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Abstract: Epirubicin is prescribed as an essential drug for treating breast, prostate, uterine, and gas-
trointestinal cancers. It has many side effects, such as heart failure, mouth inflammation, abdominal
pain, fever, and shortness of breath. Its measurement is necessary by straightforward and cheap
methods. The application of aptamer-based electrochemical sensors is accounted as a selective option
for measuring different compounds. In this work, a thiol-modified aptamer was self-assembled on
the surface of the gold electrode (AuE) boosted with carbon nano-onions (CNOs), and coupled with
methylene blue (MB) as an electroactive tracker to achieve a sensitive and selective aptasensor. In the
absence of the epirubicin, CNOs binds to the aptamer through a π-π interaction enhancing the MB
electrochemical signal. When epirubicin binds to the aptamer, the adsorption of CNOs and MB to the
aptamer is not well established, so the electrochemical signal is reduced, consequently, the epirubicin
value can be measured. The prepared aptasensor demonstrated an excellent sensitivity with a curve
slope of 0.36 µI/nM, and 3 nM limit of detection in the linear concentration range of 1–75 nM. The
prepared aptasensor was accurately capable of measuring epirubicin in blood serum samples.

Keywords: epirubicin; carbon nano-onion; electrochemical aptasensor; gold electrode

1. Introduction

Epirubicin (EP) is an anticancer drug that interferes with the growth and spread of
cancer cells in the body. Epirubicin and its medicinal derivatives are used to treat breast
and prostate cancer. The action mechanism of this drug is based on its inhibiting effect
on the synthesis of nucleic acids (DNA and RNA) and proteins [1–3]. This drug is one of
the cytotoxic agents of anthracyclines. Anthracyclines have also been found to interfere
with some biochemical and biological functions in eukaryotic cells. After intravenous
administration, epirubicin is rapidly and widely distributed in tissues, and about 77% binds
to plasma proteins, mainly albumin [4,5]. Epirubicin is metabolized quickly in the liver
and other organs and cells, including red blood cells. This drug and its primary metabolite
are excreted mainly through bile and a tiny amount through urine. The epirubicin uses
causes some side effects and its overdose leads to cardiotoxicity. Fatal congestive heart
failure may also occur during treatment by epirubicin, even months or years after the end
of drug consumption. Also, in some cases, it leads to a severe weakening of the bone
marrow in the patient [6,7]. Since the long-term use and high dose of the drug can be very
dangerous for the patient, determining the concentration of epirubicin in human biological
fluids is helpful in optimizing drug doses in the treatment of cancer cells. So far, important
analytical methods and techniques have been used to determine the concentration of this
drug in biological samples [8–12]. Recently, electrochemical methods have been widely
used to measure epirubicin due to their simplicity, high sensitivity, and low cost [13–19].
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One of the most important carbon nanomaterials that are recently used in electrochem-
ical measurements and surface modification methods is the carbon nano-anions (CNOs).
CNOs are actually formed of multi-layered fluorine structures, which their shape, size,
and number of layers depend on the applied synthesis method. The utilization of the
CNOs as a suitable material for solid electrodes modification has been reported for the
glassy carbon and gold electrodes [20–23]. Previous studies confirmed boosting the electron
exchange at the surface of the electrodes modified with carbon nanomaterials, especially
CNOs, originated from their high surface area, very good electrical conductivity, high
adsorption capacity, and accessible active sites [24,25]. Also, the low toxicity of these
compounds compared to other nano-based compounds causes the use of these nanoma-
terials to be considered in the fields of pharmaceutical diagnosis and biomedicine. Since
aptamers are single strands of DNA or RNA molecules that bind specifically to the target
molecule [26,27], the use of these types of molecular detection elements improves the
sensitivity and selectivity of the measurement method. Using aptamer-based diagnostic
elements in combination with nanomaterials to modify the surface of the electrochemical
sensors has received much attention [28–30]. Previous studies have shown that using
aptamer sequences specific to each medicinal substance enables the unique diagnosis in
addition to improving the sensitivity of the measurement method [31,32]. Up to now, the
epirubicin analysis was done along with other structurally similar compounds but it was
not possible to measure it with high selectivity [33,34]. In this work, we introduce a new
electrochemical aptasensor based on a gold electrode modified with carbon nano-anion and
aptamer as a new sensor for the electrochemical determination of epirubicin in biological
samples. The gold electrode surface was modified with a thiolated aptamer, which can
selectively bind to the epirubicin molecules. The main difference between this work and
the others is attributed to bonding ox-CNOs and MB to the self-assembled aptamer to
boost the electron transfer and consequently enhances the sensitivity and selectivity. The
addition of ox-CNOs to the modifier layer of increased the negative charge on the electrode
surface so attracted more the positively charged MB ions onto the aptasesnor. Therefore,
the aptasesnor sensitivity was improved towards the epirubicin. The capability of the
method for analysis of the epirubicin in blood serum is evaluated.

2. Experimental Methods
2.1. Materials and Apparatus

In this work, the thiolated aptamer was purchased from BIONEER, South Korea. The
sequence of the purchased thiolated aptamer is SH-5′ ACCATCTGTGTTAAGGGGTAAGG
GGTGGGGGTGGGTACGTCT3. Diamond nanoparticles purchased from Merck were
consumed to prepare CNOs. Other materials used, which include sodium hydroxide,
sulfuric acid, ethanol, nitric acid, sodium bicarbonate, Tris-HCL, methylene blue (MB),
sodium chloride, and 6-hydroxy-1-hexanethiol (MCH), were received from Merck. The
epirubicin, daunorubicin, methotrexate, and toremifene drugs were obtained from Tofigh
Daru. Electrochemical measurements were performed with a µ-Autolab electrochemical
device using Nova software (Version 2.1.4). FT-IR device model Perkin Elmer, Field-
Emission scanning electron microscope (FE-SEM) model TESCAN MIRA 3, and X-ray
spectrometer (XRD) were used to characterized the synthesized CNOs.

2.2. Synthesis of CNOs

CNOs with good conductivity were synthesized by a straightforward method using
diamond nanoparticles. For this purpose, 1.0 g of diamond nanoparticles was placed in a
furnace under argon gas for one hour at a temperature of 1150 ◦C. Then, the sample was
placed in a furnace under an ambient atmosphere for one hour at a temperature of 450 ◦C
to remove amorphous carbons to prepare CNOs. A mixture solution of sulfuric acid and
nitric acid was poured into a flask containing 1.0 g of CNOs and refluxed at 80 ◦C for 5 h to
functionalize CNOs (ox-CNOs). It was then centrifuged, and the pH was adjusted with
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sodium bicarbonate; after it reached to pH = 7, it was washed with water and ethanol and
kept at 60 ◦C for 12 h.

2.3. Preparation of the Electrochemical Aptasensor

First, the Au electrode was polished with a slurry of aluminium with a particle size of
5 µm, and it was washed with water and placed in a three-electrode cell system containing
1 M sulfuric acid solution. Afterwards, ten consecutive scans of the cyclic voltammetry
in the potential range of −0.4 to 1.2 V at a scan rate of 100 mV/s were applied to the Au
electrode surface. Next, the Au electrode was placed in the thiolated aptamer solution with
a concentration of 1 µM in the Tris-HCl buffer solution containing 20 M NaCl for 120 min to
form a layer of aptamer at the Au electrode surface due to the hybridization of the gold and
thiol. Subsequently, the electrode was washed with an aqueous solution of NaCl and MgCl2.
The Au electrode covered by a thiolated aptamer was immersed in a 2 mM MCH solution for
60 min to obtain a single layer of aligned aptamer, Au/Apt. This step led to the attachment
of MCH to the active sites of the Au electrode that did not occupied by aptamer. Therefore,
the remained active sites on the Au electrode were blocked to prevent the nonspecific
adsorption of the analyte. Then, the Au/Apt electrode was placed in a phosphate buffer
solution (pH = 7.4) containing epirubicin for 40 min to adsorb the target molecules on
the electrode surface. After that, the Au/Apt/epirubicin electrode was immersed in a
phosphate buffer solution (pH = 7.4) containing ox-CNOs for 180 min to achieve the
Au/Apt/epirubicin/ox-CNOs electrode. Finally, Au/Apt/epirubicin/ox-CNOs electrode
was put in the 120 µM MB solution for 30 min. the final modified electrode was named
as Au/Apt/epirubicin/ox-CNOs/MB. The aptasensor free of target molecule was also
prepared in the same way without the step of epirubicin adsorption. Finally, the prepared
aptasensors were washed with water. Electrochemical measurements were performed
by the differential-pulsed voltammetry (DPV) method, and quantitative measurements
were conducted based on the current difference of the modified electrode in presence and
absence of the epirubicin according to Equation (1).

∆I = I (Apt) − I (Apt-epirubicin) (1)

3. Result and Discussion
3.1. Characterization

The CNOs and ox-CNOs functional groups were investigated by an infrared spectrom-
eter, Figure 1. The sharp peak observed at 1738 cm−1 is related to the stretching vibrations
of the C=O group. The intensity of this peak became very high when CNOs were oxidized
indicating that CNOs have been well oxidized. Also, the band observed in the region
from 1510 to 1580 cm−1 is related to carboxyl and carbonyl groups. Some peaks with low
intensity can also be seen in ox-CNOs, which are related to COOH groups that confirm the
successful oxidation of CNOs.

FE-SEM images for CNOs and ox-CNOs nanoparticles were given in Figure 2. For
CNOs, spherical nanoparticles with a relatively uniform particle size can be observed. The
ox-CNOs show smaller particles out of the spherical state accumulated in a needle-shaped
state. Figure 3 depicts the XRD patterns of CNOs and ox-CNOs. Broad peaks at 2θ = 24.3
and 44 are visible for CNOs. After oxidation of CNOs, the broadening of mentioned peaks
occurred and a significant reduction in their intensity was observed.
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3.2. Electrochemical Performance of Electrodes

The cyclic voltammetry method in the potential range of −0.4 to 0.4 V was used
to investigate the performance of the prepared electrodes towards the 1 mM solution of
the K3[Fe(CN)6]/K4[Fe(CN)6] as probe, Figure 4. At the surface of the unmodified Au
electrode, the electrochemical probe solution showed an oxidation/reduction redox couple
with a potential difference of 0.11 V. By inserting the thiolated aptamer on the surface of
the Au electrode, the oxidation/reduction current related to the probe solution decreased.
The potential difference of the redox couple was more significant than the unmodified
Au electrode. This phenomenon is due to the blocking of the Au electrode surface by
the aptamer, which prevents the presence of probe ions on the electrode surface, so the
oxidation/reduction reaction was not performed well. With the insertion of the ox-CNOs,
the peak current related to the oxidation/reduction of the probe decreased while the
potential difference increased. This performance is due to the negative charge of ox-CNOs,
which prevented the negative ions of the probe from reaching the electrode surface and
as a result reduced the electron transfer rate, decreased the current and increased the
potential difference of redox peaks of the probe. Inserting the MB on the electrode surface
increased the current and decreased the potential difference indicating negatively charged
ox-CNOs absorbed positively charged MB ion well. After attachment of the epirubicin to
the aptamer, the current reduction and the potential difference increment was observed
again. This indicates the successful fixation of the epirubicin molecules on the aptamer,
which reduced the electron transfer rate. The electrochemical impedance spectrometer
in the frequency range of 10 mHz to 100 kHz in the ferri/ferrocyanide solution was also
checked to investigate the electrode surface response after each step of the modification
process. The Nyquist diagrams of the Au, Au/Apt, Au/Apt/ox-CNOs, Au/Apt/ox-
CNOs/MB, and Au/Apt/epirubicin/ox-CNOs/MB electrodes in the probe solution were
shown in Figure 5. The results showed the charge transfer resistances of 160, 813, 1101, 200,
and 1347 Ω on the surface of Au, Au/Apt, Au/Ap/ox-CNOs, Au/Apt/ox-CNOs/MB,
and Au/Apt/epirubicin/ox-CNOs/MB, respectively. By connecting the aptamer to the
surface of the Au electrode, the charge transfer resistance enhanced, which is due to the
non-conductivity and electrochemical inactivity of the aptamer strands. Also, the existence
of ox-CNOs increased the charge transfer resistance because they limited the diffusion rate
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of probe ions towards the electrode surface. However, the charge transfer rate increased in
the presence of MB. Moreover, the diameter of the semicircle part of Nyquist plots increased
in the drug’s presence, indicating an increase in charge transfer resistance. These results
confirmed the successful fabrication of the electrochemical aptasensor.
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3.3. Optimization

Effective parameters, including duration of time required for placement of the aptamer
on the Au electrode surface, duration of drug-aptamer interaction, the period of the inter-
action between the aptamer and ox-CNOs, and MB were investigated to access the best
response from the prepared aptasensor. The current changes in the presence of aptamer
and drug for each of the parameters are given in Figure 6. Studying the incubation time
of aptamer on the Au electrode surface is the most important parameter that plays a vital
role in the successful fabrication of the electrochemical aptasensor, so here different periods
for the absorption of a self-assembled layer of aptamer on the Au electrode surface were
investigated, Figure 6a. Noticeably, the difference between the oxidation peak current of MB
at Au/Apt/epirubicin/ox-CNOs/MB and Au/Apt/ox-CNOs/MB enhanced by increasing
the time of the Au electrode incubation in the aptamer strands from 30 to 120 min. By
further increasing the incubation time up to 180 min, no sensible change was observed in
the aptasensor response towards epirobicin. This result revealed that the 120 min incubation
time is adequate to completely cover all accessible sites on the Au electrode surface with
aptamer strands. The incubation time of the Au/Apt into the 15 nM epirubicin was checked
between 10 and 60 min. The results showed that the final aptamer sensing increased up to
40 min and remained constant after that. Forty min was selected as the optimal time for
epirobicin absorption on the aptasensor, Figure 6b. In addition, the insertion of ox-CNOs on
the Au/Apt/epirubicin surface increased the aptasensor response. The ox-CNOs insertion
time was evaluated in the range of 30–240 min. The aptasensor response increased by time
duration up to 180 min and remained almost constant for further time, Figure 6c. The
electrode immersion into the MB solution led to the insertion of MB along the ox-CNOs
between aptamer strands and as a result boosting the sensing sensitivity. The best time for
the MB insertion was 30 min, Figure 6d.
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3.4. Analytical Activity of Epirubicin

The epirubicin sensing by the developed electrochemical aptasensor in a phosphate
buffer solution with pH = 7.4 was investigated in the concentration range of 1–75 nM under
optimal conditions. Differential pulse voltammograms (DPVs) of aptasensor based on
optimized procedure were recorded for different concentrations of epirubicin. A decrement
of peak current for MB oxidation was observed with increment of the drug concentration.
A linear relationship was resulted between the epirubicin concentration and aptasensor
response in the absence and the presence of the epirubicin in the range of 1–75 nM, Figure 7.
An excellent linear relationship was obtained with a line slope of 0.36 µI/nM. According to
the equation of LOD = 3 Sb/m, a detection limit equal to 0.33 nM was calculated.
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A comparison of the performance of the electrochemical methods reported for epirubicin
analysis with the aptasensor prepared in this work was given in Table 1. The results showed
that the detection limit obtained in this work is comparable to previous researches indicating
suitability of the prepared electrochemical aptasensor for epirubicin measurement.

Table 1. The performance comparison of developed sensors for the epirubicin measurement.

Modified Electrode Technique Linear Range (nM) LOD (nM) Ref.

NiFe2O4/AuNPs/SPCE DPV 700–3600 5.3 [13]
Ce-ZnO/GCE DPV 10–600 2.3 [33]

DNA/GCE DPV 50–500 10 [35]
AuNPs/Fe3O4/SiO2/SPCE DPV 70–2100 40 [36]

DNA/AuNPs/SPCE DPV 40–2000 10 [37]
Au/Apt/epirubicin/ox-CNO/MB DPV 1–75 0.33 This Work

The prepared electrochemical aptasensor was also used to measure the pharmaceu-
tical compounds of daunorubicin, methotrexate, and toremifene to check the selectivity.
The current changes obtained for these drugs showed that the prepared electrochemical
aptasensor is unsuitable for measuring other drug compounds with anticancer capabilities,
so it has excellent selectivity for measuring epirubicin, Figure 8. The reproducibility of the
prepared aptasensor was determined by preparing four electrochemical aptasensors with
the same method to measure epirubicin. The results of measuring epirubicin with those
four aptasensors have a relative standard deviation of 2.34%, which indicates the good
reproducibility of the aptasensor fabrication. Also, four consecutive DPV measurements
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were performed by every Au/Apt/epirubicin/ox-CNO/MB in a buffer solution. The
results showed a relative standard deviation of 3.42 for this experiment, which indicates
the appropriate repeatability of this electrochemical aptasensor.
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The epirubicin value in a plasma sample was measured with the prepared electro-
chemical aptasensor using the standard addition method. The results are given in Table 2.
The recovery percentage obtained for measuring epirubicin in the concentration range of
5, 10, and 15 nM was 96–98%, which indicated the very good capability of the prepared
aptasensor for measuring epirubicin in real samples.

Table 2. Epirubicin determination in plasma sample.

Sample Added (nM) Found (nM) Recovery (%) (n = 3) RSD%

Plasma

0 - - -
5 4.85 97.00 4.19

10 9.76 97.60 4.31
15 14.80 98.66 3.95

4. Conclusions

Here, a very sensitive electrochemical aptasensor based on a Au electrode covered by
a single layer of self-assembled aptamer having suitable reproducibility and the ability to
measure epirubicin in real samples was prepared. The MCH strands were attached to the
unoccupied sites of the Au electrode by aptamer to prevent the nonspecific adsorption of
the epirubicin. Methylene blue and ox-CNOs were used to track and increase the sensitivity
of the prepared aptasensor. The synthesized CNOs were chemically oxidized to produce
carbonyl and carboxylic functional groups, which improve and facilitate their adsorption to
the aptamer strands. The increment of negatively charged functional groups on the CNOs
boosted the adsorption of the positively charged MB leading to more sensitive aptasensor
response. Functionalized CNOs nanoparticles paired with MB improved the performance
of the aptasensor and increased the sensitivity of the aptasensor. Our funding showed
that with raising epirubicin concentration, the electrochemical response of the fabricated
aptasensor under optimal empirical conditions linearly enhanced in the concentration
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range of 1–75 nM, and the detection limit of 0.33 nM was resulted for epirubicin. One of the
most important features of this prepared aptasensor is its low cost and easy preparation,
which can quickly measure trace amounts of epirubicin.
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