developed a tetradentate β-diketonate-europium
chelate for the immunodetection of prostate cancer cells (DU145). They conjugated MIL38
antibody to the chelate directly via lysine residues, and labeled a europium chelated
secondary polyclonal antibody. As the DU145 cells (a prostate cancer cell line) were
stained by conjugates, the time-gated luminescence microscopy was used to capture the
images of immune-stained cancer cells while the cellular autofluorescence background was
suppressed [86].

Another efficient method is to construct multiple lifetime channels, in which the
lifetime could be precisely adjusted and detected. Zhang acquired a battery of Er-doped
nanoparticles with settled lifetime at 1525 nm by control the thickness of energy relay layers
and the concentration of activators. Three types of nanoparticles with settled lifetime were
conjugated with primary antibodies to label the MCF-7 and BT-474 breast cancer cells, on a
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basis of detecting the biomarkers of breast cancer including progesterone receptor (PR),
oestrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2). Due to
the different expression patterns of the three biomarkers for the two tumor subtypes, the
biomarker expressions of the tumor subtypes could be quantified by analyzing the three
lifetime composites according to a pattern recognition algorithm. The highest expression in
the MCF-7 tumors came from ER (62.3%), followed by PR (17.9%) and HER2 (19.8%). On
the other hand, the BT-474 tumors expressed a large amount of HER2 (46.6%) but moderate
levels of PR (28%) and ER (25.4%), which were in accordance with the standard ex vivo
immunohistochemistry assays [43].

3.5. Organ Imaging

The practical use of UCNPs is still hampered by relatively shallow penetration depth.
Comfortingly, lanthanide lifetime measurements are independent of tissue thickness, which
can overcome the problem by lifetime coded technology. Chen et al. coated polyacrylic
acid on a series of NaYF4@NaYbF4@NaYF4: Yb3+/Tm3+@NaYF4 via ligand exchange.
They injected PAA-coated UCNPs (100 µL, 30 mg/mL) with the lifetime of 1158 µs into
a Kunming mouse by tail vein injection, 20 µL of PAA-coated UCNPs (30 mg/mL) with
lifetimes of 1528 µs and 920 µs into the right and left of the abdomen through subcutaneous
injection, respectively. The time-delayed images were analyzed algorithmically by MATB.
By taking advantage of temporal optical multiplexed upconversion with distinct lifetime-
hued colors, liver and two abdomen subcutis could be seen clearly. The two close lifetimes
could also be differentiated in in vivo imaging, indicating high temporal resolution abilities
of the imaging system (Figure 11a,b) [41].

NIR-II luminescence has the advantage of reducing optical scattering. Er3+ emission at
1532 nm combined with lifetime sensing technology attracted specific attention. The fluores-
cent nanoprobes with Er3+ dopant in double interfaces (NaYF4@NaErF4: Ce@NaYbF4@NaE-
rF4: Ce@NaYF4) was designed by Zhang et al. to generate strong luminescence intensity
and regulate the lifetime distinguishably. The nanoparticles decorated with phospholipid
were administrated via oral, intertumoral and intravenous injection into mouse baring with
a subcutaneous tumor. Compared with other nanoparticles having larger luminescence
intensity differences, these nanoprobes offered more accurate lifetime decoding for metabol-
ically enriched organ imaging. During the 6 h monitoring period, it exhibited consistent
characteristic lifetime compared with the agents in gut and tumor (Figure 11c) [87].

3.6. Thermal Sensing

Utilizing the temperature-dependent lifetime of lanthanide nanomaterials, lifetime-
based thermometers have been developed to detect the temperature in the biologic microen-
vironment. Férid et al. synthesized La2O3: Tm,Er,Yb UCNPs and used it as luminescent
thermal probes to detect the temperature in the simulative biological tissue. The employed
fluorescence lifetime is from the 1G4→3H6 transition of Tm3+ at 480 nm. UCNPs were
placed at the same point on a biological tissue (0.15 mm thickness), and then were focalized
by a 1450 nm heating diode laser and excited by a 980 nm pulsed laser. The fluorescence
lifetime at 480 nm was measured with heating laser power varying from 30 mW to 130 mW.
Hence, the sub-tissue temperature could be calculated by the achieved decay curves [88].
In an ex vivo experiment, a probe of water-dispersed NaY2F5O: Er,Yb nanoparticles was
injected into a chicken breast at 1 mm depth and heated by a laser beam. The luminescence
decay curves excited by a 980 nm diode laser were recorded by a double beam confocal
microscope. According to the calibration curves, the sub-tissue temperature could be
determined by the level of a shortened lifetime [65].
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Figure 11. (a) Schematic diagram of nanoparticles with determined lifetime injecting into mouse, and
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Integrating with QDs, the lanthanide upconversion nanomaterials exhibited excellent
temperature sensing capability by utilizing arithmetic methods. Li et al. fabricated the hy-
brid upconversion nanoclusters (UCL-NCs) containing PbS QDs and NaYbF4: 0.5%Tm@Na-
YF4: 10%Yb@NaYF4: 50%Nd (Tm-UCNPs) through an evaporation-induced self-assembly
method. Both PbS QDs and Tm-UCNPs emitted around 810 nm through the upconversion
process under 865 nm excitation. The lifetime of PbS QDs is responsive to the temperature
at ns level, while the lifetime of Tm-UCNPs is fairly long, reaching a magnitude of µs, and
is independent of temperature. Pork tissue with different thicknesses mimics biological
tissues to study the temperature variation of UCL-NCs. ISum was obtained by the real-time
imaging, and the ITm was acquired by a 20 µs delayed time-resolved spectrometer. The
experimental data was linearly fitted according to the ratio obtained from different thick-
nesses according to the formula Ratio = (ISum − ITm)/ITm. Furthermore, the UCL-NCs
probe could apply in vivo to monitor intratumoral temperature, and the thermal sensitivity
of the hybrid system reached 5.6%/K (Figure 12a) [89].

Dynamic temperature mapping in real-time is a powerful technology for wide-field
photoluminescence lifetime imaging. Liang et al. designed a single-shot photoluminescence
lifetime imaging thermometry (SPLIT), utilizing NaGdF4: Er3+,Yb3+@NaGdF4 nanoparti-
cles as indicators. The lifetime of Er3+ red emission was more sensitive to temperature than
the green emission, resulting from the larger energy separation between emitting and the
lower-lying exciting states. Applied in longitudinal temperature monitoring successfully by
overlaying chicken breast tissue, the SPLIT proved to be independent with tissue thickness
and excitation light power density. When applied in a single-layer onion epidermis sample
for single-cell temperature mapping, the lifetime/temperature maps were recorded in 3 s
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measurement window (Figure 12b). The SPLIT was demonstrated to be resilient to spatial
intensity variation, while being advantageous in handling temporal intensity variation [90].

The luminescence lifetime imaging in the NIR could be used for temperature sensing.
In the experiment of Soga, the temperature was found to be independent with meat depth
from 0 mm to 1.4 mm and luminescence intensity [63]. Li et al. designed a Nd-Yb co-doped
nanothermometer to detect the temperature in vivo. The Nd3+ ions possess thermally
rich energy levels to assemble responsive energy for the endogenous relative thermal
response. In this structure, Yb3+ as energy acceptor was packed closely with Nd3+ in a
nanocrystal with a diameter of 11 nm, owning tunable intensity and lifetime. The various
lifetimes of Yb3+ (975 nm) corresponding to different temperatures could be observed due
to energy transfer from 4F5/2 states of Nd3+ to Yb3+ under 793 nm excitation. The long
circulation PEG modified nanoparticle was injected into a living mouse. After its footpad
was stuck on a heat/cool pad through 793 nm excitation, the temperature difference could
be distinguished between artery and vein, resulting from thermal relaxation. After stopping
the heating process, the value of temperature loss was 10% in artery, and 25% in vein after
20 min. The lifetime of the optimized probe exhibited an excellent temperature sensitivity
of 0.27 K in vivo [91].

Another nanothermometer was designed for sensing temperature utilizing the NIR-II
luminescence lifetime of Yb3+ at 1000 nm, which is sensitive to temperature at different
tissue depths. The NaYF4@NaYF4: Yb3+,Nd3+@CaF2 with a size of 13.5 nm acted as a
probe for detecting temperature in vivo. Due to back energy transfer from Yb3+ to Nd3+

and energy migration among Yb3+ ions, the doping concentration of Nd3+ and Yb3+ could
affect the temperature sensitivity. NIR-II lifetime-encoded images are acquired by a NIR-
sensitive InGaAs camera due to the precisely defined delay time set by the square-wave
pulsed excitation laser. The luminescence lifetime versus temperature was calibrated by
measuring a series of lifetime-hued images of nanoprobe solution. When the nanoprobes
were injected into the inflamed and normal mouse, it exhibited a temperature difference of
2.3 ◦C according to a thermal camera. In addition, it showed a high-temperature sensitivity
of 1.4–1.1% ◦C−1 with the biological tissue up to 4 mm, ranging from 10 ◦C to 64 ◦C.
The nanothermometers could diagnose murine inflammation in vivo based on lifetime
responsiveness to temperature, and map the temperature distribution in the nanoparticle-
probed area (Figure 12c) [66].

3.7. pH Sensing

It is well known that the pH-responsive fluorescein attached to UCNPs could detect
pH by the ratiometric responses of emission intensity. Recently, a similar composite probe
has been developed, which utilized the distinguished lifetime with the same emission
wavelength to monitor a dynamic biological process [92]. Li et al. designed a NaYF4:
1%Tm@NaLuF4 and Rh760 (pH-responsive dye) composite to detect pH. UCNPs and dye
molecules could emit luminescence at 800 nm under the 690 nm excitation, and the lifetimes
were 695 µs and 1.40 ns, respectively. Moreover, the pH variation has a negligible effect
on the lifetime in NaYF4: 1%Tm@NaLuF4 nanoparticles, but has a significant impact on
the lifetime of Rh760. The time-gated technology could collect the long lifetime (UCNPs at
800 nm), while the short lifetime (Rh760 at 800 nm, only the level of ns) was blocked. Utiliz-
ing the time-gated sensing method, they developed a ratio signal of Fsteady-state/Ftime-gated
to detect pH. For example, they could sensitively monitor the pH value variation from
1.51 to 7.00 in 96-well plates covered with pork tissue, and proved the ratiometric lifetime
was reversible and independent of nanoprobe concentration and excitation power density.
Similarly, they successfully monitored the gastrointestinal pH value changes in in vivo
experiments (Figure 13a) [93].
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Figure 12. (a) Diagram of surficial and intratumoral detection in vivo and corresponding real-time,
time-resolved and ratio UCL imaging without and with a 2 mm-pork slice covering under 865 nm
excitation. Reproduced with permission from [89]. Copyright 2020, Nature Publishing Group. (b) The
time-integrated images of a dynamic onion epidermis cell sample with labeling UCNPs. Reproduced
with permission from [90]. Copyright 2021, Nature Publishing Group. (c) Thermographic lifetime
imaging of the nanosensors in the inflamed and normal mouse, showing the precise position of
temperature distribution. Reproduced with permission from [66]. Copyright 2020, WILEY-VCH.

Designing an NIR lifetime (τ) probe (900–1700 nm) with different pH-responsive
lifetimes is a synthetic challenge. Recently, Zhang et al. designed Yb3+ porphyrinate (F-Yb)
as a pH-sensitive molecular probe. NIR emission and lifetime of Yb3+ increased with pKa
values of ca. 6.6 from pH 9.0 and 5.0. The lifetime at 1000 nm was prolonged from 135 µs
to 170 µs with pH from 5.0 to 1.0 due to reduced exposure to water and aggregation. Oral
gavage experiments in nude mice were performed through the NIR τ probe F-Yb for in vivo
pH detection. The lifetime of F-Yb in the stomach is 170 µs and that in the intestine is
110 µs. The pH values were 1.5 and 6.0 in the stomach and intestine, respectively. As a
result, different organs could be distinguished with quantitative readouts by using the NIR
τ probe F-Yb in time-resolved fluorescence lifetime imaging (Figure 13b) [94].
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Figure 13. (a) The schematic representation and mechanism of the composite probe reversibly re-
sponds to variation in the microenvironment and emits two luminescence emissions with different
lifetimes. The images of the gastrointestinal area with different pH values in vivo or ex vivo. Re-
produced with permission from [93]. Copyright 2020, American Chemical Society. (b) The confocal
luminescence images (top) and time-resolved luminescence lifetime images (bottom) of F-Yb (10 µM,
4 h) in HeLa cells reacted with 0.5 µM chloroquine. Reproduced with permission from [94]. Copyright
2019, Royal Society of Chemistry.

4. Conclusions and Outlooks

Compared with traditional fluorescence detection, lifetime sensing based on the lan-
thanide nanomaterials is not susceptible to tissue thickness, laser power intensity, back-
ground interference and solution concentration. Furthermore, the signal can be enhanced by
methods such as time-gated lifetime imaging, ratiometric detection and lifetime-coded tech-
nology. While the strategies based on measuring the lifetime signal changes in lanthanide-
doped nanomaterial for biodetection and bioimaging have promising prospects, there
exist many technical challenges to be overcome in practical application. For example, the
nanoprobes’ luminescence intensity should be further increased to improve the lifetime
signal acquisition speed. It can be solved by optimizing the concentration of dopant,
core–shell structure and antenna addition. Moreover, it is highly desirable to increase the
stability in the biological microenvironment. Numerous composite nanoprobes consist of
lanthanide nanoparticles and molecules such as dye, fluorescein, etc., which are susceptive
to their surroundings. Hence, it is necessary to develop stable nanoprobes and measure-
ment techniques. Last but not least, the use of lifetime-based sensing technology could be
extended to develop multimodality nanoplatforms with synergistic effects for diagnosis
and treatment [95]. This technology will draw wider attention to the development trajectory
of fundamental research and clinical applications in luminescent materials.
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