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Abstract: The human body is designed to experience stress and react to it, and experiencing challenges
causes our body to produce physical and mental responses and also helps our body to adjust to new
situations. However, stress becomes a problem when it continues to remain without a period of
relaxation or relief. When a person has long-term stress, continued activation of the stress response
causes wear and tear on the body. Chronic stress results in cancer, cardiovascular disease, depression,
and diabetes, and thus is deeply detrimental to our health. Previous researchers have performed a lot
of work regarding mental stress, using mainly machine-learning-based approaches. However, most
of the methods have used raw, unprocessed data, which cause more errors and thereby affect the
overall model performance. Moreover, corrupt data values are very common, especially for wearable
sensor datasets, which may also lead to poor performance in this regard. This paper introduces
a deep-learning-based method for mental stress detection by encoding time series raw data into
Gramian Angular Field images, which results in promising accuracy while detecting the stress levels
of an individual. The experiment has been conducted on two standard benchmark datasets, namely
WESAD (wearable stress and affect detection) and SWELL. During the studies, testing accuracies of
94.8% and 99.39% are achieved for the WESAD and SWELL datasets, respectively. For the WESAD
dataset, chest data are taken for the experiment, including the data of sensor modalities such as three-axis
acceleration (ACC), electrocardiogram (ECG), body temperature (TEMP), respiration (RESP), etc.

Keywords: stress detection; Gramian Angular Field; deep neural network; WESAD dataset; SWELL
dataset

1. Introduction

About 280 million people suffer from depression every year and very few of them
obtain proper treatment on time [1]. Therefore, it is very important to detect human stress
so that more people become aware of their situation and obtain their treatment as soon
as possible. Stress can spoil someone’s quality of life in many ways which are difficult to
imagine [2]. Human beings are well adapted to stress in small doses, but when that stress
is long-term, it can have some serious impacts on our bodies as well [3]. It also causes
the muscles in our body to be in a constant state of guardedness. Taut and tense muscles
for long periods cause other portions of the body to react and even promote stress-related
disorders. Stress can also cause respiratory symptoms such as shortness of breath and rapid
breathing, as the airway between the nose and the lungs constricts [4].
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The main source of stress response in human beings comes from the sympathetic
nervous system (SNS), which mainly carries physiological, psychological, and behavioural
symptoms [5]. Psychological responses are mainly anger, irritation, anxiety, or depression.
From a physiological perspective, when SNS activity increases it changes the hormonal
levels of the body and provokes reactions like sweat production, increased heart rate, and
muscle activation [6]. The muscles mainly control the respiratory system and vocal tract,
so when the muscles change it causes our speech characteristics to change as well. In
addition, skin temperature decreases [7] along with hands and feet temperature, and heart
rate variability (HRV) [8] decreases along with a change in pupil diameter [9]. In the case
of the behavioural point of view, eye gaze and blink rate variations in addition to changes
in facial expressions or head movement are affected in a lot of ways [10]. Carrying out a
continuous process of tracking stress manually is far from reality. Moreover, carrying out
methods of psychological questionnaires is nearly impossible for the detection of stress.
This is where automatic stress recognition comes into play. Hormone levels also play an
active role in stress. The stress response causes endocrine and immune systems to change
by releasing adrenaline and cortisol hormones from the adrenal cortex and adrenal medulla,
respectively [11]. On the other hand, in the case of automatic stress detection, we measure
some of the most important factors affecting human stress or possible for recognizing stress
more accurately, which include the bio-signals such as ECG, EDA, signals, etc., and reduce
a lot of manual effort in parallel. There are several traditional methods of detecting stress,
such as interviewing the individual by asking stress-related questions or observing the
reactions of people who are stressed giving different facial expressions, i.e., their blinking
rate, pupils, or eyebrow rate.

Some relevant contributions of the proposed work include the following:

e  The present work encodes a multivariate time series dataset to time series images
which resulted in promising accuracies achieved in both training as well as
testing phases.

e  The work properly groups the multivariate time series dataset which is being experi-
mented on for the first time and converts it to Gramian Angular Field (GAF) images
successfully before training the normalized data with the help of a convolutional neu-
ral network (CNN). An overview of our proposed pipeline for mental stress detection
is illustrated in Figure 1.

e The proposed image-encoding-based deep neural network model is tested on two
standard benchmark stress recognition datasets, namely WESAD [12] and SWELL [13].
This resulted in better classification accuracies which proved that the model is capable
of showing good performances on any time series dataset.
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Figure 1. Illustration of the whole pipeline of our proposed image-encoding-based deep neural
network for mental stress detection from wearable physiological sensors.
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2. Literature Review

A lot of research has been conducted in the past using machine learning techniques
for stress detection. In the work by Bobade et al. [4], stress detection was achieved on
the publicly available WESAD dataset using data from sensor modalities such as ACC,
ECG, EDA, etc., for both binary and non-binary classification. In the case of non-binary
classification, three-class classification was conducted using machine learning techniques
such as K Nearest Neighbour, Linear Discriminant Analysis, Random Forest, Decision
tree, AdaBoost and Kernel Support Vector Machines. During the study, an accuracy of
about 81.65% was achieved for the three-class classification. However, the related work
was implemented on an old structured WESAD dataset consisting of three stress classes
excluding the meditation class which has been updated recently. The second work con-
ducted by Souza et al. [14] proposes a new model called MoStress which depends on
a sequence model for stress classification. It pre-processes the physiological data col-
lected from wearable devices through a novel pipeline using a recurrent neural network
(RNN). Although the paper claims that the result is nearly close to other proposed works,
they used a simpler model. Some different approaches have been applied as well by
Rashid et al. [15], where they applied motion which determines the context of the system
while also learning to adjust the fused sensors whenever required. Some research work
has been conducted on stress detection using deep learning models. Sah et al. [16] intro-
duced the CNN model for stress detection by using the data of only one sensor modality.
Ghosh et al. [17] worked on another method for mental stress detection using two physi-
ological signals. They proposed a statistical feature extraction taken from a 10 s segment
which is performed by wavelet packet decomposition, which also follows a multi-class
Random Forest classifier. Chatterjee et al. [18] proposed a lightweight deep neural network
which detects mental stress using physiological signals. They took ECG, Galvanic Skin
Response (GSR), skin temperature, and EMG signals using a wearable device. An accuracy
of 90% was achieved by them for the three class classifications.

Much research work involving stress detection has been performed on the SWELL
dataset as well. Sharma et al. [19] conducted stress detection using machine learning classi-
fiers along with the Internet of Things Environment. With the popularity of smartwatches,
the work proposed that the data collected from the watches can be trained using machine
learning algorithms and can be shared with experts for the best possible recommenda-
tions regarding health. This also includes the study of recommender systems using IoT
and the cloud, which achieved an accuracy of 98%. Another work was conducted by
Ragav et al. [20] regarding Bayesian active learning for wearable stress and affect detection.
This work handled data using the ground truthing technique or active learning. This
work introduced a Bayesian neural network technique along with Monte Carlo Dropout to
predict model uncertainties using approximation, which achieved an accuracy of 90.38%.
The authors of [21] proposed an artificial neural network to detect and classify stress with
an accuracy of 78% and an error rate of about 22%, respectively. Koldijk et al. [22] proposed
and developed automatic classifiers to detect stress-related mental states, especially in
working conditions using computer logging, facial expressions, as well as physiology.
They mainly addressed two methods of applied machine learning challenges. Firstly, they
detected work stress using unobtrusive sensors followed by taking individual differences
into account. They also found that it is better to predict variable mental effort using sensor
data than perceived stress. Nkurikiyeyezu et al. [23] worked on the SWELL dataset in their
work, addressing the two most important questions, among which one is related to heart
rate variability and another to distinguishing between stressful and non-stressful situations
in an office-related environment. They achieved an accuracy of 99.25% related to stress
predictions. They mainly used machine learning methods, which were trained on 10-fold
cross-validation of the training dataset where each fold was used to train on random forest
classifiers using the remaining 9 folds. After testing various machine learning classifiers,
they settled with the Decision Jungle (Shotton et al. [24]). They tend to generalize better
with less memory consumption.
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Time Series Images

A time series represents a series of time-based orders. It is basically a sequence of
various data points that occurred in a successive order for a given time. There are many
applications of time series analysis in different fields, ranging from weather forecasting to
financial purposes to signal processing and many more. The specific experiment focuses
on classification, although regression is also possible with time series analysis and using
time series images as well. With the recent developments of computer vision, time series
images have also become popular as well. There are several ways to encode time series
datasets into images. One such example is GAF. A GAF is an image obtained from a time
series, representing some kind of temporal correlation between each pair of values from the
time series.

The mathematics of the GAF is intrinsically linked to the inner product and the
corresponding Gram matrix. The inner product is an operation between two vectors, which
measures their similarity [25]. Let us consider there are two vectors x and y. The inner
product between them is the dot product which can be written as the following:

(ry)=xl-yl+x-y2 )
which can be further simplified as follows:
(x,y) = [Ix|[ - [lyl| - cos(6) 2

Therefore, the inner product between them can be characterized by the angular differ-
ence cosf). The resulting value lies between [—1,1]. The matrix of a set of n such vectors
defined by the dot product of every couple of vectors is called the Gram matrix [26]. The
Gram determinant or Gramian is the determinant of the Gram matrix:

(x1,x1) (x1,x2) (x1,xn)
(x2,x1)  (x2,x2) (x2,xn)

S = TR e I
(e xl) (e x2) ... (xmxm)

The specialty of this matrix is that the time dimension is encoded into the geometry of
the matrix. As the position moves from the top-left to the bottom-right, time increases as
well. Since the time series is scaled, we can compute pairwise dot products and store them
in the Gram matrix. Time series are also cosines, so the Gram matrix follows a Gaussian
distribution as well. The resulting image is also noisy as a result of this. If we extract the
dataset in the form of data frames, then each row in the data frame will produce one Gram
matrix, which is shown in Figure 2 for the WESAD dataset where the GAF image for each
identification label is shown. Similar work has been performed for the SWELL dataset,
which is shown in Figure 3, but the number of stress labels is three as compared to the
WESAD dataset which has four.
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Figure 2. Illustration of random GAF images transformed from the normalized WESAD dataset:
(a) level 0 (Meditation), (b) level 1 (Baseline), (c) level 2 (Stress) (d) level 3 (Amusement).

0 - 0 15 20 5 X2

Figure 3. Illustration of random GAF images transformed from the normalized SWELL dataset:
(a) level 0 (No Stress), (b) level 1 (Time Pressure), (c) level 2 (Interruption).
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3. Datasets Used

For the experiment, two time series datasets were tried and tested by encoding them
to time series images and normalizing them before passing the images to a convolutional
neural network. The first dataset is the publicly available WESAD. This multimodal dataset
features physiological and motion data, recorded from both a wrist- and a chest-worn
device, of 15 subjects during a lab study. The following experiment was conducted on the
chest data. Therefore, the following sensor modalities which are particularly related to the
chest, three-axis acceleration (ACC), electrocardiogram (ECG), body temperature (TEMP),
respiration (RESP), electrodermal activity (EDA), electromyogram (EMG), were considered
and extracted from the dataset.

The second time series dataset called the SWELL dataset [2] was collected by re-
searchers at the Institute for Computing and Information Sciences at Radboud University.
The experiment (related to the SWELL dataset) was conducted on 25 people performing
normal work related to the office. Various data were collected including computer logging,
facial expression, body postures, ECG signal, and skin conductance, especially when the
people were receiving unexpected email interruptions and pressure to complete their work
on time.

4. Proposed Methodology

The main aim of the research paper is to propose a new and promising technique
for stress detection using CNN and encoding the multivariate time series dataset to GAF
images after correctly pre-processing the dataset followed by necessary transformation as
well as normalization. In the case of the WESAD dataset, the chest data of an individual
among different subjects for which the data have been recorded were taken and extracted
and converted to data frames, keeping chest sensor keys as the columns, and the labels
were taken separately from the data frames. The labels consist of the stress level ranging
from ‘0’ to “3’. For the SWELL dataset, the data of computer logging, facial expression,
body postures, ECG signal, and skin conductance of an individual among 25 different
subjects were taken, extracted, and converted to data frames, and labels were taken sep-
arately. The labels are the stress identification labels ranging from ‘0" (No Stress) to "2’
(Maximum Stress).

4.1. Extracting Dataset and Normalization

The data are grouped based on labels with data whose stress levels are ‘0’, and are
kept together as well for stress levels ‘1’, 2, and ‘3’. The data are arranged on the ba-
sis explained before and after the last 10,000 data points are taken from each group for
4-class classification using a CNN model after encoding them to GAF Images. The data
are the normalized first quantile. Numerical input variables may have a highly skewed or
non-standard distribution, which may be caused by outliers in the data, multimodal distri-
butions, or highly exponential distributions. Many machine learning algorithms perform
better when numerical input variables and output variables in the case of regression have a
standard probability distribution, especially a Gaussian (normal) or uniform distribution.
This is why quantile normalization is so useful. Firstly, we sort each column independently.
The average of each computation is computed where each row is in ascending order. Finally,
the row average values which are also the mean quantiles are replaced with the raw data in
the right order.

4.2. Encoding Dataset to Time Series Images

After extraction and normalization, the whole dataset (which is the part of the actual
data which we took for the training process) was converted to GAF images. Figure 4
illustrates the GAF image for 100 rows of normalized WESAD and SWELL datasets in the
form of a 10 x 10 square matrix. From Figure 4, it seems like the image encoding for the
SWELL dataset is different from that encoded for the WESAD dataset, since the colour
instance map has been changed to a rainbow in this case.
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Figure 4. Illustration of the GAF image for 100 rows of normalized (a) WESAD and (b) SWELL
datasets in the form of a 10 x 10 square matrix.

4.3. Creating the CNN Model

Further normalization is required for passing the data to the CNN. The time series
matrix computed for all the rows taken for the experiment was reshaped and all the labels
were converted to a class matrix of binary digits. The CNN model was finally created for
training the data after splitting them into training and testing data with a ratio of 3:2.

Figure 5 describes our proposed custom-built CNN model which was formed with
3 convolutional layers with an activation function set to ReLU (Rectified Linear Activation
function) with 3 x 3 kernel size and 64 filters followed by the application of the Batch
Normalization technique. It normalizes the contribution to a layer for every mini-batch
of data. A detailed version of the model is also shown in Table 1, describing the layers of
the custom-built CNN model. After the convolutional layers, a pooling layer is present for
selecting the maximum values in the receptive fields of the input. After saving the indices
it produces a summarized output volume. Finally, two dense layers were created with an
activation function set to Softmax for multi-class classification purposes, which is a 4-class
classification in the case of the WESAD dataset and a 3-class classification in the case of the
SWELL dataset.

Table 1. Overview of the customized CNN architecture used in the present work.

Layer (Type) Activation Function Output Shape Parameters
Conv2D1 ReLU (None,6,6,64) 640
Batch Normalization - (None,6,6,64) 256
Conv 2D 2 ReLU (None,4,4,64) 36,928
Batch Normalization - (None,4,4,64) 256
Conv 2D 2 ReLU (None,2,2,64) 36,928
Batch Normalization - (None,2,2,64) 256
Max Pooling Layer - (None,1,1,64) 0
Flatten - (None,64) 0
Dense Layer 1 - (None,6) 390
Output Dense Layer Softmax (None,4) 28

It is to be noted from Table 1 that in the case of the SWELL dataset, the output layer is 3,

which is 4 in the case of the WESAD dataset for final stress detection.
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Softmax(4 X 1)

Fully Connected Layer(6 X 1)

T

Max Pooling Layer(1 X 1 X 64)
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Conv2D (2 X 2 X 64)
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Figure 5. Illustration of the proposed custom-built CNN architecture with 4 output classes for the
WESAD dataset and 3 in the case of the SWELL dataset.

5. Results and Discussion

The following experiment was performed using DELL Laptop Inspiron 15 5518 with
16 GB memory and 8 GB Random Access Memory (RAM) with an 11th Gen Intel Core
processor. An Ubuntu 22.04 1 LTS 64-bit operating system was used and the entire source
code for this experiment was written with the help of a jupyter notebook. Before calculating
training and testing accuracies attained by the proposed image-encoding-based deep neural
network, we also take note of the four evaluation metrices, accuracy, precision, recall, and
F1 score, used in the present work. They are defined below as follows:

Accuracy of a model is defined as the fraction of the total number of correct predictions
divided by the total number of predictions being made by our model. It helps in evaluating
the performance of the model being used for classification in this regard.

Total Number of Correct Predictions
Total Number of Predictions

Accruacy = x 100% (4)

Precision detects the correctness of the proportion of identifications in a model [27].
Xp
Xp +Y,

Precision =

©)

where x, and y,, are the numbers of true positives, and false positives are classified by
the model.

Recall detects the correctness of the proportion of actual positives being correctly
identified by the model [27].
*p

Xp +yn

Recall =

(6)



Biosensors 2022, 12, 1153

9of 15

where y, is the number false negatives being classified by the model.

The F1 score is a measure of model accuracy on a dataset which is also used to evaluate
binary classification systems [28].

It can be represented by the formula

2 )

F1 score = T

1
Precision + Recall

5.1. WESAD Dataset

In the case of the WESAD dataset, the experiment was conducted to predict the stress
level of an individual ranging from 0 (Baseline) to 3 (Amusement). After training for
around 100 epochs, a promising training accuracy of 99.48% and testing accuracy of 94.77%
was achieved. The confusion matrix produced by the proposed image-encoding-based
deep neural network model for the WESAD dataset is shown in Figure 6, where the X-axis
represents the predicted labels and the Y-axis shows the actual labels of the data. Table 2
shows the stress-wise performance of the proposed model for the WESAD dataset, which
displays the accuracy, precision, recall, and F1 score for each stress identification label along
with the average of all the individual stress-wise performances. Figures 7 and 8 illustrate
the variation in the loss function and classification accuracy with respect to the number
of epochs, respectively. It can be examined from Figures 7 and 8 that the graphs plotted
for loss function decrease drastically, whereas the classification accuracy increases as the
model is trained for a greater number of epochs. The results also confirm that encoding
a multivariate time series dataset to its corresponding image provides more enhanced
accuracy as compared to other related works without the application of encoding time
series images.

. -0.20
2 . -0.15
L
s
2 -0.10
:(’N

-0.05

m

Predicted Labels

Figure 6. Confusion matrix generated by the proposed image-encoding-based deep neural network
for the WESAD dataset where the percentage of data are being displayed in each quadrant.

Table 2. Performance of our proposed image-encoding-based deep neural network model for class-
wise accuracy of WESAD dataset with different stress levels.

Stress Level Accuracy Precision Recall F1 Score
Meditation (0) 94.55% 0.92 0.95 0.93
Baseline (1) 95.15% 0.97 0.95 0.96
Stress (2) 97.06% 0.95 0.97 0.96
Amusement (3) 92.36% 0.95 0.92 0.94

Average 94.77% 0.95 0.95 0.95
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Figure 7. Graph showing the plot of the loss function with several epochs in the x-axis and its
corresponding losses in the y-axis.
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Figure 8. Graph showing the accuracy vs. the number of epochs with the X-axis as epochs and the
Y-axis as its corresponding accuracies.

5.2. SWELL Dataset

For further clarification, another dataset called the SWELL dataset was also extracted,
normalized, and encoded to GAF images following a similar procedure as was performed
in the case of the WESAD dataset trained with the help of the same model, which also
produced a training accuracy of 99.49% and testing accuracy of over 99.39%. The results are
more promising as compared to the results obtained from any other related works which
involve converting the time series to a spectrogram. This is disadvantageous, since in a
spectrogram it matters where an effect appears, in contrast to CNNs where it is assumed
that a feature is of the same kind irrespective of its location. The confusion matrix produced
by the proposed image-encoding-based deep neural network model for the WESAD dataset
is shown in Figure 9, where the X-axis represents the predicted labels and the Y-axis shows
the actual labels of the data. Table 3 shows the stress-wise performance of the proposed
model for the SWELL dataset, which displays the accuracy, precision, recall and F1 score
for each stress identification label along with the average of all the individual stress-wise
performances. It can be observed form Table 3 that the F1 score for the SWELL dataset is
found to be more than that of the WESAD dataset. Since the length of the SWELL dataset is
considerably small with respect to the WESAD dataset, the proposed deep neural network
is performing better in this regard. In the case of a larger dataset, the time taken for the
collection of data is more, which also causes the battery of the RespiBAN device being used
for data collection to drain out more as compared to a smaller dataset. This in turn affects
the classification accuracy with which the data are being collected.
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Figure 9. Confusion matrix generated by the proposed image-encoding-based deep neural network
for the SWELL dataset where the percentage of data are being represented in each quadrant.

Table 3. Performance of our proposed model for class-wise accuracy of SWELL dataset with different
stress levels.

Stress Level Accuracy Precision Recall F1 Score
No Stress (0) 99.84% 0.99 1.00 1.00
Time Pressure (1) 99.20% 1.00 0.99 0.99
Interruption (2) 99.14% 1.00 0.99 0.99
Average 99.39% 0.99 0.99 0.99

5.3. Summarization of Results

After performing the experiment on the two benchmark datasets and calculating
individual class-wise accuracy as well as their F1 score, precision, and recall, we took
the average of all the classes and displayed them in Table 4. It can be seen from Table 4
that the proposed image-encoding-based deep neural network produces classification
accuracies of 94.77% and 99.39% for the WESAD and SWELL datasets, respectively. For
the SWELL dataset, the length of data is small compared to the WESAD dataset, and it
took a significantly smaller number of epochs to train the model, for which the plot of loss
function versus epoch size and accuracy versus epoch size are not necessary in that case,
since the number of epochs would be negligible as compared to the WESAD dataset.

Table 4. Overall performance results attained by the proposed image-encoding-based deep neural
network on both WESAD and SWELL datasets.

Dataset Training Accuracy  Testing Accuracy F1 Score Precision Recall
WESAD 99.43% 94.77% 0.95 0.95 0.95
SWELL 99.50% 99.39% 0.99 0.99 0.99

5.4. Comparison with Existing Stress Recognition Models

Tables 5 and 6 show the comparison of the classification accuracy of our proposed
work with respect to the accuracy obtained in previous works for WESAD and SWELL
datasets, respectively. It is observed from Tables 5 and 6 that the overall mental classi-
fication performance is found to be very promising as compared to previous research
works being conducting on both the datasets for the multi-stress classification problem.
The work performed in the year 2021 on the WESAD dataset by Sah et al. [16] achieved
a promising accuracy of about 92.85% using CNN. Other works using the RNN model
for stress classification include that by Melchiades et al. [14] in 2022, which achieved an
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accuracy of 86% for the WESAD dataset, whereas Bobade et al. [4] describe machine
learning techniques for stress detection, achieving an accuracy of 84.32% in the year
2020. It is to be noted that all of the abovementioned works have reported their accu-
racies for multi-class classification. There are also some promising research works which
have been conducted for the SWELL dataset, including that by Sharma et al. [19], achiev-
ing an accuracy of 98% in 2019 using the Internet of Things (IoT) Environment, and
Ragav et al. [20], attaining an accuracy of 90.38% using Bayesian neural network in 2020.
The authors of [29] used machine learning techniques for identifying stress, which was
very promising, and the authors of [30] successfully used a tiled convolutional neural
network after encoding time series images for stress recognition. Hatami et al. [31],
Chen et al. [32], and Xu et al. [33] also conducted experiments on deep convolutional
neural networks in their experiments with the help of time series images and achieved
promising results in their proposed work. Bragin et al. [34] successfully revealed the usage
of GAF conversion of EEG signals in their experiments as well. The work conducted by
Walambe et al. [35] used a multimodal framework for stress detection and achieved a
promising accuracy of 96.09% for the SWELL dataset in 2021. Han et al. [36] successfully
used the application of GAF images in their experiment to introduce a new Bearing Fault
Diagnosis Method, which is not related to stress recognition, but showed a promising
approach to using GAF images and their implementation which certainly helped us to un-
derstand more about time series images in this regard. The authors of [37] successfully intro-
duced a hierarchical deep neural network for mental stress state detection using IoT-based
biomarkers. The authors of [38,39] also performed promising work on developing deep neu-
ral networks for stress recognition by using data being collected from wearable sensors. The
authors of [40] identified biomarkers for accurate detection of stress in their research work.
Igbal et al. [41] successfully analysed biophysiological responses of stress for wearable sen-
sors in connected health in their research work. Mohammadi et al. [42] used a supervised
algorithm for stress recognition which achieved a promising accuracy of 94.4 &+ 2.5%.

Table 5. Comparison of our proposed image encoding-based deep neural network model with
previously proposed works related to WESAD dataset.

Research Work [Ref.] Model Used Year of Publication Testing Accuracy
Machine learning techniques
Stress Detection with Machine Learning (K-Nearest Neighbour, Linear
and Deep Learning using Multimodal Discriminant Analysis, Random 2020 84.32%

Physiological Data. [4]

Forest, Decision Tree, AdaBoost, and
Kernel Support Vector Machine)

Stress Classification and Personalization:
Getting the most out of the least. [16]

CNN 2021 92.85%

A New Physiology-based Objective Mental
Stress Detection Technique with Reduced

Machine learning techniques

Feature Set and Class Imbalanced Dataset (Random.Forest Classifier, 2021 97.08%
Randomized Tree (ERT))
Management. [17]
MoStress: a Sequence Model for Stress RNN 2022 86%

Classification. [14]

Semi-Supervised Generative Adversarial

Semi-supervised learning

Network for Stress Detection Using 2022 90.31%
Partially Labeled Physiological Data. [43] (SSL) model
achine g modls o i onger AFOica ntelligemce (AD mocls,
s Supervised Multi-Layer 2022 88.89%

learning capabilities for stress detection
using heart rate [44]

Perceptron (MLP)

Proposed work

CNN using GAF images 2022 94.8%
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Table 6. Comparison of our proposed image encoding-based deep neural network model with
previously proposed works related to SWELL dataset.

Research Work

Model Used Year of Publication Testing Accuracy

Stress Detection Using Machine Learning

Machine learning methods along

Classifiers in Internet of Things with ToT and cloud computing 2019 98%
Environment [19]
Bayesian active learning for wearable stress ~ Bayesian neural network technique 2020 90.38%%
and affect detection [20] using Monte-Carlo Dropout o
Employing Multimodal Machine Learning .14 odal framework based on Al 2021 96.09%
for Stress Detection [35]
Proposed work CNN using GAF images 2022 99.39%

6. Conclusions and Future Works

This research paper proposes an image-encoding-based deep neural network model
for the classification of mental stress of an individual. The experiment was conducted after
thoroughly understanding the format and structure of the publicly available multimodal
WESAD dataset as well as the SWELL dataset. While experimenting, various other related
works regarding the WESAD and the SWELL datasets were also inspected, along with
their training as well as testing accuracies. The proposed work introduces a new method of
human stress detection using deep learning methods and in no way underestimates other
efforts or related works which have been conducted with the same dataset. The proposed
image-encoding-based deep neural network produces classification accuracies of 94.77%
and 99.39% for WESAD and SWELL datasets, respectively, which is quite impressive. The
proposed model is also found to surpass most of the previous work performed on mental
stress detection. Further work will include improving the CNN model by introducing
more layers.

The proposed work was performed considering only the chest data of the WESAD
dataset. In the future, wrist data will be taken into consideration, and in addition the model
will also be tested for other subjects whose data have been recorded both in terms of the
chest and wrist. It is also being planned to apply an attention-based mechanism in the
CNN model, which is currently being experimented with for a better and more promising
result. The proposed work has performed better as compared to the accuracies achieved
by some of the previous research works, which also introduces a new method of stress
detection by plotting the bio-signals into images after collecting the data in the form of time
series and extracting them properly, followed by required normalization.

For the SWELL dataset the quantity is much less as compared to the WESAD dataset,
so it took a smaller number of epochs to train it properly, for which we could not plot the
loss function and accuracy due to the smaller number of epochs. In the future, we intend
to develop a considerably larger wearable sensor dataset mainly for huge training of our
model and evaluate the performance after training. We mainly used a custom-built CNN
model for this experiment, but we can also use an attention layer mechanism in this model
to make the model better, thereby enhancing the overall performance. An attention layer
will be used in order to focus more on some of the selected layers of the model, thereby
ignoring others. With an attention mechanism, all the hidden layers will be retained and
used during the decoding process. However, the experiment can also be performed with
the help of other well-known image encoding methods such as Markov Transition Field
and Recurrence Plot before training with the help of a deep neural network.
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