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Abstract: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has raised great concerns about human health globally. At
the current stage, prevention and vaccination are still the most efficient ways to slow down the
pandemic and to treat SARS-CoV-2 in various aspects. In this review, we summarize current progress
and research activities in developing smart nanostructured materials for COVID-19 prevention,
sensing, and vaccination. A few established concepts to prevent the spreading of SARS-CoV-2 and
the variants of concerns (VOCs) are firstly reviewed, which emphasizes the importance of smart
nanostructures in cutting the virus spreading chains. In the second part, we focus our discussion on
the development of stimuli-responsive nanostructures for high-performance biosensing and detection
of SARS-CoV-2 and VOCs. The use of nanostructures in developing effective and reliable vaccines for
SARS-CoV-2 and VOCs will be introduced in the following section. In the conclusion, we summarize
the current research focus on smart nanostructured materials for SARS-CoV-2 treatment. Some
existing challenges are also provided, which need continuous efforts in creating smart nanostructured
materials for coronavirus biosensing, treatment, and vaccination.

Keywords: SARS-CoV-2; COVID-19 pandemic; smart nanostructures; biosensing; detection; vaccination;
immune response

1. Introduction

The spread of SARS-CoV-2 has caused the coronavirus 2019 (COVID-19) disease
and the pandemic worldwide [1–3]. According to the weekly report of the World Health
Organization (WHO) as of 25 September 2022, 612 million confirmed cases have been
reported, leading to 6.5 million deaths by COVID-19 globally. Although the number of
newly reported cases decreases by 11% and new weekly reported deaths decrease by 18%
compared with the previous week, there is no convincing evidence and global confidence
indicating the end of the COVID-19 pandemic so far [4–6]. Additionally, the up-to-date
death rate caused by the SARS-CoV-2 is 1.06%, which is higher than the 0.6% in the
1957 influenza pandemic, although the latest rates decreased from case fatality rates of
3.3% about two years ago (as of 9 September 2020). In addition to the coronavirus SARS-
CoV-2 itself, there has been a trend of outbreaks of various variants globally, making
the current situation unpredictable regarding the spreading of the pandemic [7–11]. It
is therefore becoming increasingly important to develop biosensing strategies as well
as reliable coronaviral vaccines to prevent and treat the SARS-CoV-2 and its variants of
concerns [12].

In many established strategies for coronavirus regulation, nanostructured materials
that can actively respond to external stimuli are playing increasingly important roles [13–15].
Their unique capabilities to sense and specifically respond to external physical and chemical
stimuli represent widely accessible platforms to develop active smart coatings for virus
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prevention, to be incorporated to advanced sensing devices for coronavirus detection, and
to be used for responsive delivery systems for SARS-CoV-2 vaccination [16–18]. They have
demonstrated their great global success in many aspects in fighting against the COVID-19
pandemic. For example, some emerging techniques have been proposed to functionalize
conventional masks with active nanostructures [19]. These innovations are expected to
improve prevention efficacy of masks in social activities. Another promising example is the
use of photonic crystals and plasmonic nanostructures in developing high-performance
virus biosensors [20–22]. These responsive nanostructured materials can provide both
colorimetric changes for fast, point-of-care detection and spectroscopic readouts for precise
quantitative evaluation. In developing coronavirus vaccinations, nanostructured materials
have been used to deliver biological species for triggering in vivo immune responses. The
introduction of lipid nanostructures as a biocompatible carrier to deliver RNA has been used
in commercial vaccines, which have demonstrated the highest efficacy based on clinical
data [23–25]. Considering these exciting developments, it is critical to summarize the
design principles and working mechanisms of this unique set of nanostructured materials
in coronavirus regulation. Although there are some reviews providing an overview of
materials science in fighting against COVID-19 or summarizing research activities in specific
aspects (sensing or vaccination) [26–29], a focused review on recent advances in creating
smart nanostructured materials for the SARS-CoV-2 treatment is necessary to understand
the general concepts underlying these remarkable materials and to overcomes existing
challenges in tackling COVID-19.

In this review, we briefly summarize the development of SARS-CoV-2 and the ensuing
COVID-19 pandemic in the last two years and overview the progress of smart nanostruc-
tured materials in fighting against this widespread virus pandemic from a material science
point of view. To understand the current stage of this pandemic and predict its future
trends, the genetic information and viral structure will first be discussed. The incurring
virus variants and their important genetic mutations will be also introduced, which will be
helpful to understand how smart nanostructured materials can be created based on these
unique features of the coronavirus. The research activities in developing nanomaterials
for virus detection, prevention and vaccination will be discussed in sequence, which em-
phasizes the vital role of nanostructured materials in preventing and slowing down the
existing pandemic. A few important nanostructured materials will be elaborated in each
section, including nanostructured membranes for virus filtration, responsive plasmonic
nanostructures and photonic crystals for virus detection, and colloidal assemblies and
lipid nanoparticles for COVID-19 vaccination. At the end of this review, a perspective on
the further development of smart nanostructured materials will be provided in fighting
against current COVID-19 pandemic and potential infectious viruses and viral diseases in
the future.

2. SARS-CoV-2 and VOCs

The structure of the RNA virus SARS-CoV-2 is depicted in Figure 1a, with its viral
RNA encapsulated in the membrane protein [30–32]. It comprises five basic functional
structures: a spike protein, envelop protein, membrane protein, nucleocapsid protein, and
the viral RNA ranking from the exterior to the interior. More specifically, the SARS-CoV-2 is
a positive-strand RNA virus (+ssRNA virus), which contains ~29-kilobase single-stranded,
positive-sense genomes made of ribonucleic acid. The spike protein known as S protein on
the surface regulates the receptor recognition and cell membrane fusion and therefore is
one of the most important functional proteins of the virus [7,33,34]. It has two subunits,
S1 and S2 on the virus membrane, with a total number of amino acids larger than 1200.
The S1 subunit contains a domain that can recognize and bind to the receptor angiotensin-
converting enzyme 2. The S2 subunit is responsible for cell membrane fusion through the
formation of a six-helical bundle based on a two-heptad repeat domain [35]. Therefore,
the S protein has been extensively studied so far for developing vaccines for tackling
the coronavirus pandemic, for investigating immune responses, and for tracking genetic
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mutations among various variants [36–38]. Among these complex structures and diverse
amino acid constituents, only a small amino acid stretch is directly related to the interactions
between the receptor-binding domain and the enzyme 2 receptor of the host cells. Figure 1b
shows the key mutations on the S protein that are noted in all VOC so far, indicating the
important role of the S protein in virus mutation and vaccination.
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vaccination. (a) Scheme of smart nanostructured materials for COVID-19 treatment. (b) The structure
of SARS-CoV-2 and the major components, including the S protein, nucleocapsid protein, envelope
protein, membrane protein and viral RNA. (c) SARS-CoV-2 variants of concerns. Reprinted from [30],
with permission from Springer Nature (Berlin/Heidelberg, Germany).

Compared with other RNA virus, SARS-CoV-2 has a slower mutation rate, with
two single-letter mutations per month [39,40]. However, due to the rapid spread and
large number of infected patents, a variety of variants have been observed globally as
SARS-CoV-2 continues to change the vital genetic codes through genetic mutations and
viral combinations when replicating their genomes [41,42]. One remarkable feature of these
existing variants is that they have one or more genetic mutations being different from
the SARS-CoV-2 and the other variants. If a variant evolves through the combination of
genetic codes from two different variants, it can be categorized as a recombinant. Although
there are many variants, a lineage can sometimes be recognized, which contains virus
variants derived from the same ancestor. According to WHO, more than 4000 variants
of SARS-CoV-2 have been reported [43]. The major concern regarding these variants is
the escape or hamper of these virus variants from the established immune responses by
previous infection or SARS-CoV-2 vaccination [44–46]. Based on the genetic modification
of the various SARS-CoV-2 variants, they can be divided into three categories to facilitate
the necessary attention for the policy determination and efficient treatment, including
variants under monitoring, variants of interest (VOI), and variants of concerns (VOC).
More specifically, these three types of virus variants are ranked based on the virus genetic
changes that are predicted or known to alter a few important properties of the coronavirus,
including transmissibility, disease severity, immune responses, and the therapeutic and
diagnostic outcomes. Depending on their genetic mutations and the virus spread, it may
vary significantly over time.
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Understanding the genetic information and biological properties is a prerequisite
for developing effective administration strategies and vaccination for SARS-CoV-2 and
its variants. To this end, responsive or smart nanostructured materials are playing an
important role in different aspects. As shown in Figure 1c, various nanostructured materials,
including photonic crystals, plasmonic nanostructures, lipid nanoparticles, and DNA/RNA
nanostructures have been studied and used in research and in clinics for the prevention,
biosensing, and vaccination of SARS-CoV-2 and its variants. In response to external
stimuli or surrounding environmental changes, these materials can show perceivable or
detectable signals, which represents an open platform for developing high-performance
sensors [47–49]. Plasmonic nanostructures and photonic crystals are two representative
materials in this regard, which offer programmable optical signals for the sensing and
detection of the virus and biomolecules [50–54]. Therefore, they have been extensively used
for detecting SARS-CoV-2 and its various variants in current research. One remarkable
feature of these nanostructured optical sensors is the readable outputs and colorimetric
sensing in response to virus exposure, which significantly facilitates point-of-care and
fast detection of the SARS-CoV-2 in a flexible time scale. Moreover, they do not require
additional energy input to perform the test, which greatly extends the availability of
these biosensors in daily use. Performing quantitative analysis is also possible on these
optical sensors by taking advantage of various spectroscopies. Another great success
in fighting against the SARS-CoV-2 is the use of nanostructures for virus vaccination,
which delivers biological molecules to trigger the immune reactions inside the body. To
this end, cationic lipids containing nucleic acids and virus-mimicking nanoparticles for
accomplishing S protein delivery are two remarkable examples, demonstrating at the level
of fundamental research and clinical trials the great success of nanostructured vaccines
in bringing the coronavirus under control, in preventing viral infection, and in reducing
disease severity [55].

3. Nanostructured Materials for COVID-19 Prevention

One effective way to slow down virus spread is to physically isolate the infectious
viruses that are suspended in air. A few common practices nowadays include keeping
social distance and wearing personal protective equipment (masks, gloves, face shields, and
protective suits). In addition to these common practices, researchers are seeking ways to
prevent the spread of the coronavirus using nanostructured filters or coatings, which aim to
reduce the number of virus particles suspended in air by capturing them on demand. In the
classic design of air filters, filters with regular pores allow selective transport to particulate
matters of different sizes. Only particulate matters or nanoscale particles with sizes smaller
than the pore diameters can pass through the filters, leaving larger ones blocked and
separated. This working mechanism is operational for particulate matters as well as
biological species. Functionalizing the filtering materials represents an advanced technique
to improve the efficiency [56–58]. For example, the top-down fiber manufacturing is a
typical method to prepare functional filters, which can be explained by a Brownian diffusion
mechanism [59–61]. An Al-coated conductive fibrous filter demonstrated an efficiency
of >99.99% nanoparticle capture by using electrostatic interactions [62]. However, these
strategies require the additional integration of a nanogenerator set and some filters also need
ultra-high voltage, which limits their practical use. To overcome these existing challenges, a
self-powered filter based on ionic liquid polymer composites was developed with improved
hydrophilicity and conductivity, high absolute electrostatic potential, and power generation
ability to remove nanoparticles and particulate matters [63]. This self-powered filter was
prepared by polymerizing a hydrophilic copolymer on a melamine-formaldehyde (MF)
resin sponge. Such highly porous structures allow polluted air to flow through the filter



Biosensors 2022, 12, 1129 5 of 28

without too much pressure drop while enhancing the particle and virus-removal efficiency,
owning to their high surface areas and porosity. This filter demonstrates a high efficiency
in removing particulate matters by generating a strong electric field under a low voltage of
3 V. Such a low voltage could be supplied by a silicon solar panel, granting this filter great
potential in creating self-powered wearable cleaning devices. Functionalizing nanofibers
with active nanostructures will provide additional antibacterial and antiviral properties
in addition to passive filtration [64–67]. To this end, Ag nanoparticles have been long
recognized for their excellent antibacterial performances [68–71]. A typical scheme for
classic air filter with antibacterial and antiviral properties is shown in Figure 2a [72]. In this
work, a polar polymer, PA6, was made into nanofibers by electrospinning and deposited
on a polypropylene substrate. Ag nanoparticles were decorated on the fibrous membranes
through a impregnation method (SEM in Figure 2b). Such nanostructured films were used
as active filters, which removed suspended bacteria and virus based on the antibacterial
and antiviral properties of the guest Ag nanoparticles (Figure 2c).
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(a) Schematic illustration of nanostructured filter. (b) The SEM image of the nanostructured fibers
decorated with Ag nanoparticles. (c) The viral titer measurement at different contact time. ns: not
significant difference; * p < 0.05. Reprinted from [72], with permission from Elsevier Inc (Amsterdam,
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Another technique that has been established to remove virus or particles is to actively
capture these pollutants in the air with smart coatings [73,74]. The purpose of this design
is to remove pathogen-laden respiratory droplets released from nearby patients, which
is expected to slow down the spread of pathogens and reduce the transmission of coron-
avirus. To this end, a cosmetic ingredient-based formulation has been reported to form
conformal coatings on surfaces of different materials, compositions, shapes, roughness,
and wettability, which can enhance the aerosol-capturing capability [75]. This work intro-
duced polyelectrolytes as coating materials that can increase the wettability by the droplets,
delay the elastic recovery of deformed droplets for enhanced deposition, and absorb water
quickly from the captured droplets to avoid releasing. To demonstrate these effects, an
analytical model was built, which used air-spray to mimic droplet formation (Figure 3a).
This quantitative modal demonstrates an enhanced efficiency for droplet-capturing, since
the coated surfaces had a lower count of droplets of different sizes (Figure 3b).
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4. Responsive Nanostructured Materials for Viral Disease Biosensing

Since responsive nanostructured materials can exhibit optical or electronic signals in
response to external stimuli, they have been extensively exploited in developing biosen-
sors for coronavirus detection. Based on the physical properties of the nanostructures,
different nanosensing platforms have been established, including colorimetric sensing,
fluorescent sensing, SERS sensing, electrochemical sensing, and piezoelectric sensing. The
first three optical biosensing platforms provide measurable optical signals while the last
two sensing platforms produce electric signals for detecting coronavirus. Table 1 sum-
marizes existing techniques that have been used for COVID-19 detection and diagnosis,
which demonstrates the great success of responsive nanostructured materials in developing
point-of-care and high-performance biosensors for SARS-CoV-2 detection. As conventional
diagnosis methods, CT scanning, X-ray imaging, and magnetic resonance imaging (MRI)
have been used for the early diagnosis of COVID-19 in the current pandemic. They are
noninvasive and provide three-dimensional (3D) scanning and imaging to identify infec-
tions potentially caused by the SARS-CoV-2. However, these methods are non-specific to
the sequence of the coronavirus and therefore cannot identify the types of the variants.
Moreover, these techniques use expensive facilities that can only be operated by trained
technicians [51,76,77]. The reverse transcription-polymerase chain reaction (RT-PCR) and
the clustered regularly interspaced short palindromic repeats (CRISPR) are two advanced
techniques for highly sensitive and accurate, sequence-specific detection of the coronavirus.
However, they are time-consuming, costly, and can only be performed by trained personnel.
In the past two years, many biosensors based on nanostructures have been developed to
overcome these challenges of conventional diagnosis methods and proved for clinical use
and point-of-care detection of the coronavirus. These nanostructures provide colorimetric
signals or sensitive electric signals for detecting the virus. The diverse surface chemistry
used in these sensing platforms also allows sequence-specific screening and identification
of the virus types of the variants.

To illustrate the working mechanism and surface chemistry of responsive nanostruc-
tures used in different biosensing systems, we summarize representative nanostructures in
SARS-CoV-2 biosensors in Table 2. Depending on the physical properties of nanomateri-
als, responsive nanostructures can be developed into different sensing platforms, includ-
ing colorimetric biosensors, fluorescent biosensors, and electrochemical biosensors. Au
nanoparticles have been widely used in colorimetric biosensors because of their LSPR effect
and optical properties. Generally, the involved bioconjugation mechanism for functional-
izing molecules to sense and recognize biomolecules is thiol chemistry and carbodiimide
chemistry. Many biomolecules can be crosslinked to the Au nanoparticle surface through
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the Au-S or Au-N bonds to target the S proteins, antibodies, or specific DNA sequences.
Many Au nanoparticle-based lateral flow immunoassays have been issued with emergency
use authorization for COVID-19 diagnosis [78]. These test kits provide fast (within a few
minutes), highly sensitive detection of the coronavirus in point-of-care biosensing. In
addition, quantum dots and upconversion nanoparticles have been used in fluorescent
biosensors for detecting antibodies, proteins of coronavirus due to their strong emission,
narrow emission peaks, and tunable wavelengths. Carbon nanostructures have good con-
ductivity and can be used for fabricating electrochemical biosensors. They provide highly
sensitive coronavirus detection with low detection limit. For both carbon nanostructures,
quantum dots, and upconversion nanoparticles, the carbodiimide crosslinking chemistry is
the most used method to bond target molecules for coronavirus biomolecules recognition.

Table 1. Comparison between the conventional detection techniques and the biosensing techniques
based on responsive nanostructures.

Diagnostic Techniques Advantages Disadvantages

Conventional diagnostic
techniques

CT scan Early screening of infection,
no sampling, non-invasive

Non-specific, X-ray exposure,
operational only by

technicians

X-ray imaging Low cost, no sampling,
non-invasive

Non-specific, false negatives,
operational only by

technicians, X-ray exposure

MRI Non-invasive infection
monitoring, 3D imaging

Costly, only available in
technical labs

RT-PCR
High accuracy and sensitivity,
sequence-specific sensing of

coronavirus

Long detection time, high cost,
only operational for trained

experts

CRISPR Lost cost, highly sensitive,
integrated to portable devices

Necessary specific CRISPR
sequences

Biosensing techniques based
on responsive nanostructures

LSPR sensing

Colorimetric changes, easy
operation, low cost, available

for point-of-care detection,
fast detection

Large-scale production of
noble metal nanoparticles,

complicated fabrication

SERS sensing Highly sensitive, specific to
virus, quantitative detection Raman spectroscope needed

Fluorescent biosensing Highly sensitive and accuracy,
low detection limit

Possible fluorescence
quenching

Electrochemical biosensing Highly sensitive, label-free
Energy consumption, possible

incorrect positives, low
reproducibility

Piezoelectric biosensing Highly sensitive and specific,
label-free and fast detection

Complicated sample
preparation and pretreatment
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Table 2. Summary of responsive nanostructures in biosensing of the SARS-CoV-2.

Type Nanostructures Surface
Chemistry Target Sensitivity Specificity References

Colorimetricbiosensors

Au nanoislands Thiol chemistry DNA sequences
of SARS-CoV-2 1.32 × 105 copies/µL – [79].

Au nanoparticles Thiol chemistry N-gene 1 copy µL−1 – [80].

Au thin films Carbodiimide
chemistry

Anti-SARS-CoV-2
antibodies 1 µg/mL – [81].

Au nanoparticles –
S and

nucleocapsid
protein

96.7% 100% [82].

Magnetic
beads/Au

nanoparticles

Au−N and Au−S
bonds and

hydrophobic
interactions

N protein 69 fg mL−1 – [83].

Au nanoneedles
array Thiol chemistry Virus via S

protein 80 copies mL−1 – [84].

Cellulose
nanobeads – Nucleocapsidprotein 88.4% 100% [85].

Au nanoparticles – S protein 100% 97.5% [86].

Fluorescentbiosensors

Lanthanide-
Doped

Nanoparticles

Carbodiimide
chemistry

Anti-SARS-CoV-2
IgG – – [87].

SiO2@QDs Carbodiimide
chemistry

SARS-CoV-
2antigen 5 pg/mL – [88].

CdSe/ZnS
quantum dots

Carbodiimide
chemistry Antibodies 90% 100% [89].

Electrochemical biosensors

Au@Fe3O4/carbon
electrodes Thiol chemistry Viral RNA 3 aM – [90].

GO-Au NS Carbodiimide
chemistry Glycoproteins 0.0048

µAµg.mL−1.cm−2 – [91].

Graphene-
ssDNA-

AuNP/Au
Electrode

Thiol chemistry Viral RNA 231 (copies/µL)−1 ~100% [92].

rGO/3D printed
3D electrode

Carbodiimide
chemistry

Antibodies to
spike S1 protein 1 × 10−12 M – [93].

Generally, three strategies have been developed to detect respiratory virus using
different biosensing and detection platforms (Figure 4a) [94]. The first and most well-
established strategy is to detect the genome of the virus through nucleic acid amplification
tests (NAATs), which mainly includes polymerase chain reaction (PCR) and its many
derivatives [95–97]. Direct detection of the intact virus or fragments is the second method
in modern virus biosensing, which is mostly realized through the recognition of viral
antigens (structural proteins of the virus). The third approach to detecting the existing virus
is to target specific antibodies that are produced by the infected hosts after virus infection,
which is famous as serological testing. Compared with traditional virus culture methods,
these current methods have higher sensitivity and produce accessible data that is easy to
analyze [98,99]. For example, the PCR technique can amplify and detect specific sequences
of the coronavirus nucleic acids, providing easily accessible diagnosis and remarkably high
efficiency. In fighting against the coronavirus in the current COVID-19 pandemic, fast access
to the specific sequence of the virus enables the design and commercialization of highly
specific PCR kits for point-of-care biosensing and quantitative virus load analysis. Antigen-
targeted biosensing uses pre-designed recognition elements, particularly specific antibodies
that are reactive to the target antigens, to capture and recognize exposed proteins in the
virus antigens. Two famous examples in this regard are the S protein in the coronavirus
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and the hemagglutinin glycoprotein in the influenza virus [100,101]. Early techniques
include immunochromatography (IC) and flow assays, which provide enough sensitivity
for quantitative analysis [102–104]. Some derived techniques have been commercialized
for individual test kits or point-of-care diagnosis of respiratory viruses.
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4.1. Responsive Plasmonic Nanostructures for Biosensing of Coronavirus

Plasmonic nanostructures are well-known for their unique optical properties [106–108].
Under light irradiation, the free electrons in the plasmonic nanostructures, particularly
nanoparticles of Au, Ag and Cu, form resonant oscillation with the electric field of the
light, inducing remarkable localized surface plasmon resonance (LSPR) [109]. The resonant
frequency and absorption peak position are determined by nanoparticle size, morphology,
and chemical components [110–112]. A variety of synthetic methods are available now to
prepare plasmonic nanostructures, with their LSPR peak positions tunable from visible
to near infrared regions. Additionally, assembling plasmonic nanoparticles of different
shapes into superstructures is another important approach to actively tuning the LSPR
strength and peak position [53]. In a few carefully prepared systems, plasmonic assemblies
were used as plasmonic rulers to detect nanoscale distance changes with extremely high
spatial resolution [113,114]. For anisotropic nanostructures, like nanorods and nanodiscs,
their LSPR is responsive to their orientation. Taking nanorods for example, depending
on the relative orientation of the nanorods to the polarization of the light, their LSPR
has longitudinal and transverse modes [115,116]. These interesting optical properties
have been used for developing high-performance mechanochromic and thermochromic
sensors [116,117] or smart imaging contrast agents in photoacoustic imaging and optical
coherence imaging [118,119]. The resonant frequency of plasmonic nanostructures is
also highly susceptible to surrounding environments. For example, any changes in the
surrounding refractive index or dielectric constant will induce peak shift and sometimes
colorimetric responses, which has been extensively exploited in colorimetric sensors for
detecting biological molecules and infectious viruses [120]. If plasmonic nanostructures are
coupled with other optical probes, e.g., fluorescent molecules or Raman molecules, they
may greatly enhance the optical signal and improve the signal-to-noise ratio of these probes
through different chemical processes and physical mechanisms [121–123]. For example,
surface-enhanced Raman spectroscopy (SERS) uses plasmonic nanostructures to enhance
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the Raman scattering of nearby molecules, which has been broadly used in the detection
and biosensing of biological molecules and various viruses [124–129].

Plasmonic Au and Ag nanostructures have been used in biosensors due to their excel-
lent optical properties and widely tunable LSPR positions from visible to near-infrared re-
gions [130–132]. Compared with Au nanostructures, Ag nanomaterials have stronger LSPR
and therefore are more favorable in developing high-performance biosensors [133–136].
However, Ag nanostructures are not stable compared to materials made of Au because Ag
are susceptible to oxidizers and can be easily oxidized to cations at ambient conditions.
To overcome these limitations, a few strategies have been developed in colloidal synthe-
sis, including forming alloy or core/shell nanostructures with Au [137]. One remarkable
feature of these composite nanostructures is that the nanostructures exhibit strong LSPR
of Ag while maintaining good chemical and thermal stability. For example, ultrathin Au
nanoshells were coated on Ag nanoparticles such that the shell can protect the Ag core
from being etched without compromising its plasmonic performance (Figure 4b) [105,138].
These nanoparticles were used as probes to detect immunoglobulin G (IgG) antibodies
of the SARS-CoV-2. To specifically recognize the coronavirus, these core/shell plasmonic
nanoparticles were firstly modified with anti-human antibodies, which was captured by the
S protein on the coronavirus T line. These biosensing probes were then integrated to lateral
flow immunoassay (as shown in Figure 4c) for colorimetric detection of the virus, provid-
ing qualitative and quick examination of the presence of target coronavirus. In addition,
quantitative analysis is also possible on this platform by performing SERS measurement
with a low detection limit (0.22 pg/mL) [105].

Developing electrochemical sensors for biosensing is also possible by introducing
plasmonic nanoparticles as sensing platforms, which has been extensively used in impedi-
metric biosensors [139]. This technique uses electrochemical impedance spectroscopy to
sufficiently recognize and quantitatively analyze target biomolecules [140]. One remarkable
feature of these nanostructures in electrical biosensing is their much larger surface areas
compared with bulk materials, which is expected to improve the electrochemical activi-
ties and sensitivity of the systems. In this regard, combining plasmonic nanostructures
with conductive polymers is a practical approach to designing electrical biosensors. For
example, small Au nanoparticles decorated on polypyrrole nanotubes have been devel-
oped as a biosensing platform to detect anti-SARS-CoV-2 nucleocapsid protein monoclonal
antibodies (Figure 5a) [141]. This was realized by modifying the surface of the conductive
nanotubes with SARS-CoV-2 nucleocapsid protein through covalent bonds (Figure 5b). The
impedimetric detection performance of this biosensor demonstrates a detection limit of
0.4 ng/mL of the monoclonal antibody.
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PCR as an advanced nucleic acid amplification technique has been broadly used in
biosensing of virus genome [142–144]. One great advantage over other sensing platforms
is the high sensitivity and extremely low detection limit thanks to the ability of amplifying
target nucleic acids in solution reactions [145–148]. It also offers real-time detection of
target molecules, fast sensing of virus genomes, and precise quantitative analysis of the
infected units. However, current techniques require complicated setups for precise temper-
ature control and nucleic acid amplification, which hinders its broad use in point-of-care
diagnostics. To overcome this challenge and develop PCR miniaturization techniques, plas-
monic Au nanoparticles have been recently introduced to the PCR systems [131], which are
used as heating agents in the reaction by taking advantage of their excellent photothermal
conversion under light irradiation [149–153]. The working mechanism of this real-time
plasmonic PCR is shown in Figure 6a. The plasmonic thermocycling is realized by infrared
excitation of the Au nanoparticles for rapid heating in a reaction vessel containing PCR
chemistry, fluorescent probes, and the plasmonic nanoparticles. A 12 V fan is then used
to cool the reaction. To detect the fluorescent signals in real-time, a 488 nm laser is used
as a portable light source and an optical fiber-coupled spectrometer is used as integrated
parts to measure the optical signals (Figure 6b). This modified PCR system allows rapid
detection of the RNA of SARS-CoV-2 in human saliva and nasal specimens with 100%
sensitivity and 100% specificity.
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4.2. Responsive Photonic Crystals for Biosensing of Viral Disease

Photonic crystals are periodic superstructures that can exhibit structural colors at a par-
ticular wavelength [138,154,155]. Although they can exhibit tunable colors, the coloration
mechanism is based on diffraction of light at particular wavelength, which is different
from plasmonic absorption and scattering of metallic nanostructures. The bottom-up col-
loidal assembly and top-down lithography are two general methods to create photonic
crystals [156]. The periodic arrangement of materials with different refractive indexes
creates photonic bandgap, which diffract light at this stopband. The fundamental physical
principle to understand this optical effect is Bragg’s law, 2ndsinθ = kλ [156,157]. In this
equation, n and d are the effective refractive index and periodicity of the photonic crystals,
respectively, and θ is the incident angle in the measurement. The k and λ are diffraction
order and wavelength of diffracted light. Based on this simple equation, it can be predicted
that the structural color and diffracted light wavelength are determined by the physical
properties of the photonic crystals and surroundings, which can be used to design respon-
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sive photonic crystals for detecting virus and biological species [158–164]. Two of the most
used strategies in this regard include the changes of surrounding dielectrics and control
over the periodicity of the photonic crystals [165].

One recent work used polystyrene nanospheres as building blocks and assembled them
into photonic crystals [166]. The hexagonal packing of the polystyrene nanospheres is shown in
Figure 7a, which can be commonly observed in the close-packing of nanospheres [167]. These
photonic crystals can be embedded into functional hydrogels that are modified by functional
groups or molecules for biosensing. Polyacrylamide hydrogel was used in this work to form
a continuum matrix, in which the polystyrene photonic crystals were incorporated inside.
Afterwards, single-stranded DNA aptamers were modified to the hydrogel matrix, which can
selectively bind to the consensus receptor-binding domain of the S protein of the SARS-CoV-2
virus and the variants in saliva samples. Such specific binding induces swelling of the hydrogel
and leads to the increase in the periodicity of the photonic crystals and the redshift of their
structural colors (Figure 7b,c). This biosensing platform is rapid and convenient, providing
both perceivable colorimetric changes and spectroscopic detection of the SARS-CoV-2.
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Figure 7. Responsive photonic crystals for biosensing. (a) SEM image of two-dimensional polystyrene
array. Reprinted from [167], with permission from American Chemical Society. (b) Particle spacing
measurements with the Debye diffraction ring diameter obtained with a laser pointer. (c) Measure-
ments of the cRBD from the APC-sensor using a UV−vis spectrometer. Reprinted from [166], with
permission from American Chemical Society.

In addition to colloidal self-assembly, the top-down lithography is another well-
established method to prepare photonic crystals with desirable colors [168]. This method
can produce two-dimensional photonic crystals on solid substrates in a large scale. One
advantage of photonic crystals made by lithography over those prepared by colloidal
self-assembly is their ease in being incorporated into functional devices. The easy handling
of the photonic films and many accessible post-treatment methods enable these photonic
structures to be broadly used in developing sensing photonic chips. They can provide
both colorimetric responses for fast screening of analytes and spectroscopic detection for
precise content measurement. For example, a polymer-based imprinted photonic crystal
was developed recently for simple and fast optical detection and quantification of the S
protein of the SARS-CoV-2 [169]. Using a nanoimprint technique, the photonic film can be
made at a centimeter scale (Figure 8a). The brilliant blue colors demonstrate the perfect
order of the nanostructures on the surface of the photonic film. It contains 230 nm hole
arrays arranged in a hexagonal phase with a lattice constant of 460 nm (Figure 8b). Then, an
anti-SARS-CoV-2 antibody was modified on the surface of the photonic films for selective
virus detection. The working mechanism of this photonic chip is based on the decrease of
diffraction peak intensity after specific attachment of the coronavirus to the surface of the
photonic films. By carefully analyzing such a decrease (Figure 8c), it is possible to evaluate
the detection limit, selectivity of this sensing photonic chips and to estimate the content of
the coronavirus. By incubating these types of photonic chips with a chosen culture medium,
it is possible to verify the selectivity and response to different contaminants. As shown
in Figure 8d, this photonic chip has no response to inorganic chemicals in the phosphate
buffer solution while having weak response to contaminant proteins largely because of the
nonspecific absorption of these large biological molecules to the film surface. However,
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photonic chips incubated with S protein have much higher changes in reflection intensity,
which demonstrates the good selectivity of these photonic chips in sensing SARS-CoV-2.
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(a) Image of the photonic crystal chip. The diameter of the chip used for the sensor was 10 mm.
(b) SEM image of the photonic crystal surface. (c) Reflection spectrum of the photonic crystal before
and after incubation in a sample solution containing spike proteins. (d) Detection selectivity for the
spike proteins. Reprinted from [169], with permission from MDPI.

By coupling periodic structures with plasmonic excitation, it is possible to offer new
optical responses in biosensing [170–172]. Lattice plasmon resonance and Fano resonance
are two representative examples, which provide highly sensitive platforms to detect biolog-
ical species [173–178]. One reliable way to manufacture periodic plasmonic nanostructures
is to deposit thin layer of metals on the surface of a template featuring periodic structures.
Such metasurfaces, once coupled with spectrometers, are able to provide specific and
sensitive optical signals in response to bonding to target biological molecules, e.g., proteins,
DNA, antibodies, or viruses. A recent study introduces a simple strategy to prepare a
cost-effective, large-scale biosensing platform for SARS-CoV-2 detection [179]. In its de-
sign, commercial blank DVD disks were used as starting templates for manufacturing the
plasmonic platform. Any plastic or polymer layers on the surface of the commercial CDC
were removed, leaving the plastic-templated metasurface with plasmonic metal-coated
surface grating exposed for further functionalization. Such metasurfaces were further
assembled into a microfluidic chip through attachment of tubing and adhesive layers for
biosensing SARS-CoV-2. To realize specific targeting of the coronavirus antibody, protein
and virus particles, a layer-by-layer functionalization was introduced to link SARS-CoV-2
antibody to the metasurface. To test the biosensing performance of the plasmonic chips, a
standard procedure was established to deactivate the coronavirus through heat and gamma
irradiation (Figure 9a). Since the metasurface was modified by the SARS-CoV-2 spike
antibody, it can specifically recognize and quantify the SARS-CoV-2 particles (Figure 9b).
When broadband light is incident on the plasmonic chip metasurface, the optical resonance
can be directly observed and monitored in the reflected light in real-time. The reflection
peak position due to the resonance response redshifts during the layer-by-layer surface
modification and after specific bonding to the coronavirus and virus-related biological
species (Figure 9c). Such an optical response can be carefully monitored and collaborated
for the fast detection of interactions and binding of biomolecules and quantification of target
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molecule concentration (Figure 9d). This simple design allows for the quantitative detection
of antibodies, proteins, or the whole virus with high sensitivity and specificity. In addition,
this work can efficiently distinguish the SARS-CoV-2 from other similar RNA virus such as
influenza, representing a highly accessible biosensing platform for the real-time detection
of SARS-CoV-2 and pathogens.

Biosensors 2022, 12, x FOR PEER REVIEW 15 of 28 
 

 
Figure 9. Plasmonic metasurface sensor based on periodic structures for SARS-CoV-2 detection and 
biosensing. (a) Schematic illustration of SARS-CoV-2 sample collection, virus culture, and heat or 
gamma irradiation steps for inactivated virus preparation. (b) Schematic illustration showing the 
surface plasmon resonance-based SARS-CoV-2 detection. (c,d) Optical response of the proposed 
sensor is based on the resonance wavelength shift based on molecular binding that allows differen-
tial identification of SARS and influenza from their specific and nonspecific binding events. Re-
printed from [179], with permission from American Chemical Society. 

5. Nanotechnology in Viral Disease Vaccination 
At the current stage, vaccination is still the most effective technology to regulate the 

COVID-19 pandemic [180,181]. It can activate the immune responses inside the body such 
that the possibility for infection can be reduced even when exposed to SARS-CoV-2. There 
are three types of COVID-19 vaccines that have been approved for clinic use in the United 
States, which include message RNA (mRNA), viral vector and protein subunits. These 
vaccines are injected in human bodies to trigger immune responses and to recognize the 
virus that causes COVID-19. In addition to these three types of vaccines used in clinic, 
researchers have developed many different vaccines. These vaccines in various formats 
induce immune responses in different physiological pathways (Figure 10) [182]. Specifi-
cally, vaccines that enter cells for triggering immune responses include viral vector vac-
cine, DNA vaccine, RNA vaccine, and live-attenuated vaccine. For inactivated virus vac-
cine and recombinant protein vaccine, they do not need to enter cells for training immune 
reactions. In addition, the viral vector vaccines are created by incorporating SARS-CoV-2 
antigen species into viruses that have low pathogenicity (Figure 10a) [183–185]. DNA vac-
cines use plasmid as a vector to enter the nucleus of the host cells for transcription (Figure 
10b) [186–188]. In developing mRNA vaccines, the S protein gene of the SARS-CoV-2 will 

Figure 9. Plasmonic metasurface sensor based on periodic structures for SARS-CoV-2 detection and
biosensing. (a) Schematic illustration of SARS-CoV-2 sample collection, virus culture, and heat or
gamma irradiation steps for inactivated virus preparation. (b) Schematic illustration showing the
surface plasmon resonance-based SARS-CoV-2 detection. (c,d) Optical response of the proposed
sensor is based on the resonance wavelength shift based on molecular binding that allows differential
identification of SARS and influenza from their specific and nonspecific binding events. Reprinted
from [179], with permission from American Chemical Society.

5. Nanotechnology in Viral Disease Vaccination

At the current stage, vaccination is still the most effective technology to regulate the
COVID-19 pandemic [180,181]. It can activate the immune responses inside the body such
that the possibility for infection can be reduced even when exposed to SARS-CoV-2. There
are three types of COVID-19 vaccines that have been approved for clinic use in the United
States, which include message RNA (mRNA), viral vector and protein subunits. These vac-
cines are injected in human bodies to trigger immune responses and to recognize the virus
that causes COVID-19. In addition to these three types of vaccines used in clinic, researchers
have developed many different vaccines. These vaccines in various formats induce immune
responses in different physiological pathways (Figure 10) [182]. Specifically, vaccines that
enter cells for triggering immune responses include viral vector vaccine, DNA vaccine,
RNA vaccine, and live-attenuated vaccine. For inactivated virus vaccine and recombinant
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protein vaccine, they do not need to enter cells for training immune reactions. In addition,
the viral vector vaccines are created by incorporating SARS-CoV-2 antigen species into
viruses that have low pathogenicity (Figure 10a) [183–185]. DNA vaccines use plasmid as
a vector to enter the nucleus of the host cells for transcription (Figure 10b) [186–188]. In
developing mRNA vaccines, the S protein gene of the SARS-CoV-2 will be encoded into the
mRNA, which is encapsulated into biocompatible nanoparticles (e.g., lipid nanoparticles).
These antigens are produced in vitro and delivered into the human cells and then translated
into a protein antigen by the cells to train in vivo immune response (Figure 10c) [189–191].
Weakening or completely inactivating the virus while retaining their surface proteins is a
direct way to produce immune responses inside bodies (Figure 10d,e) [192–194]. In other
strategies, the S protein on the surface of SARS-CoV-2 is delivered through engineered
bacteria, assembled nanostructures (Figure 10f) or medical nanoparticles (Figure 10g) to
directly enhance immune responses [33,195–197].
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binant protein vaccine, and (g) bionic nanoparticles vaccine. Reprinted from [182], with permission
from Elsevier.
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These vaccines have been investigated worldwide during the COVID-19 pandemic.
Figure 11 depicts the global vaccine map, which summarizes the vaccination strategies for
different continents. It can be found that the RNA vaccines and virus vector vaccines are
the two mostly exploited vaccines for SARS-CoV-2 protection. Moreover, in this global
vaccination map, both conventional inactivated vaccines and emerging RNA vaccines have
been approved for clinical use in different countries. One great effort in vaccine research is
to evaluate the vaccine efficacy in different phases and administration strategies, which
is normally difficult to conduct in reality. Indeed, the statistics on vaccine efficacy are
affected by many factors, including the phase of vaccine development, statistical method,
patient nationality, gender, age, etc. However, the access to global and local vaccine efficacy
is critically important to evaluate the effectiveness of the vaccines, to determine further
administration strategies, and to develop modified vaccines for coronavirus variants. In the
last two years, many reports have been provided globally regarding vaccine effectiveness,
enabling a summary of the effectiveness and reliability of different vaccine techniques.
Figure 12 provides a global overview of vaccine efficacy of the five different vaccine types,
including inactivated vaccines, RNA vaccines, DNA vaccines, virus vector vaccines, and
recombinant vaccines (or protein subunit vaccines). In Asian countries, such as China
and India, the efficacy of conventional inactivated vaccines is between 60% and 80%. The
mRNA vaccines have demonstrated an efficacy at ~94% in USA, which are among the
most effective vaccines in the clinic. Moreover, NVX-CoV2373 is proven to be one of the
recombinant protein vaccines and its efficacy is evaluated to be over 80%. The detailed
information of a few representative vaccines is summarized in Table 3. Most vaccines still
need low-temperature environments in transportation and storage, which sets a limitation
for their wide implementation, particularly for remote regions and some underdeveloped
countries. Therefore, designing vaccines that work at ambient temperatures is critical to
further popularize the vaccination rate globally, which is one research goal for chemists
and biologists.

Biosensors 2022, 12, x FOR PEER REVIEW 17 of 28 
 

vaccine efficacy is critically important to evaluate the effectiveness of the vaccines, to de-
termine further administration strategies, and to develop modified vaccines for corona-
virus variants. In the last two years, many reports have been provided globally regarding 
vaccine effectiveness, enabling a summary of the effectiveness and reliability of different 
vaccine techniques. Figure 12 provides a global overview of vaccine efficacy of the five 
different vaccine types, including inactivated vaccines, RNA vaccines, DNA vaccines, vi-
rus vector vaccines, and recombinant vaccines (or protein subunit vaccines). In Asian 
countries, such as China and India, the efficacy of conventional inactivated vaccines is 
between 60% and 80%. The mRNA vaccines have demonstrated an efficacy at ~94% in 
USA, which are among the most effective vaccines in the clinic. Moreover, NVX-CoV2373 
is proven to be one of the recombinant protein vaccines and its efficacy is evaluated to be 
over 80%. The detailed information of a few representative vaccines is summarized in 
Table 3. Most vaccines still need low-temperature environments in transportation and 
storage, which sets a limitation for their wide implementation, particularly for remote re-
gions and some underdeveloped countries. Therefore, designing vaccines that work at 
ambient temperatures is critical to further popularize the vaccination rate globally, which 
is one research goal for chemists and biologists. 

 
Figure 11. Global COVID-19 vaccines map. The use and development of COVID-19 vaccines is sum-
marized in different continents. 

 
Figure 12. Global vaccine efficacy maps in different countries. The vaccines that have been used in 
different countries are color-coded by the vaccine types (RNA vaccine, DNA vaccine, inactivated 

Figure 11. Global COVID-19 vaccines map. The use and development of COVID-19 vaccines is
summarized in different continents.



Biosensors 2022, 12, 1129 17 of 28

Biosensors 2022, 12, x FOR PEER REVIEW 17 of 28 
 

vaccine efficacy is critically important to evaluate the effectiveness of the vaccines, to de-
termine further administration strategies, and to develop modified vaccines for corona-
virus variants. In the last two years, many reports have been provided globally regarding 
vaccine effectiveness, enabling a summary of the effectiveness and reliability of different 
vaccine techniques. Figure 12 provides a global overview of vaccine efficacy of the five 
different vaccine types, including inactivated vaccines, RNA vaccines, DNA vaccines, vi-
rus vector vaccines, and recombinant vaccines (or protein subunit vaccines). In Asian 
countries, such as China and India, the efficacy of conventional inactivated vaccines is 
between 60% and 80%. The mRNA vaccines have demonstrated an efficacy at ~94% in 
USA, which are among the most effective vaccines in the clinic. Moreover, NVX-CoV2373 
is proven to be one of the recombinant protein vaccines and its efficacy is evaluated to be 
over 80%. The detailed information of a few representative vaccines is summarized in 
Table 3. Most vaccines still need low-temperature environments in transportation and 
storage, which sets a limitation for their wide implementation, particularly for remote re-
gions and some underdeveloped countries. Therefore, designing vaccines that work at 
ambient temperatures is critical to further popularize the vaccination rate globally, which 
is one research goal for chemists and biologists. 

 
Figure 11. Global COVID-19 vaccines map. The use and development of COVID-19 vaccines is sum-
marized in different continents. 

 
Figure 12. Global vaccine efficacy maps in different countries. The vaccines that have been used in 
different countries are color-coded by the vaccine types (RNA vaccine, DNA vaccine, inactivated 
Figure 12. Global vaccine efficacy maps in different countries. The vaccines that have been used in
different countries are color-coded by the vaccine types (RNA vaccine, DNA vaccine, inactivated
vaccine, virus vector vaccine, and recombinant protein vaccine). In each highlighted country, the
name and efficacy of the vaccines are provided in this map.

Table 3. Summary of vaccine information (efficacy, name or manufacturer, development phase,
efficacy, dose, and storage condition) for different types of vaccines worldwide. Note that RT means
room temperature.

Type Company or
Vaccine Name Phase 3 Efficacy (%) Dose Storage (◦C)

mRNA vaccine

Sinovac NCT04582344 50 2 (14−day interval) 2–8
Pfizer/BioNTech NCT04368728 95 2 (21 days apart) −70

Moderna NCT04470427 94 2 (28 days apart) −20
CureVac NCT04652102 47 2 (28 days apart) 2–8

DNA vaccine AnGes NCT04655625 none 2 (14− and 28−day
interval) RT

Inactivated virus Sinopharm NCT04510207 79 2 (21−day interval) 2–8

Virus vector vaccines
AstraZeneca NCT04324606 62–90 2 (28−day interval) 2–8

Gameleya NCT04530396 91.6 2 (21−day interval) −18
Johnson & Johnson NCT04505722 66–85.4 1 2–8

Recombinant protein
vaccines Novavax NCT04636697 60–89 2 (21−day interval) 2–8

5.1. Delivery of mRNA Using Lipid Nanoparticles

The mRNA vaccines use lipid nanoparticles to deliver mRNA that can trigger the
production of S proteins in the bodies [198]. Two commercial mRNA vaccines in this
regard are from Pfizer-BioNTech and Moderna. The mRNA is genetically engineered in a
scientific lab and then encapsulated in the lipid nanoparticles, which trains cells to express
the S proteins found on the surface of the SARS-CoV-2 (Figure 13a,b). Notably, the lipid
nanoparticles are different from classic liposome nanoparticles that have a lipid bilayer
and a liquid core (Figure 13c) [199]. In the formation of lipid nanoparticles, the cationic
lipids will complex with nucleic acids, producing electron-dense cores inside the lipid
nanoparticles. To encapsulate and deliver mRNA, the lipid nanoparticles have a few typical
components, which include an ionizable aminolipid having electrostatic interactions with
RNA and are responsible for the hydrophobic inverted micelles formation, cholesterol to
promote close packing of each component, helper lipids for stabilizing cell membranes,
and lastly the PEG-lipid serving as surface hydrating layer to enhance particle stability.
Compared with neutral liposomes in delivering oligonucleotides, the charged lipids and
their strong electrostatic interactions with oligonucleotides significantly increase the loading
and delivery efficiency.
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Figure 13. Responsive nanostructured materials for COVID-19 treatment and prevention. (a) Schematic
illustration of the SARS-CoV-2 components for generating protective antiviral immune responses.
(b) The proposed structure of LNP–siRNA formulations containing ionizable amino-lipids within
inverted micellar structures surrounding siRNA. (c) Liposomal formulations contain an aqueous core
with electron densities consistent with the exterior of the liposome. Reprinted from [55], with permission
from American Chemical Society.

In clinical practice, these mRNA vaccines are injected into upper arm muscle or upper
thigh depending on the age of the vaccinated patients. After the mRNA enters the muscle
cells, it will use the machinery of the cells to generate pieces of the S proteins, which will
be expressed on the cell surface. The mRNA itself will be broken down into pieces and be
removed by the bodies. Due to the expression of the S protein on the surface of normal
cells, it will trigger immune responses inside the body and the immune system recognizing
the foreign proteins will produce antibodies and activate immune cells to fight infections.

5.2. Assembly of Viral Protein Subunits for Vaccination

Based on the structures of the SARS-CoV-2, the S glycoprotein is the focus and target
for developing coronavirus vaccines because it is expressed on the virus surface and
therefor is the main target of the host immune defense systems [200–202]. In addition to
the delivery of mRNA using lipid nanoparticles, developing viral S protein subunits is
another approach to coronavirus vaccination [55]. In this regard, Novavax has created a
S protein subunits vaccine, which entered phase 3 clinical trials in 2021 [203]. After one
year of development, the Novavax COVID-19 vaccine (NVX-C0V2373) has been approved
for clinical use [204,205]. Additionally, the Novavax COVID-19 Omicron vaccine that
is designed for the most widespread variant of the SARS-CoV-2 is in phase 3 clinical
trials. The NVX-C0V2373 vaccine is a nanoparticle vaccine self-assembled and derived
from the recombinant expression of full-length S proteins, with their structures shown
in Figure 14 [206]. Under the presence of Sorbitol 80, the free 2-P full-length S protein
assemble into prefusion Spike complexes, from dimer of trimers, trimer of trimers to large
oligomers of trimers. Previous studies have pointed out that the tighter clusters made of the
protein subunits improve the immunogenicity [207,208]. The Novavax COVID-19 vaccine
(NVX-C0V2373) also has a proprietary adjuvant, Matrix M cages (right panel in Figure 14),
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which is made of 40 nm honeycomb-like nanoparticles. These nanoparticles are derived
from plant saponins and further mixed with cholesterol and a phospholipid. An important
feature of the Novavax protein subunit vaccines is the transportability and above-freezing
storage temperature. Therefore, the relative high storage temperature compared with the
mRNA vaccines make them more accessible and easier to be transported globally.
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6. Summary

In summary, we review recent progress and research activities in developing smart
or responsive nanostructured materials for SARS-CoV-2 prevention, biosensing, and vac-
cination. Extensive research has demonstrated that this unique set of materials plays
important roles in different aspects in fighting against the global COVID-19 pandemic. In
the first part of this review, we briefly introduced the structures, function, and properties
of SARS-CoV-2, which is a prerequisite to design smart nanostructures on demand and
understand their working mechanism in pandemic regulation. The use of nanotechnology
in collection and filtration is overviewed, which can remove the suspended coronavirus
from public environment and therefore reduce the potential of infection when exposed
to nearby virus carriers. In the next section, several advanced biosensing platforms were
presented, which include responsive plasmonic nanostructures and photonic crystals for
highly efficient detection of virus. In the last part, two well-established vaccinations were
deliberated, while considering the importance of nanomaterials in developing stable and
efficient vaccines for SARS-CoV-2 and its many variants.

Despite these exciting developments in fighting against COVID-19, there are still many
limitations and challenges in the virus prevention, biosensing, and vaccination. In coron-
avirus prevention, developing commercial masks with reusable capability or virus-killing
functions is an existing challenge considering the large consumption of disposable masks
during the current pandemic. In addition to physical absorption and blocking of the coron-
avirus, these emerging masks are expected to actively kill the SARS-CoV-2 through some
established methods, like photothermal killing or the photodynamic effect [18,209,210].
Solving this challenge can reduce the resource consumption, eliminate environmental
pollution caused by the great pandemic, and most importantly increase protection efficacy
of masks. Moreover, current common practices in fighting against the SARS-CoV-2 in-
clude wearing masks and keeping social distance. It remains challenging to develop active
coating materials that can reduce environmental contamination and capture suspended
coronavirus in the air. For coronavirus biosensing, improving the sensitivity and specificity
and simplifying current sensing systems for point-of-care detection need to be solved in the
future. Introducing stimuli-responsive nanomaterials is a promising way to improve the
detection limits of conventional biosensing techniques. One good example in this regard
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is the use of plasmonic nanoparticles for SERS-based viral and tumor detection. In terms
of developing commercial miniaturized test devices, some existing consumer products
are good examples to develop similar techniques for coronavirus detection, which are
particularly important in the current pandemic situation where anti-corona drugs are not
available for reliable COVID-19 treatment. For instance, smart watches are commercially
available for measuring body temperature, blood oxygen level, and heart beat rate, which
greatly facilitates general healthcare. Small portable devices can also be used for detecting
glucose levels in diabetes treatment and monitoring chemicals in body sweat. Developing
similar devices for instant and low-cost diagnostics of COVID-19 is expected to provide
powerful tools for both personal daily testing and COVID-19 pandemic regulation. In
designing coronavirus vaccines, the vaccination for the mutation of the SARS-CoV-2 and
various variants is still limited by the unpredictable biological structures of the variants and
the lack of a generalized vaccine for treating different variants, although current vaccines
have demonstrated convincing efficiency in activating immune responses for SARS-CoV-2.
At the current stage, neutralizing SARS-CoV-2 by monoclonal antibodies can block infection
and provide effective therapeutic protection for COVID-19. However, a recent study reports
that several authorized monoclonal antibodies have reduced neutralizing potency towards
variants in bodies, particularly the Omicron variant [211]. Therefore, current monoclonal
antibody design limits its use in fighting against various variants of concerns. A potential
approach to solve this challenge is cocktails of two or more target monoclonal antibodies for
multiple sites of vulnerability on the S protein. The simultaneous delivery of the multiple
antibodies targeting different epitopes can recognize variants of different mutations and
therefore provide cross-protection against existing and potential variants [212,213].

Developing new sensing platforms and integrating existing biosensing devices are still
necessary for daily detection and point-of-care diagnostics. To this end, designing wearable
sensing devices based on electrochemical or colorimetric sensors is a promising approach
to the coronavirus detection. In addition, the continuous mutation of the SARS-CoV-2 calls
for additional efforts in designing generalized vaccines that can be used for triggering
the body’s immune reactions for different variants. These continuous efforts in diverse
research communities will greatly benefit the prevention, biosensing, and vaccination of
SARS-CoV-2 and variants and future disease treatments.
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