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Abstract: Transition metal oxide (TMO)-based nanomaterials are effectively utilized to fabricate
clinically useful ultra-sensitive sensors. Different nanostructured nanomaterials of TMO have at-
tracted a lot of interest from researchers for diverse applications. Herein, we utilized a hydrothermal
method to develop porous nanosheets of cobalt oxide. This synthesis method is simple and low
temperature-based. The morphology of the porous nanosheets like cobalt oxide was investigated in
detail using FESEM and TEM. The morphological investigation confirmed the successful formation of
the porous nanosheet-like nanostructure. The crystal characteristic of porous cobalt oxide nanosheets
was evaluated by XRD analysis, which confirmed the crystallinity of as-synthesized cobalt oxide
nanosheets. The uric acid sensor fabrication involves the fixing of porous cobalt oxide nanosheets
onto the GCE (glassy carbon electrode). The non-enzymatic electrochemical sensing was measured
using CV and DPV analysis. The application of DPV technique during electrochemical testing for
uric acid resulted in ultra-high sensitivity (3566.5 µAmM−1cm−2), which is ~7.58 times better than
CV-based sensitivity (470.4 µAmM−1cm−2). Additionally, uric acid sensors were tested for their se-
lectivity and storage ability. The applicability of the uric acid sensors was tested in the serum sample
through standard addition and recovery of known uric acid concentration. This ultrasensitive nature
of porous cobalt oxide nanosheets could be utilized to realize the sensing of other biomolecules.

Keywords: cobalt oxide; porous; nanosheets; uric acid; electrochemical; non-enzymatic;
ultra-sensitive; sensor

1. Introduction

Uric acid (UA) plays an important role in various biological processes and physio-
logical functions in humans and higher species [1]. Bodily fluids (i.e., serum, urine, and
saliva) contain UA. Mainly, the liver and intestines are the primary sites of UA production.
However, the majority of UA is removed by urate transporters in the kidneys and intestines.
Unusually low, excessive, or variable UA concentration is an indicator of various diseases
(i.e., pneumonia, gout, leukemia, type 2 diabetes, chronic renal diseases, toxemia during
pregnancy, multiple sclerosis, metabolic disorders, and hypertension) [2–5]. Therefore,
monitoring UA concentration becomes crucial for early disease diagnosis since UA acts as
a diagnostic marker for UA-concentration associate diseases.
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Several standard analytical methods (i.e., flow-injection analysis, chromatography,
HPLC, chemiluminescence, mass spectrometry, colorimetry, capillary electrophoresis-
amperometry, and enzyme test kits) are utilized to determine UA concentration [6–10].
However, complex sample preparation, high cost, slow preparation, and skilled technician
requirements are the major drawbacks of the above-mentioned analytical methods [11].
On the other hand, electrochemical-based sensors have the potential for rapid detection
and offer high-sensing performance during biomolecules detection [8–10,12–14]. Recently,
considerable attention has been given to electrochemical-based UA sensors due to their
high selectivity, accuracy, less interference, and low-cost [15–20].

There are two types of electrodes (i.e., metal-based and carbon-based electrodes)
that are mostly used in electrochemical sensor fabrication. The carbon-based electrodes
(i.e., glassy carbon, screen-printed, and carbon-paste electrodes) are the preferred working
electrodes due to the minimum over potential requirement compared to the metal-based
electrodes [19]. Due to their low costs and ease of preparation, the carbon-based electrodes
have been extensively used in electrochemical sensing applications. These conventional
bare electrodes are not preferred due to their weak electrochemical oxidation kinetics [20].
Hence, nanomaterial/electrocatalyst (as redox dynamic site) modification is needed to
improve the electrochemical oxidation kinetics of the bare electrodes [21]. The choice of
nanomaterial/electrocatalyst modifiers (for example, metals/metal oxides or carbon-based
nanomaterials) depends on the type of the electrode and analytical requirements.

The improved electro-catalytic activity and charge transfer capabilities of metal/metal
oxide have attracted considerable interest for their applications in electrode modifica-
tions [15–27]. Among different metal oxides, cobalt oxide nanomaterials have been utilized
to fabricate enzymatic/non-enzymatic sensors where the use of cobalt oxide nanostructures
enhances the desired electrochemical properties [23–29]. Different methods (i.e., thermal de-
composition, sol-gel, surfactant-mediated synthesis, spray-pyrolysis, and polymer-matrix
assisted) are utilized for the synthesis of various kinds of cobalt oxide nanostructures.
Recently, cobalt oxide has attained interest for different applications (i.e., heterogeneous
catalysis, lithium-ion batteries, gas sensing, electrochemical sensors, and solar cells). Cobalt
oxide nanostructures are the preferred material to modify the electrode, which offers
abundant active sites for reaction and easy adsorption/electroactive species diffusion [24].
Hence, cobalt oxide nanostructures modified sensor electrodes are suitable for the detection
of different analytes. For example, Nagal et al. described the use of nano berry-like cobalt
oxide nanostructures for the electrochemical-based enzyme-less uric acid sensor [24]. Kogu-
larasu et al. investigated the impact of cobalt oxide polyhedrons to develop an enzyme-free
biosensor detect H2O2 [25]. Zhang and Liu utilized cobalt oxide nanosheets for enzyme-free
detection of glucose [26]. Kang et al. utilized cobalt oxide nanowires for the fabrication
of an enzyme-less glucose sensor [27]. Mondal et al. fabricated glucose sensors using dif-
ferent nanostructures (like spherical nanoparticles, porous nanorods, and nanoflowers) of
cobalt oxide [28]. Chang et al. evaluated the electrochemical sensing performance of lactic
acid using cobalt oxide nanostructures [29]. Therefore, there is a demand for designing
cobalt oxide nanostructures having excellent surface area, which can be utilized to fabricate
high-performance sensors.

In this work, we demonstrated the synthesis of porous cobalt oxide nanosheets using
a simple and low-temperature-based hydrothermal method. The porous cobalt oxide
nanosheets were comprehensively characterized using XRD, FE-SEM, and TEM. The elec-
trochemical properties of porous cobalt oxide nanosheet-based non-enzymatic UA sensors
were studied by cyclic voltammetry (CV), EIS (electrochemical-impedance-spectroscopy),
and DPV (differential-pulse voltammetry). The porous cobalt oxide nanosheets-based
non-enzymatic UA sensor exhibited ultra-high sensitivity (3566.5 µAmM−1cm−2) when
analyzed with the DPV technique. Additionally, selectivity, stability, and applicabil-
ity in serum samples were evaluated. This porous cobalt oxide nanosheet-based non-
enzymatic UA sensor offers better sensitivity when compared to CV-measured sensitivity
(470.4 µAmM−1cm−2).
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2. Materials and Methods
2.1. Chemicals

All analytical chemicals were obtained from Sigma Aldrich and used. Cobalt nitrate
hexahydrate (≥99.99%; Co(NO3)2.6H2O), sodium hydroxide pellets (≥97%; NaOH), potas-
sium chloride (KCl), uric acid (≥99%), ethylene glycol (99.8%), sodium chloride (NaCl),
potassium hexacyanoferrate [K3Fe(CN)6]3−/4− (≥99%), glucose, fructose, lactic acid, L-
cysteine, urea, phosphate buffer saline (PBS; pH = 7.4) solution, 2-(2-Butoxyethoxy)ethyl
acetate (≥99.2%), dopamine, and ascorbic acid were purchased. In our experiments, ultra-
pure water was utilized.

2.2. Porous Cobalt Oxide Nanosheets Synthesis

A simple low-cost hydrothermal process is used to synthesize porous cobalt oxide
nanosheets (Scheme 1). For synthesis, first, a precursor solution of Co(NO3)2.6H2O (0.58 g)
was prepared in 10 mL DI water, and then NaOH (0.2 g) solution was dropwise added
while vigorous stirring for 30 min to obtain a homogenous mixture. The prepared solution
was transferred into an autoclave vessel (Teflon-lined stainless steel) and put into a hot
air oven at 150 ◦C for 6h. On completion of the reaction, the autoclave was cooled down
and the powder sample was washed multiple times with DI and ethanol. Finally, the black
precipitate was dried (at 60 ◦C) and annealed (at 500 ◦C) for 3h before characterizing it in
detail.
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fabrication process, and measurement techniques used.

2.3. Sensor Fabrication

The porous cobalt oxide nanosheets-based non-enzymatic UA sensor was fabricated
using a conductive binder along with cobalt oxide nanosheets (Scheme 1). In brief,
a slurry of 0.01 g porous cobalt oxide nanosheets and 50 µL conductive binder (2-(2-
Butoxyethoxy)ethyl acetate) was prepared using mortar and pestle. The slurry was son-
icated for 10 min before fixing onto the working electrode surface. Different amounts of
slurry were fixed on the working electrode to optimize the most suitable amount of slurry,
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which gives the best sensing performance (for example, 4 µL was the optimized amount).
The porous cobalt oxide nanosheet-based sensor was dried at 60 ◦C for 6h and kept at room
temperature.

2.4. Materials Characterization and Electrochemical Analysis of Sensor

The FESEM (field-emission-scanning electron microscope; Zeiss, Sigma) was utilized to
analyze porous sheet-like cobalt oxide nanostructures morphology. The structural analysis
was examined using XRD (Rigaku), where Cu-Kα X-ray radiation (λ = 1.5418 Å), current
(30 mA), and voltage (40 kV) were used. A more detailed study of porous sheet-like cobalt
oxide nanostructures was characterized with TEM (TECNAI G20; accelerating voltage = 200
kV). The ASAP 2010 analyzer and Barrett-Joyner-Halenda (BJH) method were utilized for
nitrogen adsorption-desorption analysis (at 77 K) and pore size distribution determination,
respectively.

For the electrochemical measurements of the fabricated porous cobalt oxide nanosheets-
based non-enzymatic UA sensor, a compact and portable potentiostat/impedance analyzer
“PalmSens4” was used. The CV and EIS were used to evaluate the best-performing sensor
using the optimum amount of porous cobalt oxide nanosheets in a redox probe solution
([Fe(CN)6]3−/4−). During EIS measurement, frequency range and applied potential were
set to 0.01 Hz to 100 kHz and 0.25 V, respectively. The sensing performance of the fabricated
porous cobalt oxide nanosheet-based non-enzymatic UA sensor was evaluated using CV
and DPV techniques.

3. Results
3.1. Characterizations of Porous Cobalt Oxide Nanostructures

The surface morphology and crystallinity of as-synthesized cobalt oxide nanostructure
were characterized using FESEM, TEM, and XRD. Figure 1a–c displays the surface mor-
phology of the as-synthesized cobalt oxide nanostructure. The low-magnification images
of cobalt oxide nanostructures reveal that the synthesized nanomaterial is obtained in bulk
amounts with irregular shapes and sizes (Figure 1a,b). The high-magnification image shows
that cobalt oxide nanostructures bear porous sheet-like morphology (Figure 1c). Only the
surface morphology is smooth, with uniform pores present on the surface. Figure 2d shows
the XRD pattern of as-synthesized cobalt oxide nanomaterial. The XRD pattern confirms
the crystalline nature of nanomaterial, and the obtained pattern is well indexed (JCPDS
card no. 42-1467) [30]. The diffraction peaks of cobalt oxide are observed at 2T values
of 22.1◦, 31.1◦, 36.6◦, 38.1◦, 44.6◦, 55.4◦, 59.6◦, and 66.7◦, corresponding to the miller
indices of [111], [220], [311], [222], [400], [422], [511], and [440], respectively. The highest
intensity diffraction peak is seen along [311] lattice plane. To confirm the porosity, TEM
analysis of the porous cobalt oxide sheet-like nanostructure was done (Figure 2). The
TEM images show the porous sheet-like nanostructure of cobalt oxide. Additionally, the
SAED pattern (Figure 2c) of the porous cobalt oxide sheet-like nanostructure suggests the
crystal nature. These observations are supported by FESEM images. The surface area
and pore size of the porous cobalt oxide sheet-like nanostructure was analyzed using BET
(Brunauer-Emmett-Teller) analysis, shown in Figure 2d. The isotherm pattern indicates
the porous nature of nanomaterial. The obtained BET surface area of porous cobalt ox-
ide sheet-like nanostructure is around ~166 m2/g. A narrow pore size distribution from
3 to 7 nm was obtained with an average pore size of ~5 nm (Inset of Figure 2d). The high
surface area and small pore size of the porous cobalt oxide sheet-like nanostructure will
offer a better catalytic for electrochemical reactions.

3.2. Electrochemical Studies using CV and EIS Techniques

The electrochemical properties of bare GCE and cobalt oxide/GCE electrodes were
analyzed using EIS and CV techniques. The electron transfer reaction of bare GCE and
cobalt oxide/GCE electrodes for the redox probe solution of [Fe(CN)6]3−/4− with KCl
(0.1 M) determine the kinetic parameters (i.e., electron transfer rate and charge transfer
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resistance) (Figure 3). The EIS was carried out at 0.25 V in the frequency range of 0.01 Hz
to 100 kHz. Nyquist plots in Figure 3a show two frequency regions, one at a higher
and another at a lower frequency region. Cobalt oxide/GCE electrode showed a small
semicircle (at a higher frequency region) and a straight line (at a lower frequency region),
which suggests a perfect diffusion-controlled process during the electron transfer reaction.
The bare GCE electrode showed a higher charge transfer resistance (Rct) compared to the
modified GCE electrode. The bode plots of bare GCE and cobalt oxide/GCE electrodes are
illustrated in Figure 3b,c, respectively. It can be seen from these bode plot curves that the
modifying GCE with cobalt oxide decreased the interfacial impedance. Additionally, the
bode angle was decreased after GCE surface modification with cobalt oxide. The shift of
lower frequency peak for cobalt oxide modified GCE suggests the more prominent electron
transfer process compared to the bare GCE electrode [31].

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 14 
 

area and small pore size of the porous cobalt oxide sheet-like nanostructure will offer a 

better catalytic for electrochemical reactions. 

 

Figure 1. FESEM images at low- (a,b) and high- (c) magnifications and XRD analysis (d) of porous 

cobalt oxide nanostructure. 
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The CV data obtained for the bare GCE and cobalt oxide/GCE electrodes agree with the
EIS data. The CV response curves were recorded from −0.2V to + 0.8V (vs. Ag/AgCl) at a
fixed scan rate (50 mV/s) (Figure 4a). Clear redox peaks (i.e., oxidation and reduction peaks)
can be seen in the obtained CV response curves, where the cobalt oxide/GCE electrode
showed improved oxidation peak current value compared to bare GCE. Additionally, the
effect of scan rate on the cobalt oxide/GCE electrode’s electron transfer characteristics was
investigated by measuring CV response curves at different scan rates (i.e., 10–250 mV/s)
(Figure 4b). It can be seen from the CV curves that the oxidation and reduction peak current
values increase with the scan rate increase. The CV curve shape and the values of peak
potential separation indicate a diffusion-controlled process in the redox probe solution.
To verify the diffusion-controlled process over the cobalt oxide/GCE electrode, a plot of
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current peak vs. square root of scan rate is plotted in Figure 4c. A perfect linear relationship
was observed between the square root of the scan rate and the value of the peak current.
This further confirms the diffusion-controlled process over the surface of the modified
electrode [32–34].
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Figure 3. EIS spectra of bare GCE and cobalt oxide/GCE electrodes recorded in the redox probe
solution of [Fe(CN)6]3−/4− with KCl (0.1 M) “as supporting electrolyte”. (a) Nyquist plots of bare
GCE (black line) and cobalt oxide/GCE (red line) electrodes and their respective Bode plots (b,c).
Inset a shows the Randle circuit.



Biosensors 2022, 12, 1140 7 of 13

Biosensors 2022, 12, x FOR PEER REVIEW 7 of 14 
 

at a fixed scan rate (50 mV/s) (Figure 4a). Clear redox peaks (i.e., oxidation and reduction 

peaks) can be seen in the obtained CV response curves, where the cobalt oxide/GCE elec-

trode showed improved oxidation peak current value compared to bare GCE. Addition-

ally, the effect of scan rate on the cobalt oxide/GCE electrode’s electron transfer character-

istics was investigated by measuring CV response curves at different scan rates (i.e., 10–

250 mV/s) (Figure 4b). It can be seen from the CV curves that the oxidation and reduction 

peak current values increase with the scan rate increase. The CV curve shape and the 

values of peak potential separation indicate a diffusion-controlled process in the redox 

probe solution. To verify the diffusion-controlled process over the cobalt oxide/GCE elec-

trode, a plot of current peak vs. square root of scan rate is plotted in Figure 4c. A perfect 

linear relationship was observed between the square root of the scan rate and the value of 

the peak current. This further confirms the diffusion-controlled process over the surface 

of the modified electrode [32–34]. 

 

Figure 3. EIS spectra of bare GCE and cobalt oxide/GCE electrodes recorded in the redox probe 

solution of [Fe(CN)6]3−/4− with KCl (0.1 M) “as supporting electrolyte”. (a) Nyquist plots of bare GCE 

(black line) and cobalt oxide/GCE (red line) electrodes and their respective Bode plots (b and c). 

Inset a shows the Randle circuit. 

 
Figure 4. (a) CV response curves of bare GCE and cobalt oxide/GCE electrodes recorded in the redox 

probe solution of [Fe(CN)6]3−/4− with KCl (0.1 M) “as supporting electrolyte”. The CV curves were 

measured at the fixed scan rate (50 mV/s). (b) CV analysis of cobalt oxide/GCE electrode at varying 

scan rates and respective calibration plot (c). In figure c, the arrow shows the scan rate increasing 

direction from 10 mV/s to 250 mV/s. 

3.3. Sensing Performance Characterization using CV Technique 

The response of the cobalt oxide/GCE sensor was characterized towards uric acid 

before a detailed analysis of sensing performance. The CV analysis of the cobalt ox-

ide/GCE sensor was performed in PBS without and with uric acid (10 µM) at 50 mV/s 

(Figure 5a). When CV analysis was done in PBS, there was no noticeable peak in the CV 

curve. However, in 10 µM uric acid, a noticeable peak of uric acid oxidation was present 

at 0.6 voltage. The possible and most accepted detection mechanism for uric acid oxidation 

involves the transfer of two-electron/two-proton, which enhances the response during 

sensing measurement (Scheme 2) [35–37]. Additionally, the porous nature of nanosheets 

Figure 4. (a) CV response curves of bare GCE and cobalt oxide/GCE electrodes recorded in the redox
probe solution of [Fe(CN)6]3−/4− with KCl (0.1 M) “as supporting electrolyte”. The CV curves were
measured at the fixed scan rate (50 mV/s). (b) CV analysis of cobalt oxide/GCE electrode at varying
scan rates and respective calibration plot (c). In figure (c), the arrow shows the scan rate increasing
direction from 10 mV/s to 250 mV/s.

3.3. Sensing Performance Characterization using CV Technique

The response of the cobalt oxide/GCE sensor was characterized towards uric acid
before a detailed analysis of sensing performance. The CV analysis of the cobalt oxide/GCE
sensor was performed in PBS without and with uric acid (10 µM) at 50 mV/s (Figure 5a).
When CV analysis was done in PBS, there was no noticeable peak in the CV curve. However,
in 10 µM uric acid, a noticeable peak of uric acid oxidation was present at 0.6 voltage.
The possible and most accepted detection mechanism for uric acid oxidation involves
the transfer of two-electron/two-proton, which enhances the response during sensing
measurement (Scheme 2) [35–37]. Additionally, the porous nature of nanosheets provided
abundant catalytic sites due to the large surface area. Moreover, cobalt oxide is a p-type
semiconductor, which could provide excess hole concentration and help to capture the
electrons during uric acid oxidation. Also, we observed the irreversible oxidation peak in
the CV curve that indicated swift electron transfer between the GCE and porous cobalt
oxide during the electrochemical detection of uric acid.
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Figure 5. (a) CV response curves recorded for cobalt oxide/GCE electrode in PBS without and with
uric acid (10 µM) at 50 mV/s, (b) CV responses of cobalt oxide/GCE electrode with increasing
uric acid concentrations (0−2500 µM), and (c) plot of current response vs. uric acid concentration
showing linear and non−linear regions. Inset b shows the magnified CV response curves for low-
concentration uric acid. Inset c shows the calibration plot of the linear region (i.e., response vs. uric
acid concentration).

To evaluate the sensing performance (i.e., sensitivity, detection range, and detection
limit), the CV response curves of the cobalt oxide/GCE sensor were measured with increas-
ing concentrations of uric acid (0–2500 µM) as shown in Figure 5b. In this figure, the CV
curves showed an increase in current with increasing uric acid concentration. A graph of
peak current (µA) vs. uric acid concentration (µM) was drawn (Figure 5c). From this graph,
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two regions (linear and non-linear) can be seen. In general, the non-linear region signifies
the saturation of the current response of the cobalt oxide/GCE sensor on those uric acid
concentrations (i.e., high uric acid concentration). Further, the linear region of the sensor
response is taken and a calibration plot (peak current (µA) vs. uric acid concentration (µM)
is plotted, shown in the inset of Figure 4c. The sensor responded linearly up to 1000 µM
of uric concentration (regression coefficient (R2) = 0.9978). From the slope, we calculated
the sensitivity of 470.4 µAmM−1cm−2 [38]. Additionally, based on the S/N ratio = 3, the
detection limit was calculated to be 10 µM. The obtained sensitivity, linear range, and
detection limit were comparatively better than most of the previously reported literature
(Table 1). The good sensing performance is due to high surface-to-volume ratio and the
presence of large active sites on as-synthesised porous nanosheets like nanomaterial.
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Table 1. Sensing performance comparison with previous reports based on electrochemical studies.

Modified Electrode Method of Detection Sensitivity
(µAcm−2mM−1) Linear range (µM) Detection limit (µM) Ref.

g-C3N4 NSs/GCE DPV - 100–1000 4.5 [11]

Co3O4 nanoberries/GCE CV 206 5–3000 ~2.4 [24]

Co3O4 nanostructures/GCE CV - 500–530 100 [30]

Ag-Fe2O3@PANI DPV 128.29 0.001–0.900 0.000102 [39]

Nafion/Uricase/ZnO/Au Amperometry 89.74 100–590 25.6 [40]

Cu2O/ferrocene/uricase/GCE DPV 1.9 0.1–1000 0.0596 [41]

Fe3O4@SiO2/MWCNT SWV 0.303 0.60–100 0.13 [42]

Uricase/PPD/PrB-SPCE CV 4.9 50–1000 18.7 [43]

ITO-rGO-AuNPs LSV 0.31 10–500 3.6 [44]

PrGO/PB 100/GCE CV - 40–415 8.0 [45]

ZIF-11/GCE DPV 174 20–540 0.48 [46]

Co3O4 porous NSs/GCE CV 470.4 0–1000 10 This work

Co3O4 porous NSs/GCE DPV 3566.5 0–800 12 This work

Abbreviations: Co3O4, cobalt oxide; GCE, glassy carbon electrode; CV, cyclic voltammetry; Ag, silver; Fe2O3,
iron oxide; PANI, polyaniline; DPV, differential pulse voltammetry; ZnO, zinc oxide; Au, gold; CVD, chemical
vapour deposition; Cu2O, cuprous oxide; SiO2, silicon dioxide; MWCNT, multiwalled carbon nanotubes; SWV,
square-wave voltammetry; PPD, p-phenylenediamine; PrB, Prussian blue; SPCE, screen-printed-carbon-electrode;
ITO, indium-doped tin oxide; rGO, reduced graphene oxide; NPs, nanoparticles; LSV, linear-sweep voltammetry,
ZIF-11, zeolite imidazole framework; g-C3N4, graphitic-like carbon nitride; NSs, nanosheets.
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3.4. Sensing Performance Characterization using DPV Technique

The DPV technique is more sensitive than CV due to the minimization of capacitive
current. For this reason, we utilized the DPV technique to evaluate the sensing perfor-
mance of the cobalt oxide/GCE sensor. Initially, the electrochemical behavior of the cobalt
oxide/GCE sensor was measured. Figure 6a shows DPV curves obtained in PBS buffer
(pH 7.4) without and with 10 µM uric acid. The appearance of the uric acid oxidation
peak at 0.45 potential (vs. Ag/AgCl), compared to the DPV curve recorded in PBS buffer
solution, indicated the sensitivity nature of the cobalt oxide/GCE sensor towards uric acid.
Additionally, when measuring CV response (as shown in Figure 5a), it was seen that uric
acid oxidation is an irreversible process.
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Figure 6. (a) DPV response curves recorded for cobalt oxide/GCE sensor in PBS without and
with uric acid (10 µM), (b) DPV responses of cobalt oxide/GCE electrode with increasing uric acid
concentrations (0–2500 µM), and (c) plot of current response vs. uric acid concentration showing linear
and non-linear regions. Inset b shows the magnified DPV response curves for low-concentration uric
acid. Inset c shows the calibration plot of the linear region (i.e., response vs. uric acid concentration).

Then, DPV was performed with increasing uric acid concentration (up to 2500 µM) in
PBS buffer. The obtained DPV curves are shown in Figure 6b, where an increase in current
can be seen with increased uric acid concentration. A plot of peak current (µA) vs. uric
acid concentration (µM) is shown in Figure 6c along with the calibrated plot of the linear
range of the sensor in the inset. The cobalt oxide/GCE sensor showed a linear range of
up to 800 µM uric acid concentration with R2 of 0.9929. However, the current level was
decreased at a higher uric acid concentration due to the saturation of electrocatalysis of
uric acid on the electrode surface. The sensitivity of the cobalt oxide/GCE sensor was
calculated by using the standard equation of slope of the calibrated plot/working electrode
surface area. The sensor showed the highest sensitivity of 3566.5 µAmM−1cm−2. The limit
of detection was 12 µM. The achieved sensing performance results are shown in Table 1.
As shown in Table 1, the cobalt oxide/GCE sensor showed ultra-high sensitivity compared
to previously reported literature [11,24,30,39–46]. Furthermore, the DPV technique showed
~7.58 times high sensitivity (3566.5 µAmM−1cm−2) compared to CV’s measured sensitivity
(470.4 µAmM−1cm−2). These results confirmed the fact that DPV is a more sensitive tech-
nique as compared to CV. However, the main reason for getting high sensing performance
is attributed to large active sites and the surface-to-volume ratio of as-synthesised porous
nanosheets like nanomaterial.

3.5. Interference and Stability Tests of Cobalt Oxide/GCE Sensor

We investigated the selectivity of the cobalt oxide/GCE sensor for uric acid detection
in the presence of possible interferences. Eight possible interfering species, including lactic
acid, L-cysteine, glucose, urea, fructose, sodium chloride, and potassium chloride, were
taken for the selectivity study. Figure 7a illustrates CV curves for 25 µM uric acid only and
25 µM uric acid and 100 µM of each interfering species (i.e., lactic acid, L-cysteine, glucose,
urea, fructose, sodium chloride, and potassium chloride). There is a slight increase (positive
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interference) in CV response with a high concentration of interfering species. Based on this
result, the cobalt oxide/GCE sensor is selective for uric acid determination. Additionally,
we evaluated the sensor stability after storing sensor at room temperature and measuring
the response after 30 and 45 days for 25 µM uric acid (Figure 7b). As shown in Figure 7b,
the sensor showed good stability and maintained 97.4% of its current peak after 45 days
of storage. Additionally, the low RSD of 2.6% indicated good stability. Finally, we tested
selectivity tests in the presence of ascorbic acid, dopamine, and urea (Figure 7c). In the
presence of these species, a slight increase in current response was noticed. However, no
other peaks were noticed.
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acid only (black curve) and 25 µM uric acid and 100 µM of each interfering species (i.e., lactic acid,
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response curves of cobalt oxide/GCE sensor for 25 µM uric acid showing stability of sensor after 30
and 45 days. (c) DPV response curves for 25 µM uric acid only (black curve) and 25 µM uric acid and
100 µM of each interfering species (i.e., ascorbic acid, dopamine, and urea).

3.6. Analysis of Real Serum Sample

To determine whether the cobalt oxide/GCE sensor was suitable for uric acid detection
in human serum samples (obtained from Sigma−Aldrich; H4522). We used a standard
addition- (known uric acid concentration) based method to estimate the recovery results
of the added uric acid concentration in a serum sample. The recovery (%) was calculated
using formula [Recovery (%) = Calculated uric acid concentration × 100/Added uric acid
concentration]. The obtained data are shown in Table 2. Recovery results showed that the
cobalt oxide/GCE sensor was suitable for uric acid determination in the real sample.

Table 2. Uric acid detection in human serum with cobalt oxide/GCE sensor.

Sample Added Uric
Acid (µM) Found (µM) Recovery (%) RSD (%) (n = 3)

Human serum

0 282 - -
10 291.6 96 2.38
50 329.8 95.6 2.92

100 379 97 3.45
500 771 98.2 4.25

4. Conclusions

In this study, a low temperature-based hydrothermal method was utilized to synthe-
size porous nanosheets-like cobalt oxide nanostructures. The crystallinity and morphology
of as-synthesized cobalt oxide nanostructures were tested using direct techniques (i.e., FE-
SET, TEM, and XRD). The obtained results showed the successful formation of the porous
nanosheet-like nanostructure that bears good crystallinity. The possibility of using such
porous nanosheets-like cobalt oxide nanostructures in the sensor was tested by using elec-
trochemical methods, such as CV and EIS. Based on the obtained data, sensing performance
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evaluation using CV and DPV techniques indicated high sensitivity. The DPV is a more
sensitive technique as compared to CV. In this context, DVP data showed ultra-high sen-
sitivity (3566.5 µAmM−1cm−2), which was ~7.58 times better than CV-based sensitivity
(470.4 µAmM−1cm−2). Additionally, the cobalt oxide/GCE sensor exhibited good selectiv-
ity during uric acid measuring in the interfering species. The stability and applicability of
the cobalt oxide/GCE sensor were tested, which showed good stability and applicability
in a serum sample. Nevertheless, this work contributes to obtaining ultra-high sensitivity
using porous cobalt oxide nanosheet-like nanostructures and provides the further possibil-
ity to improve sensing performance with surface modification of nanosheets using other
metal/metal oxides.
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