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Abstract: Herein, gold nanoclusters (Au NC) dispersed on gold dendrite (Au DS)-based flexible
carbon fibre (AuNC@AuDS|CF) microelectrodes are developed using a one-step electrochemical
approach. The as-fabricated AuNC@AuDS|CF microelectrodes work as the prospective electrode
materials for the sensitive detection of nitric oxide (NO) in a 0.1 M phosphate buffer (PB) solution.
Carbon microfibre acts as an efficient matrix for the direct growth of AuNC@AuDS without any
binder/extra reductant. The AuNC@AuDS|CF microelectrodes exhibit outstanding electrocatalytic
activity towards NO oxidation, which is ascribed to their large electrochemical active surface area
(ECSA), high electrical conductivity, and high dispersion of Au nanoclusters. As a result, the
AuNC@AuDS|CF microelectrodes attain a rapid response time (3 s), a low limit of detection (LOD)
(0.11 nM), high sensitivity (66.32 µA µM cm−2), a wide linear range (2 nM–7.7 µM), long-term stability,
good reproducibility, and a strong anti-interference capability. Moreover, the present microsensor
successfully tested for the discriminating detection of NO in real human serum samples, revealing its
potential practicability.

Keywords: carbon fibre; microelectrodes; gold nanoclusters; gold dendrites; electrochemical sensor;
nitric oxide detection

1. Introduction

Detection of nitric oxide (NO) is a critical to understanding cell functionality and
pathology, as well as in diagnostic applications [1–5]. Nitric oxide is important not only
in physiological processes, but also in pathophysiological practices [6–10]. It has further
anti-inflammatory and immunosuppressive properties, which usually cause vasodilation
and inhibit platelet adhesion, activation, and aggregation [11–14]. Changes in physiological
NO concentration can lead to cardiovascular diseases such as hypertension, septicaemia,
or atherosclerosis, as well as Parkinson’s disease or cancer [15–19]. Sensing NO is not
only position-reliant, but also time- and concentration-reliant [20–22]. The detection of
NO remains a difficult task because of its low-level concentration generated by cells, high
reactivity, and short half-time [23–25]. Thus, the design and establishment of a reliable and
high-performance NO sensor is key.

Among various analytical strategies, using electrochemical sensors and biosensors
signifies one of the most capable approaches for sensing NO in clinical measurements due
to their low limit of detection, prompt response, and ease of real sample analysis in low
concentrations in biological samples [18,26–29]. In the development of NO sensing, there
are countless benefits to the design of nanostructured sensing electrodes to improve the
electron transfer process and achieve a high sensing performance [30–32]. Carbon fibre
microelectrodes have been employed for various electrophysiological, electrochemical and
biosensor systems owing to their relative chemical inertness and high mechanical and
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electrical characteristics [33–36]. A variety of carbon fibre-based sensor platforms were
developed for the detection of catecholamines, glucose, NO, acetylcholine, choline, lactate,
glutamate, etc. [37–40]. Furthermore, the small size of carbon fibre microelectrodes is effec-
tively utilized for the miniaturization of sensor platforms. The dispersion or entrapment of
various nanostructured materials such as graphene, carbon nanotubes, metal nanoparticles,
metal oxides, etc., and DNA/enzymes onto carbon fibre microelectrodes has created new
avenues for the sensitive electrochemical sensing of chemically and biologically important
molecules [41–43].

Gold nanoclusters (AuNC) are small clusters (several to 100 gold atoms) that have
appeared as emergent catalysts for various electrocatalytic reactions and biosensing appli-
cations because of their unique molecule-like characteristics, quantum confinement effects,
high volume of active sites, and good biocompatibility [44,45]. The prompt development of
Au nanocluster-based biosensor platforms has offered various opportunities in the field
of clinical and biomedical applications [31,46,47]. Appropriate catalytic material-derived
sensing electrodes can significantly enhance electrode kinetics, sensitivity and selectiv-
ity towards the detection of NO. Many Au or platinum (Pt) NC-based electrochemical
sensors have widely reported numerous emergent biomarkers and metal ions [12,48–50],
although the utilization of Au nanoclusters dispersed on carbon fibre microelectrodes has
not demonstrated the sensitive detection of NO.

In this study, we report self-supported gold nanoclusters dispersed on gold dendrite-
based flexible carbon fibre microelectrodes (AuNC@AuDS|CF) using a one-step electro-
chemical approach for the sensitive detection of NO. Owing to a large quantity of active
sites and ECSA, high electrical conductivity, and high dispersion of Au nanoclusters on
dendrite structures, the AuNC@AuDS|CF microelectrodes exhibit improved electrocat-
alytic activity and sensing performance towards the detection of NO. In addition, the
AuNC@AuDS|CF microelectrode-based sensor platform exhibits a rapid response time,
low limit of detection, high sensitivity, and strong anti-interference capability in practical
human serum samples.

2. Experimental Section
2.1. Materials and Reagents

Gold (III) chloride trihydrate, sodium nitrite (NaNO2), lactic acid (LA), glucose
(Glu), uric acid (UA), ascorbic acid (AA), paracetamol (PA), hydrogen peroxide (H2O2),
monosodium dihydrogen phosphate dehydrate, and disodium hydrogen phosphate were
received from Sigma Aldrich, St. Louis, MO, USA. Carbon fibre microelectrodes (diameter:
~300 µm) with a purity of 99.99% were purchased from Sigma Aldrich, St. Louis, MO,
USA. Sulphuric acid (H2SO4) was obtained from Molychem, Mumbai, India. All reagents
procured and applied in the present work were analytical-grade chemicals. Millipore
Milli-Q water (resistivity ≥18 MΩ cm) was applied for the preparation of all solutions.

2.2. Fabrication of AuNC@AuDS|CF Microelectrodes

Gold nanoclusters dispersed on gold dendrites were directly grown on a carbon-fibre
microelectrodes using a one-step electrochemical deposition method. Typically, carbon
fibre microelectrodes (geometrical surface area of ~0.48 cm2 with radius of ~150 µm and
height of ~5.0 mm) are cleaned through sonication in acetone followed by pure water. The
carbon fibre microelectrodes were dipped in an electrolyte solution containing 5.0 mM
HAuCl4 and 0.5 M H2SO4 and an applied constant potential of −0.2 V (vs Ag/AgCl) for
200 s [51]. The resulting AuNC@AuDS|CF microelectrodes were eroded with an abundant
quantity of Millipore Milli-Q water at an ambient temperature and dried at 60 ◦C for 1 h.

2.3. Characterization of AuNC@AuDS|CF Microelectrodes

The as-developed AuNC@AuDS|CF microelectrodes were characterized via numer-
ous physicochemical and electrochemical techniques. Primarily, a scanning electron mi-
croscopic (SEM) technique with Thermosceintific Apreo S and a transmission electron
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microscopic (TEM) technique with JEOL 2010F TEM were used for studying the sur-
face morphology of the AuNC@AuDS|CF microelectrodes. The elemental existence and
composition and their distribution on the AuNC@AuDS|CF microelectrodes were anal-
ysed with electron-dispersive X-ray (EDX) measurements with a Hitachi SU-70. X-ray
diffraction (XRD) measurements were performed using a Pan analytical Xpert Pro Diffrac-
tometer. X-ray photoelectron spectroscopic (XPS) measurements were conducted for the
AuNC@AuDS|CF microelectrodes using an XPS-PHI Versaprobe III.

All of the electroanalytical studies were conducted using the Electrochemical Origaflex
multi-channel system (Origaflex OGF500) workstation at 26 ± 3 ◦C. The AuNC@AuDS|CF
microelectrode was used as the working electrode, a platinum (Pt) wire was engaged as the
auxiliary electrode, and an Ag/AgCl (3.0 M KCl) electrode acted as the reference electrode.
All of the electrocatalytic and sensing measurements were performed in a 0.1 M phosphate
buffer (PB, ~pH 2.5) electrolyte solution in an inert atmosphere. A chronoamperometric
(CA) method was utilized for all the sensing measurements and the real sample analytical
ability of the AuNC@AuDS|CF microelectrodes at the applied potential (Eapp) of ~0.82 V.

3. Results and Discussion

Figure 1a–c presents the typical FE-SEM images of the developed AuNC@AuDS|CF
microelectrode with low and high magnifications. As shown in Figure 1a, dendrite-like
Au nanostructures were directly grown on carbon fibre microelectrodes with an average
length of ~260 µm. A small dimension of Au nanoparticles with an average size of ~9 nm
was homogeneously dispersed on Au dendrites (Figure 1b,c). Figure 1d depicts the energy-
dispersive X-ray (EDX) spectra of the AuNC@AuDS|CF microelectrode, revealing the
existence of carbon (C) and Au elements only on the electrode surface. The results of
elemental mapping of Au and C are presented in Figure 1e,f, and the elements of Au were
homogeneously distributed on the AuNC@AuDS|CF microelectrode. For the controlled
study, the surface morphology of the carbon fibre electrode was analysed and is displayed
in Figure S1, Supplementary Materials. The average dimension of the single carbon fibre
was calculated to be ~5 µm, and the overall thickness of the carbon fibres was measured as
~300 µm, as represented in Figure S1a,b. After the deposition of AuNC@AuDS on carbon
fibres, the geometrical surface area may be increased. The EDX (Figure S2, Supplementary
Materials) and elemental mapping (Figure S3) study suggested that an element of C only
existed on the carbon fibre microelectrodes and from environmental C existence, revealing
the purity of the carbon fibres.
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Figure 2 shows the transmission electron microscope (TEM) (a and b), high-resolution
transmission electron microscope (HRTEM) (c), selected area electron diffraction (SAED)
pattern (d), and elemental mapping (e and f) of the AuNC@AuDS|CF microelectrode. As
depicted in Figure 2a,b, the TEM image of the AuNC@AuDS|CF microelectrode revealed
that small-sized Au clusters, with a mean dimension of ~3.4 nm, were homogeneously
distributed on Au dendrites. Based on Figure 2c, the value of lattice fringes was estimated
as 0.235 nm, and corresponded to the crystalline plane of (111) Au [52]. The SAED pattern
further confirmed the crystalline nature of the AuNC@AuDS|CF microelectrodes, showing
a set of diffraction rings of the (111), (200), (220), (222) and (311) face-centred cubic structure
of Au (Figure 2d). As depicted in Figure 2e,f and Figure S4, elements such as Au and C
co-exist on the AuNC@AuDS|CF microelectrodes and were homogeneously presented.
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Figure 2. TEM (a,b), HRTEM (c), SAED pattern (d) and elemental mapping (e,f) of the
AuNC@AuDS|CF microelectrode.

Figure 3 depicts the XPS survey spectra (a), and the Au 4f (b) and C 1s (c) regions
of the AuNC@AuDS|CF microelectrode. As displayed in Figure 3a, Au and C elements
existed on the AuNC@AuDS|CF microelectrode. In the Au 4f region (Figure 3b), the XPS
peaks appeared at ~84.61 eV (Au 4f7/2) and ~88.32 eV (Au 4f5/2), corresponding to the
binding energies of Au0 [53]. Figure 3c displays the high-resolution XPS spectra for the C
1s region of the AuNC@AuDS|CF microelectrode. In Figure 3c, three major peaks were
obtained: one centred at ~284.71 eV corresponding to C-C/C-H, and two at ~285.17 eV and
~286.78 eV, corresponding to the C=O and O-C=O groups, respectively, associated with the
Au-C matrix. Figure 3d displays the XRD pattern of the AuNC@AuDS|CF microelectrode.
The peaks acquired at the 2θ values of ~38.172, ~44.37, ~64.56, ~77.54 and ~81.7◦ were
associated with the cubic crystalline nature of (111), (200), (220), (311) and (222) Au [52,54].
In addition, the XRD peak at ~25.6 can be assigned to the (002) plane of amorphous
carbon, indicating that the electro-chemical deposition of Au NDS had not affected the
crystallographic structure of the carbon fibres [55].
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Figure 4 shows the CV curves (a and b) of the bare CF and AuNC@AuDS|CF micro-
electrodes scanned in the nonexistence (dotted curve) and existence (solid curve) of 50.0 µM
NO2

− in 0.1 M PB. As displayed in Figure 4a,b, the AuNC@AuDS|CF microelectrodes
exhibited enhanced electrocatalytic oxidation of NO with an anodic current of ~0.043 mA
at the potential of ~0.82 V after the addition of 50.0 µM NO2

−. The perceived catalytic
current was owing to the direct oxidation of NO at the AuNC@AuDS|CF microelectrodes
(Equations (1)–(3)) [56]. However, the bare CF microelectrode exhibited a small catalytic
anodic current of ~0.11 mA at ~0.9 V towards the NO oxidation. As anticipated, the direct
electrochemical NO oxidation reaction on the AuNC@AuDS|CF microelectrodes is an
irreversible process [57,58]. Figure S5a depicts the CV curves of the AuNC@AuDS|CF
microelectrode recorded for 50.0 µM NO2

− in 0.1 M PB at different scan rates. The plot of
anodic currents vs. the square root of scan rates for the AuNC@AuDS|CF microelectrode
showed a linear plot (Figure S5b), revealing a diffusion-controlled process.

NO − e− → NO+ (1)

NO+ + OH− → NO2
− + H+ (2)

NO2
− + H2O→ NO3

− + 2H+ + e− (3)
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To optimize the constant applied potential, the varied applied potentials of 0.6, 0.7
and 0.8 were applied on the bare CF and AuNC@AuDS|CF microelectrodes towards the
amperometric detection of NO. The constant applied potentials were chosen based on
the preliminary catalytic studies towards the oxidation of NO (Figure 4). As shown in
Figure S6a,b, the AuNC@AuDS|CF microelectrodes exhibited the highest steady-state
catalytic current of ~0.042 mA at the applied constant potential of ~0.8 V, whereas the
bare CF microelectrodes offered less than ~0.01 mA. The as-developed AuNC@AuDS|CF
microelectrodes revealed uppermost catalytic activity over ~4 times when compared to
bare CF microelectrodes. In order to further understand the interfacial characteristics of
the bare CF and AuNC@AuDS|CF microelectrodes, electrochemical impedance spectral
(EIS) measurements were conducted for 50.0 µM NO2

− in 0.1 M PB, and the results are
displayed in Figure S7. The fitted electronic equivalent circuit is represented in the inset of
Figure S7. The Nyquist plot of the AuNC@AuDS|CF microelectrodes exhibited smaller
polarization resistance (Rp) of ~478 Ω cm2 and high capacitance value in comparison to
the bare CF electrode (~854 Ω cm2). This result indicates that the AuNC@AuDS on CF
microelectrodes facilitates electron transfer kinetics at the interface.

The accomplished high catalytic performance of the AuNC@AuDS|CF microelec-
trodes is due to the ascription of a densely formed small dimension of Au nanoclusters
on the edges of the Au dendrites, offering a high quantity of active sites, ease of accessing
NO, and intrinsic catalytic activity of Au. The electrochemical active surface area (ECSA) of
the as-fabricated electrodes was calculated using the equation of Cdl/Cs, where Cdl repre-
sents double-layer capacitance and Cs represents the specific capacitance (~0.04 mF cm−2),
both of which were measured via CV studies at different scan rates, starting from 10 to
125 mV s−1 (Figures S8 and S9). The value of the bare CF and AuNC@AuDS|CF micro-
electrodes was estimated to be ~0.034 and ~0.92 cm2, respectively. Thus, the as-developed
AuNC@AuDS|CF exhibited extensive contact with the electrocatalytic active sites and
extremely fascinating aptitude of NO at the electrode–electrolyte interface.

Figure 5a displays the chronoamperometric i-t curve of the AuNC@AuDS|CF micro-
electrodes upon adding various concentrations of NO2

−, starting from 2 nM to 7.8 µM in
0.1 M PB at the applied potential of 0.8 V (vs Ag/AgCl). The applied potential of 0.8 V
for the electrochemical detection of NO2

− was chosen based on the good catalytic activity
depicted in Figure 4. The anodic current increased rapidly and extended at a steady rate
within ~3 s of the addition of NO2

− in 0.1 M PB. Figure 5b shows the calibration plot of
Figure 5a, revealing a linear relationship to NO concentration. In short, two linear lines
were attained for the AuNC@AuDS|CF microelectrodes upon adding various concentra-
tions of NO2

−, starting from 2.0 nm to 0.8 µM (correlation coefficient of R2 = 0.969) with a
sensitivity of 66.32 µA µM−1 cm−2, and 1.8 µM to 7.7 µM (R2 = 0.991) with a sensitivity of
6.86 µA µM−1 cm−2. Owing to an increase in NO diffusion and high catalytic activity, the
AuNC@AuDS|CF microelectrodes demonstrated high sensitivity (66.32 µA µM−1 cm−2)
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in the low concentration of NO. The catalytic activity of the AuNC@AuDS|CF microelec-
trodes may be affected by NO because of the adsorbed oxidized products at the electrode,
delivering low sensitivity (6.86 µA µM−1 cm−2). Thus, the present sensor offered two
linear lines towards the detection of NO. Moreover, the limit of detection was estimated
as 0.11 nM through 3s/b, where “s” represents standard deviation of the blank and “b”
means the slope. As shown in Table 1, the AuNC@AuDS|CF microelectrode-based sensor
platform delivered results with the lowest detection limit, high sensitivity, and a wide
linear range compared with recently reported NO sensors.
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Table 1. List of reported electrochemical sensors with present sensor based on AuNC@AuDS|CF
microelectrodes towards the NO sensing.

Electrode Technique Sensitivity Linear Range
(µM) LOD (nM) Ref.

Au NPs/SG Amperometry 45.44 µA mM−1 cm−2 10–2882 100 nM [59]

NiFe–LDH NSAs/CC Amperometry 3.46 µA cm−2mmol L−1 5–1000 20,000 nM [57]

AuNPs/ERGO/GCE Amperometry 5.38 µA µM−1 cm−2 25–200 133 nM [60]

PEDOT-SH/Au/GCE Amperometry 0.30 µA µM−1 cm−2 150–1000 51 nM [61]

GNs/GC Amperometry 6.32 µA µM−1 cm−2 0.5–45 220 nM [62]

N-rGO Amperometry 0.23 µA µM−1 cm−2 0.5–5000 200 nM [63]

Pd-Cu-Mo2C/GCE Amperometry 0.033 µA µM−1 cm−2 0.005–0.165 0.35 nM [64]

Au NPs/MoS2/
GN/GCE Amperometry - 5–5000 1000 nM [65]

AuNC@AuDS|CF Amperometry 66.32 µA µM−1 cm−2 0.002–7.77 0.11 nM This Work

Au NPs: gold nanoparticles; GCE: glassy carbon electrode; PEDOTpoly (3,4-ethylenedioxythiophene); NiFe-LDH
NSAs: NiFe-layered double-hydroxide nanosheet arrays; CC: carbon cloth; NR: nano rods; rGO: reduced graphine
oxide; MWCNTs: multi-walled carbon nanotubes; CF: carbon fibre; CeO2: cerium oxide; SnO2: tin oxide; ERGO:
electrochemically reduced graphene oxide.

Figure 6a shows the i-t curve of the AuNC@AuDS|CF microelectrodes recorded upon
the addition of 100.0 nM NO2

− in the existence of electrochemically active interferences
such as 1.0 µM glucose (Glu), 1.0 µM lactic acid (LA), 1.0 µM uric acid (UA), 1.0 µM
paracetamol (PA), 1.0 µM ascorbic acid (AA), and 1.0 µM H2O2 at the applied potential
(Eapp) of 0.8 V in 0.1 M PB. As can be seen in Figure 6a, the as-developed AuNC@AuDS|CF
microelectrode responded with 100.0 nM NO2

− only. However, the AuNC@AuDS|CF
microelectrode did not exhibit any catalytic activity towards 10-fold-high concentrations
of electrochemically active interferences, including lactic acid, uric acid, paracetamol,
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ascorbic acid, and H2O2. Figure 6b presents the plot of the comparative sensing response of
AuNC@AuDS|CF microelectrodes to NO2

− in the presence of other potential interferences.
The obtained anodic current variation was measured to be ~5% towards the detection of
NO for the AuNC@AuDS|CF microelectrode in the presence of interferences, revealing
good selectivity.
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Figure 6. (a) i-t curve of the AuNC@AuDS|CF microelectrodes recorded upon addition of 100.0 nM
NO2

−, 1.0 µM glucose (Glu), 1.0 µM lactic acid (LA), 1.0 µM uric acid (UA), 1.0 µM paracetamol (PA),
1.0 µM ascorbic acid (AA), 1.0 µM H2O2, and 100.0 nM NO2

−. Eapp = 0.8 V. (b) The plot of the relative
sensor response of AuNC@AuDS|CF microelectrodes to NO2

− in the existence of interferences.

The durability of the as-developed AuNC@AuDS|CF microelectrode was tested in
the presence of 10 µM NO2

− in 0.1M PB for 7000 sec at the applied potential of 0.8 V.
Figure 7 shows the plot of relative catalytic activity of NO oxidation against time for the
AuNC@AuDS|CF microelectrodes in 10 µM NO2

− + 0.1M PB. The AuNC@AuDS|CF
microelectrode retained its catalytic activity (~88%) after 7000 sec of continuous activity,
revealing the durability of the microelectrodes. The stability of the AuNC@AuDS|CF
microelectrode was further tested in real human serum samples, and the results are shown
in Figure S10. The catalytic activity of the as-developed AuNC@AuDS|CF microelec-
trode was reduced by ~16%, suggesting good durability, and retained dendrite structure
(Figure 7b,c). The reproducible study was performed by measuring the CV curves of the
three brand-new AuNC@AuDS|CF microelectrodes recorded for 50 µM NO2

− 0.1M PB
at a scan rate of 20.0 mV s−1, as displayed in Figure S11. The inset of Figure 7 presents
the plot of the catalytic activity of three brand-new AuNC@AuDS|CF microelectrodes
(A–C) recorded for 50 µM NO2

− 0.1M PB, which were derived from Figure S11. The related
standard deviation (RSD) was estimated to be 3.7% for three different AuNC@AuDS|CF
microelectrodes, suggesting good reproducibility of the electrode.
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activity of three brand-new AuNC@AuDS|CF microelectrodes recorded for 50 µM NO2

− 0.1M PB,
derived from Figure S8. (b,c) FE-SEM images of AuNC@AuDS|CF microelectrodes after a stability
test in real serum samples.
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Furthermore, the as-developed AuNC@AuDS|CF microelectrode-based sensor platform
was tested with real human serum samples by employing the standard addition method
(STM), and the results are summarized in Table 2. Interestingly, the AuNC@AuDS|CF micro-
electrodes exhibited recovery values in the range of 98.8–99.4% with an RSD range of 0.3–0.8
towards the detection of NO in human serum samples. The resulting microsensor demon-
strated its potential practicability for the detection and determination of NO in real samples.

Table 2. Real sample analysis studied on the basis of recovery tests of NO2
− for the AuNC@AuDS|CF

microelectrode for real human serum sample (n = 3).

Electrode Added (nM) Found a (nM) Recovery (%) RSD (%)

AuNC@AuDS|CF

10 9.92 99.20 0.31

20 19.87 99.38 0.41

50 49.38 98.76 0.76
a: Average of three measurements (n = 3).

4. Conclusions

In the present study, self-supported gold nanoclusters (Au NC) dispersed on gold
dendrite (Au DS)-based flexible carbon fibre (AuNC@AuDS|CF) microelectrodes (CFME)
are established for sensing NO in human serum samples. A single-step electrochemical
strategy was effectively adopted to fabricate AuNC@AuDS|CF microelectrodes where
carbon microfibre acts as an efficient matrix for the direct growth of AuNC@AuDS without
any binder/extra reductant. The AuNC@AuDS|CF microelectrodes serve as the emergent
electrode materials for the enhanced electrocatalytic oxidation and sensitive detection of
NO in 0.1 M PB because of its large quantity of ECSA, high electrical conductivity, and high
dispersion of Au nanoclusters. The resulting AuNC@AuDS|CF microelectrodes delivered
rapid response time of 3 s, a low limit of detection (LOD) of 0.11 nM, high sensitivity, a
wide linear range of 2 nM–7.7 µM, long-term solidity, good reproducibility, and a strong
anti-interference capability. The present microsensor also tested for the discriminating
detection of NO in real human serum samples, revealing its potential practicability.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios12121128/s1: Figure S1. FE-SEM images of the bare carbon fibre microelectrode (a
and b); Figure S2. EDX spectrum of the bare carbon-fibre microelectrode; Figure S3. Elemental
mapping of the bare carbon-fibre microelectrode; Figure S4. EDX spectra for AuNC@AuDS|CF
microelectrodes from TEM measurements; Figure S5. CV curves of the AuNC@AuDS|CF micro-
electrode recorded for 50.0 µM NO2

− in 0.1 M PB at different scan rates (a), The corresponding
plot of anodic currents against the square root of scan rates (b); Figure S6. Chronoamperometric i-t
curves of the bare CF (c) and AuNC@AuDS|CF (d) microelectrodes recorded in the nonexistence
(dotted curve) and existence (solid curve) of 50.0 µM NO2

− in 0.1 M PB at different applied constant
potentials; Figure S7. The Nyquist curves of the bare CF (a) and AuNC@AuDS|CF microelectrodes
(b) recorded for 50.0 µM NO2

− in 0.1 M PB; Figure S8. (a) CV curves of the bare CF microelectrodes
recorded in 0.1 M PB at different scan rates, starting from 10 to 125 mVs−1, (b) corresponding plot of
anodic double layer currents against the scan rates; Figure S9. (a) CV curves of the AuNC@AuDS|CF
microelectrodes recorded in 0.1 M PB at different scan rates, starting from 10 to 125 mVs−1, (b)
corresponding plot of anodic double layer currents against the scan rates; Figure S10. Plot of relative
catalytic activity of NO oxidation against time at the AuNC@AuDS|CF microelectrodes in 50 µM
NO2

− + 0.1M PB in human serum samples for 5000 s (Eapp: 0.8 V); Figure S11. CV curves of the three
brand-new AuNC@AuDS|CF microelectrodes recorded for 50 µM NO2

− 0.1M PB at a scan rate of
20.0 mV s−1.
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