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Abstract: Metallic dendrites, a class of three-dimensional nanostructured materials, have drawn a
lot of interests in the recent years because of their interesting hierarchical structures and distinctive
features. They are a hierarchical self-assembled array of primary, secondary, and terminal branches
with a plethora of pointed ends, ridges, and edges. These features provide them with larger active
surface areas. Due to their enormous active areas, the catalytic activity and conductivity of these
nanostructures are higher as compared to other nanomaterials; therefore, they are increasingly used
in the fabrication of sensors. This review begins with the properties and various synthetic approaches
of nanodendrites. The primary goal of this review is to summarize various nanodendrites-engineered
biosensors for monitoring of small molecules, macromolecules, metal ions, and cells in a wide variety
of real matrices. Finally, to enlighten future research, the limitations and future potential of these
newly discovered materials are discussed.
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1. Introduction

Nanomaterials have emerged as a fascinating category of materials in the past few
years, with a wide range of applications [1]. In comparison to bulk materials, the electri-
cal characteristics, size-dependent effects, and mechanical properties can be significantly
changed at the nano-scale level [2]. Among several morphologies, noble metal nanos-
tructures with branching architectures have gained much scientific attention because of
their excellent catalytic performance. This unique performance of tree-like structures orig-
inates from their high porosity, large surface area, abundant edge/corner atoms, high
index exposed facets, etc. [3]. For example, bimetallic platinum-on-palladium (Pt-on-Pd)
nanodendrites show increased catalytic activity for oxygen reduction reactions (ORR) [4].
Furthermore, hierarchical nanodendritic structures have interconnected branches that serve
as bridges between each subunit, facilitating electron transmission in a reaction [5]. Nan-
odendrites also impart numerous sharp ends where electrodeposition occurs preferentially,
resulting in a strong electric field that improves catalytic activity by speeding up the reac-
tant movement [6]. Dendrites are observed in crystalline or metallic elements (for example,
silver (Ag), gold (Au), and copper (Cu)) and can be macromolecules, supramolecules,
or nanostructures, whereas dendrimers are heavily branched supramolecules or macro-
molecules [7]. Metallic dendritic nanostructures are extensively employed in various
domains, including solar energy storage, medicinal applications, spectroscopy, and biosens-
ing [8]. Various monometallic nanodendrites based on nickel (Ni), Cu, Au, platinum (Pt),
Ag, cobalt (Co), and other metals have been utilized for the fabrication of biosensors due
to their high conductivity [9,10]. These metals have drawn significantly more attention
than bismuth because agglomeration and structural issues pose significant barriers in the
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development of robust BiNDs [11]. Although monometallic nanodendrites are widely used
in many fields such as catalysis, optics, and biomedicine, their physicochemical properties
are less superior than bimetallic or trimetallic nanodendrites and several morphological
topologies, including alloys, core–shell, mixed structures, and sub-clusters, etc. [12]. The
interferences of these monometallic counterparts are tackled by rigorous nanoengineering
of the dendritic system which includes reaction time, type of nanostructured options, and
while operating the sensors in a controlled potential window and/or fixed applied poten-
tial. Furthermore, in recent years, hybrid nanostructures composed of different metals are
gaining more attention due to the synergistic interactions between two or more metals. The
sensitivity, selectivity, stability, biocompatibility, and catalytic activity of hybrid nanostruc-
tures are enhanced compared to monometallic nanodendrites [13]. They can be constructed
by combining distinct metals, which can either form an alloy, a core shell, or a hybrid
nanostructure with a core shell and alloy [14,15]. This type of integrated nanostructure will
increase the sensor’s analytical performance and pave the way for the development of new
nanostructures with varied dendritic nanohybrids.

Based on the scientific survey conducted through the online database “Scopus”, we
found that no such review articles have been published in recent years for surface analysis
based on metallic nanodendrites. In light of the enormous features and potential of these
dendritic nanostructures, a new evaluation is required to assess the recent articles on the
same. In this review, we have emphasized the nanodendrites-based surfaces produced by
various modification processes, as well as their vast range of applications for evaluating
diverse materials, namely ions, small molecules, macromolecules, and cells. Firstly, we
have examined the properties and various methods of synthesis of this newly discovered
material. Next, we have explained the growth models of metallic nanodendrites formation.
Further, we have scrutinized the recently engineered sensing devices, fabricated with
nanodendritic materials, for surface analysis with the help of various illustrative schemes.
Finally, we have included an extensive tabulated form of nanodendrites-based sensors, with
their sensing mechanism, description, response time, real sample, dynamic range, readout
system, and limit of detection (LOD). Additionally, the limitations and future potential of
these newly discovered materials were explored in order to promote further research.

2. Properties

Metallic nanodendrites have diverse properties owing to their high structural complex-
ity compared to nanospheres, nanodiscs, and nanowires. They possess immense catalytic,
magnetic, optical, and electronic properties [16]. For instance, Guo and his colleagues
discovered that bimetallic nanodendrites Pt/Au showed enhanced optical properties than
the core/shell gold@platinum nanoparticles (Au@PtNPs) [17]. This was due to the dipolar
plasmonic oscillation caused by the deposition of Pt on the core, composed of Au. When
light illuminates metallic nanoparticles (1–100 nm), free electrons on the particles’ surfaces
get stimulated, and as a result, the electron cloud is distributed asymmetrically over the
nanoparticles. A string of oscillations is generated by the movement of electrons, resulting
in an exciting process known as localized surface plasmon resonance (LSPR) [18]. Similarly,
metallic nanodendrites such as Cu, palladium (Pd), and Ag produce extremely confined
electrical fields within the particle’s boundary and hence, localized surface plasmon res-
onance (LSPR), when exposed to an adequate frequency of incident light. The surface
plasmon resonance (SPR) can be visualized in the first NIR (600–800 nm) or the second
NIR (900–1200 nm) based on the dielectric characteristics, size, morphological alignment,
and composition of the nanodendrites [19]. These factors have a significant impact on the
plasmonic nanodendritic structures’ capability for scattering and absorption. For example,
Huang et al. studied the absorption spectrum of Au nanodendrites floating in the water in
the UV–Vis region. They found that from 500 nm to NIR, the spectrum showed a progres-
sive rise in absorption [20]. The highly branched metallic dendrites displayed increased
surface roughness and facets, which can be utilized for surface applications, including
surface-enhanced Raman scattering (SERS) and catalysis [21]. Its larger surface area al-
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lows SERS sensitivity to increase multiple folds. For instance, because of the multi-level
branches, corners, and edges, dendritic Ag nanostructures have greater SERS hotspots
than ordinary Ag nanoparticle films [22]. These branched nanodendrites show enhanced
electrocatalytic activity in various electrochemical reactions (including, oxygen reduction
reactions, methanol reduction reactions, and ethanol oxidation reactions), due to their large
surface area, rapid mass transfer, and superior electrical conductivity [23]. For example,
amino silane-assisted production of Au dendrites showed improved electro-catalytic activ-
ity for methanol oxidation, indicating that it might be used in direct-methanol fuel cells [24].
Surface or size effects of metallic dendrites are generally responsible for the unique mag-
netic behavior. Li et al. demonstrated that the three-dimensional (3D) platinum dendritic
structure’s stable magnetism is a result of the localization of surface electrons brought
about by firmly bound oxygen molecules as well as the local magnetic moment brought
about by oxygen vacancies on nearer platinum and oxygen atoms [25]. Furthermore, due
to the synergistic interactions between the shell and metal core of bimetallic core–shell
nanodendrites, their physicochemical properties, such as magnetic, optical, catalytic, and
electronic properties, have increased in comparison to their monometallic parts [26].

3. Methods of Syntheses

There are a variety of methodologies available to produce 3D nanostructured materials
(NSMs) with controlled shapes and sizes. Some of them, namely galvanic replacement
reactions (GRR), seed-mediated, co-reduction, sonochemical reductions, laser-assisted
synthesis, electroless deposition, and electrochemical deposition, are described in this
section (Figure 1). The fundamental chemical reactions involved in all nanodendrites
synthetic methods are reduction. However, for a better understanding of reactions, we have
discussed specific examples in the subsections below. Nanodendrites’ morphology can
be controlled by utilizing reducing agents, capping agents, and ultrasonic waves [27,28].
They control the metal atoms’ migration and the subsequent deposition. The capping agent
also reduces the interfacial free energy of some facets and makes them thermodynamically
more desirable for the regulated growth of nanodendrites [29]. In addition, morphology
can also be controlled by varying electrodeposition parameters including, concentration
and volume of the electrolyte solution, electrodeposition time, and the electrodeposition
current density [30].

3.1. Galvanic Replacement Reaction

GRR has evolved as a significant method to create highly ordered anisotropic nan-
odendrites to be used in biomedical field, plasmonics, and catalysis [35]. This method
provides a wide range of opportunities to fabricate porous nanostructures. Luigi Galvani,
an Italian physician who invented the first galvanic cell, coined the term galvanic [36].
The mechanism of this process is the replacement reaction, wherein metals of interest are
replaced by first metal (sacrificial template) because of their varied reduction potential [37].
The sacrificial template gets oxidized and dissolved into the solution, and the ions of the
second metal get reduced and deposited on the outer surface of the template. In GRR,
the morphology of the sacrificial template plays a major role in controlling the shape of
nanostructures because nanostructures get deposited on it [33]. Such chemical reactions
have been utilized to develop nanodendrites in various studies. In one such case, the
formation of 200 nm crystalline dendritic silver nanostructures has been formed by GRR. In
this study, a Cu mesh substrate was used as a sacrificial template and replaced silver ions
(Ag+) from a silver nitrate (AgNO3) solution. Hence, the reduction of silver ions resulted
in the formation of silver nanodendrites [38,39]. Usually, reduction reactions occur on one
type of template facet, however, galvanic replacement can continue with facet selectivity
when multiple types of facets are there on a template’s surface. The materials created with
this technique have a high porosity and a large surface area to volume ratio. However,
in this technique, even minor variations in temperature and ion concentrations can affect
the reduction potential’s actual value and hence reaction kinetics [40]. These variations
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might cause a replacement reaction to go in the opposite direction and stop or prohibit
galvanic replacement. The final product’s morphology is significantly influenced by the
GRR site selection on the initial template. The deposition of new atoms must take place
on the low-energy facets, whereas the oxidation/dissolution of the template should occur
predominantly on the surfaces with the highest surface free energy [33]. Consequently,
additional studies are still required to properly understand and precisely manage the
process of reduction on the facet.
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3.2. Seed-Mediated

The seed-mediated growth process, one of the versatile approaches, is utilized for
customizing dendritic architectures of metals [41]. Murphy, in 2001, first coined the term
seed-mediated growth method while preparing nanorods of Au by utilizing Au nanoparti-
cles as seeds [42]. Many exciting studies have been published focusing on the seed-mediated
synthesis of monometallic nanodendrites such as Au, Pd, Pt, etc., having distinct branches
on their surface. The shape-directing substance utilized during the synthesis has been
shown to significantly impact the creation of metallic nanodendrites. This method is also
widely used to make bimetallic anisotropic nanodendrites. The production is mostly ac-
complished by a two-step process involving metal precursors. In the first step, desired
seeds are synthesized. While in the second step, proliferation of the second metal occurs on
the first metal’s seeds surface in the presence of reducing agent and surfactant [43]. For
example, Kobayashi et al. have synthesized Pd–Rh bimetallic nanodendrites using the
seed-mediated method. Firstly, in this experiment, palladium nanocrystals with truncated
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octahedral shapes were synthesized as seeds. Further in the second step, in the presence
of polyvinylpyrrolidone (surfactant), L-ascorbic acid (reducing agent), and Na3RhCl6, Pd–
Rh bimetallic nanodendrites were formed [44]. This approach has two different growth
patterns: non-conformal epitaxial growth and conformal epitaxial growth [45,46]. Several
parameters influence the growth process, including the rate of metal ion reduction, crys-
tallinity plane, stabilizing agents, metal bond energy, and surface free energy [37]. However,
it is not employed for the large-scale synthesis of nanomaterials because if we raise the
concentration and temperature of the seeds, the aspect ratio of the nanomaterials falls and
they have lesser stabilization [47].

3.3. Co-Reduction

The co-reduction method is believed to be the simplest and most basic method for fab-
ricating bimetals with alloyed or intermetallic nanostructures. The simultaneous reduction
of two precursor metal ions with a reducing agent, followed by the nucleation and develop-
ment of nanostructures, is a key reaction in this process [37]. Various studies have used the
co-reduction process to create nanodendrites. In one study, Ortiz et al. have synthesized
Pd–Pt bimetallic nanodendrites using oleylamine as a reducing agent. In order to achieve
co-reduction of both metals, Pd(acac)2 and Pt(acac)2 were dissolved in oleylamine at a
1:1 mol ratio and heated at 160 ◦C [48]. In co-reduction, both surfaces can be capped with
the help of surfactants in order to regulate the shape and size of the nanostructures [49].
The rate of reduction and the ionic interactions between both metals substantially impacts
the synthesis of bimetallic nanodendrites by this method. The reduction rate is directly
related to the metal ion reduction potential; the higher the reduction potential, the more
easily the ions are reduced. However, metals having similar reduction potentials are more
likely to form alloys [50]. He et al. recently emphasized the dendritic Au–Pt bimetallic
system’s fabrication process using ascorbic acid as the reducing agent. In this reaction,
by altering the molar ratio of the Au3+/Pt2+ precursor ions, porous Au–Pt nanodendrites
with a tunable composition were formed [19]. The co-reduction process has simple and
straightforward steps, although contaminants were generated during this process [12].

3.4. Sonochemical Reduction

Sonochemical reduction is one of the physical techniques for generating various types
of NSMs under the influence of high-intensity ultrasonic waves [51]. In this technique,
acoustic cavitation plays the most important role in regulating the efficiency of the reduction
reaction. Acoustic cavitation is the process in which bubbles form, grow, and implosively
collapse in the liquid medium under the influence of ultrasonic waves [38]. This collapse of
bubbles forms localized hot spots with a pressure of 1000 atm, a temperature of around
5000 K, and a cooling rate of over 109 K/s [52]. The thermodynamic far-from-equilibrium
growth of metallic nanodendrites is facilitated by these particular conditions. Ultrasound
has long been recognized as a valuable tool for shape-controlled nanostructure creation.
The most notable benefit of employing ultrasound during nanostructure production is that
it accelerates mass transport and reaction speed. Wang et al. have synthesized a silver
dendritic nanostructure based on the approach discussed above. In this process, sonication
of an aqueous solution of silver nitrate occurs in the presence of an isopropanol (reducing
agent) and polyethylene glycol 400 (dispersant). The reaction time has a significant impact
on the morphology of the nanostructures. Initially, only silver spheroidal nanoparticles
were synthesized; however, as the ultrasonic irradiation time was increased, the silver
nanoparticles began to aggregate and form silver dendrites [52]. In another study, Xiao et al.
have synthesized silver dendritic architectures by utilizing the Raney nickel template and
ultrasonic waves [53]. Despite its widespread usage in the synthesis and modification of
nanomaterials, there are still issues to be resolved regarding the precise effect of sonication
on reaction kinetics and the feasibility of industrial-scale sonoproduction of nanomaterials
for bulk synthesis [54]. To examine the impacts of sonication on reaction kinetics, further
quantitative study at the molecular level is required.
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3.5. Laser-Assisted Method

The laser-assisted method has evolved as a versatile method for fabricating a wide
range of nanomaterials [55]. This is another approach for regulating the metallic nanoden-
drites’ sizes and surface topologies. The laser-assisted method entails focusing a large
amount of energy through a focus lens on a target at a specific location in order to generate
surface atoms to be deposited [56]. The use of laser light to fabricate bimetallic nanoden-
drites with multifunctional systems has generated curiosity among researchers [57]. In
one study, a laser-driven photochemical method was used to create dense and hierarchical
Ag@Au nanodendrites, having an optically adjustable SPR phenomenon. The nucleation
of dendritic-shaped nanoparticles is caused by continuous laser irradiation at a 532 nm
wavelength on Au metals, immersed in a liquid solution of Ag. During laser ablation,
rapid boiling and evaporation of the element Au induces the generation of an explosive
Au plasma. Furthermore, the plasma starts to rapidly condense, and during condensation,
Au nucleation occurred. The nucleation process stopped when the plasma vapor gets
exhausted. Following 532 nm pulse laser irradiation and nucleation, Au nanoparticles’ SPR
gets activated in order to induce the plasmon-mediated development of Ag species on
the precursor by reducing Ag ions. As a result, ultra-small Ag@Au nanoparticles surface
served as a substrate for the synthesis of highly branched and anisotropic Ag@Au nan-
odendrites by a laser-assisted method [58]. This method achieves the synthesis of highly
pure nanodendrites without the use of hazardous chemicals, however its production rates
are minimal [59].

3.6. Electroless Deposition

Electroless plating, often known as a non-galvanic deposition process, or cementation
process, is a cost-effective and non-hazardous micro-electrochemical redox reaction [60].
The reaction involves the utilization of a reducing agent which provides the electrons
needed to reduce the metal ions present in the electrolytic solution. Unlike electrodepo-
sition, this process does not require an external power source for deposition [31]. For
instance, Qiu et al. reported the formation of Ag dendrites on a silicon (Si) wafer by electro-
less metal deposition using an aqueous solution of hydrogen fluoride (HF) and AgNO3.
In this method, silicon etching and silver deposition occurred simultaneously on the Si
wafer surface. Silver atoms were first deposited as nuclei and then as three-dimensional
nanodendrites on the surface of the silicon wafer. As silver was deposited, the surrounding
silicon, which served as the anodes, was successfully etched away [61,62]. Unfortunately,
this method has some drawbacks, including slow metal ion diffusion as well as slow depo-
sition kinetics at an ambient temperature. Additionally, there are challenges with the film’s
adherence and purity, surface selectivity, and ability to control deposit morphology [63].

3.7. Electrochemical Deposition

Electrochemical deposition is a robust, quick, and cost-effective method for the fabri-
cation of nanomaterials. Electrodeposition, in contrast to other nanostructure production
techniques, has a greater growth rate, utilizes less raw materials and energy, produces no
unintended by-products, and has the ability to overcome shape constraints [64,65]. Addi-
tionally, nanoproduction requires no post-deposition processing, generates coatings on a
variety of substrates, and is free of impurities [65]. In this type of deposition, nanomaterials
get deposited on the electrode surface when optimum potential is applied. Positively
charged metal ions from the electrolyte solutions flow towards the negatively charged cath-
ode and are firmly bound to it, causing the selective deposition to only occur on the working
electrode (cathode) [32,66]. The electrons needed for reduction and further deposition of
metals are supplied by the external power source, resulting in the formation of a metal
sheet film on the electrode [67]. This method has an added advantage as it minimizes the
errors in current signal, produced by inappropriate material transfer on the surface of elec-
trodes [32]. Further, the deposition of a modifier film onto the electrode improves adhesion.
To obtain a uniform layer of these deposited nanomaterials, electrochemical techniques
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such as chronoamperometry, linear sweep voltammetry (LSV), double pulse deposition,
cyclic voltammetry (CV), and sonoelectrodeposition are commonly utilized. The electrolyte
solution’s pH affects deposition, which in turn influences the nanostructure uniformity
on the electrode surface. Additionally, electrodeposition is a simple way to control alloy
composition to generate novel multi-layers of nanodendrites that are difficult to achieve
using other techniques [67]. Purohit et al. found that the co-deposition of metallic nanoden-
drites over the GCE electrode increased the electrocatalytic activity. In this study, charged
metal ions (Au and Cu) from an electrolyte solution move towards the electrode surface
(cathode) at a potential of −0.6 V. Further, reduction and deposition of metal ions occurred,
and 3D nanodendritic patterns were formed on the surface of electrodes at 600 s. Thus, by
tuning the optimum potential and deposition time, these three-dimensional morphologies
can be easily formed on the surface and have a reduced fabrication time. The electrode
detected acetaminophen at a 100–1000 nM concentration range with a LOD of 7.5 nM [68].
Some nanostructured composites require various templates, for example, Fu et al. have
used an electrolyte of silver−ammonia [Ag(NH3)2OH] and a low fraction of hexadecyl
trimethyl ammonium chloride (CTAC) to generate Ag dendrites/AgCl hybrid thin films
on an indium tin oxide (ITO) electrode [69]. In light of the significant advantages of this
method over other conventional methods, we mainly concentrated on electrodeposited
nanodendrites for cell, macromolecule, and small molecule detection in this manuscript.

4. Models of Nanodendrites Formation

For the growth of dendritic structures, several models of growth of metallic nan-
odendrites have previously been postulated, namely: (i) diffusion-limited-aggregation
(DLA) model, (ii) cluster–cluster aggregation (CCA) model, and (iii) oriented attachment
model [70,71]. However, oriented attachment and the DLA model are widely used for the
construction of metallic dendrites under non-equilibrium conditions. In 1981, Witten and
Sander introduced DLA to describe the heterogeneous growth of metallic dendrites con-
strained by diffusion [72,73]. In a diffusion-limited aggregation, the seed particle occupies
the center of a lattice and a site far from the lattice is selected from where random walk
is initiated [74]. The metal ions from an electrolytic solution move randomly towards the
nucleation sites due to Brownian motion, stop, undergo reduction, and get absorbed on the
surface of the fractal tree. However, if the random walker is far from the expanding cluster,
it gets terminated, and a new random walk is started towards the surface. This process is
repeatedly carried out to simulate the cluster growth process. The efficiency of DLA models
can be significantly increased by permitting the random walkers to take long steps when
they are distant from the cluster [72,75]. As diffusion increases, dendritic structures expand,
and the angles between branches and trunks increase. After nucleation, aggregation occurs,
resulting in the creation of primary, secondary, and tertiary branches. The surfactant or
template controls the nuclear and directional aggregates, resulting in a non-equilibrium
system that favors the formation of metallic nanodendrites [38]. The viscosity of the solvent
influences the diffusional mass transfer of precursor molecules. Meakin and Kolbon pro-
posed the CCA model, in this model large number of individual atoms randomly diffuse
and adhere to one another forming metal clusters. Further, these clusters continue to
diffuse randomly and touch other particles or clusters to produce a fractal morphological
pattern [76,77]. The diffusive trajectory’s fractal dimension determines the cluster’s fractal
dimension. With decrease in fractal dimension of diffusive trajectory, the fractal dimension
of cluster increases [78]. The CCA models are classified into two types, the diffusion-limited
cluster aggregation (DLCA) model and the reaction-limited cluster aggregation (RLCA)
model, depending on the probability of aggregation following collision. The sticking prob-
ability can be used to represent the probability of aggregation. In the DLCA model, two
particles stick once they collide with each other and have a sticking probability of one,
resulting in faster aggregation. In the RLCA model, two particles do not stick immediately
following collisions and have a sticking probability of less than one, resulting in slower
aggregation [79]. In the DLA model, nanodendrites grow one particle at a time; however, in
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the CCA model, clusters of precursor molecules aggregate at the surface. Penn et al. in 1998
gave an important growth model called oriented attachment (OA) model. It is also called
oriented aggregation or epitaxial assembly. In the oriented attachment model, smaller
nanostructures collide and form loosely bound aggregates composed of randomly oriented
nanostructures. These nanostructures further self-assemble along similar crystallographic
orientations through their specific facets to generate larger anisotropic nanostructures at
a planar interface [80–82]. These facets’ attachment lowers the nanostructures’ overall
free energy by reducing the nanomaterials/liquid interface area. Both charge-stabilized
nanomaterials in polar solvents and ligand-capped nanomaterial suspensions in nonpolar
solvents are capable of undergoing oriented attachment growth [83].

5. Small-Molecule Detection Using Metallic Nanodendrite-Based Sensors

Small molecules are organic molecules with low molecular weights (less than 900 Daltons) [84].
Monosaccharides, lipids, secondary messengers, various metabolites, xenobiotics, and medicines
mainly come under this category. The recognition of these small molecules is crucial for various
applications, including food and environmental analyses, clinical diagnostics, physiological function
studies, and drug development [85]. Although there is a widespread use of spectroscopic and
chromatographic techniques for small-molecule characterizations, sample clean-up, such as solid-
phase extraction, is frequently required [86]. Sample preparation processes are laborious and require
laboratory-based devices, costly, and time-consuming, limiting their utility [87–89].

Furthermore, the sensitivity of these techniques is very low to obtain the desired
results [90]. Hence, fast and sensitive detection methods are needed, which can be trans-
ported easily. Biosensors are bioanalytical devices that can detect an ultralow concentration
of biomarkers via optical, thermal, or electrical signals [91,92]. The biosensors are made
up of three basic elements, i.e., a biorecognition element (BRE), a transducer, and an am-
plifier and processor [93]. The BRE identifies the target, and the transducer changes the
biological recognition event into a quantifiable signal. After that, the signal is processed
by a processor and amplified further to obtain a signal output. BREs or bio-receptors can
be proteins, enzymes, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), aptamers,
and other biological entities [94]. Additionally the incorporation of novel nanostructured
materials further paved a path for improved sensing of analytes [95,96]. This section
discusses the engineering of nanobiosensors based on metallic nanodendrites to sense
different small molecules.

Botulinum neurotoxin (BoNT) is a harmful small molecule that poses a biological
threat to humans. It is lethal at low concentrations of 1 ng/kg and thereby kept in category
A of the Centers for Disease Control and Prevention’s (CDC’s) selected agents list. Among
all serotypes of BoNT, BoNT/A is considered one of the most important bioweapons due
to its highly toxic nature. Sorouri et al. in 2017 [97] constructed a screen-printed carbon
electrode (SPCE)-based impedimetric immunosensor in order to sense BoNT/A quickly
and accurately (Figure 2I). First, by using the square-wave voltammetry (SWV) approach,
gold nanodendrites (AuNDs) were electrochemically coated on the surface of the SPCE to
form AuNDs/SPCE. Further chitosan nanoparticles (CSNPs) were self-assembled on the
surface to form unique nanocomposites of SPCE/AuNDs/CSNPs. AuNDs were success-
fully deposited by optimizing the potentials between−0.8 and 0.2 V. The change in the RCT
was linear to the concentrations of BoNT/A in the 0.2 to 230 pg/mL range. The LOD calcu-
lated for the constructed immunosensor was estimated to be 0.15 pg/mL. The analytical
performance of this device was detected in serum and milk samples [97]. Heavy metal ions,
namely, mercury Hg (II), lead Pb (II), and Cu (II), are very hazardous and cause a variety of
health issues such as brain function loss and Wilson’s disease. As a result, determining the
amounts of such metal ions in water is crucial for evaluating human health and the environ-
ment. Dang et al. in 2018 have designed a carbon fiber cloth (CFC)-based Au nanodendrite
(AuND@CFC) sensor that can simultaneously detect concentrations of Cu (II), Hg (II), and
Pb (II) in water samples (Figure 2II). A piece of CFC (636 mm, 0.72 cm2) was cleaned first
in an ultrasonic bath, followed by activation at a potential of 1.0 V for 300 s. Further, the
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activated CFC was electrodeposited with gold nanodendrites in 5 min. The constructed
sensor has a large electroactive area owing to the nanodendrites’ hierarchical architecture.
Hg (II), Pb (II), and Cu (II) were measured simultaneously in the real matrix using DPASV
(differential pulse anodic stripping voltammetry). The LOD of Hg (II), Pb (II), and Cu (II)
were estimated as 0.15, 0.07, and 0.13 ppb, respectively [98]. Similarly, cadmium metal also
has detrimental effects on the human body which includes inflammatory reactions in the
liver, respiratory system, and kidneys. Campos et al. in 2019 have designed a flexible sensor
based on bismuth nanodendrites for onsite detection of cadmium and lead in sweat. In this
experiment, bismuth micro/nanodendrites were electrodeposited on copper substrate and
fabricated on a flexible substrate polyethylene terephthalate. The flexible copper substrate
was designed using cost-effective materials, namely, an adhesive label containing the design
of a three-electrode electrochemical system, flexible and adhesive conductive copper tape,
and nail polish or spray as a protective layer. The calibration plot showed linearity in the
range of 2–50 µM for both lead and cadmium. The detection limits of cadmium and lead
were estimated to be 5.36 µM and 0.76 µM, respectively. The flexible prototypes developed
have tremendous potential to be employed as perspiration-based wearable medical devices
or as portable sensors to detect toxic metals [66]. Acetaminophen (AP) is generally safe
for therapeutic usage, but overdoses have been linked to several negative consequences,
including hepatotoxicity. In the United States, AP overdosing is responsible for 46% of all
acute liver failure cases. Purohit et al. in 2019 developed novel gold nanodendrites (AuND)
and multi-walled carbon nanotube gold nanoparticles (MWCNT-AuNPs) decorated surface
for analysis of AP as shown in Figure 2III. First, MWCNT was sonicated for 5 min with
a colloidal gold solution (1:1) to form a homogenous suspension. Then MWCNT-AuNPs
composites were coated on a glassy carbon electrode (GCE) surface. Further AuND was
electrochemically deposited on it using chronoamperometry at −0.30 V potential for 1500 s.
The final sensor probe designed was GCE/MWCNT-AuNPs/AuND. CV, LSV, and elec-
trochemical impedance spectroscopy (EIS) were performed for the electrochemical study.
The analytical performance was carried out by LSV and differential pulse voltammetry
(DPV), and based on the DPV signals, the linear range was estimated between 100 and
7500 nM. The LOD obtained was 2.12 nM. The creation of the sensor probe took a small
amount of time and it can be utilized for label-free, cost-effective, and rapid sensing [9].
Neurological disorders, including Parkinson’s, Alzheimer’s, Epilepsy, and Meningitis, are
the second leading cause of death worldwide. Chiral medications, which play an important
function in treating symptomatic neurological illnesses, account for the majority of com-
mercial pharmaceuticals. 3,4-Dihydroxyphenyl-L-alanine (L-DOPA), a chiral medication
and precursor of the catecholamine dopamine (DA), can effectively pass the blood–brain
barrier and generate DAs via metabolic processes, which may have a therapeutic efficacy
on Parkinson’s disease. As a result, discrimination between isomers of a chiral drug is
critical for the safety of drugs, particularly for patients with persistent neurological illnesses
who require long-term therapy. Lian et al. in 2019 synthesized a robust, and extremely
sensitive sensor surface for the enantio-selective sensing of 3,4-dihydroxyphenylalanine
(DOPA) (Figure 2IV). In this work, AuND was electrochemically deposited on GCE by
chloroauric acid (HAuCl4) solution. The AuND/GCE electrode characterizations were
carried out by CVs and EIS techniques. Further, analytical performance was conducted by
highly sensitive DPVs to detect the chiral molecules on AuND/GCE. The calibration plot
showed the linear relationship in concentration between 10 µM and 100 µM. The biosensor
developed has a lot of potential in pharmacological and pathological research involving
chiral drug discrimination [99].
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Figure 2. (I) Schematic illustration showing the immunosensing of botulinum neurotoxin type
A. Reprinted with permission from [97]. Copyright 2017, Sorouri et al. (II) Illustration depicting
carbon fiber cloth-based gold nanodendrites sensor for Pb (II), Hg (II), and Cu (II). Reprinted with
permission from [98]. Copyright 2018, Dang et al. (III) Schematic representation of fabrication of
sensor surface for detecting acetaminophen. (A) nanohybrid preparation, (B) dendrite deposition, and
(C) AP sensing. Reprinted with permission from [9]. Copyright 2019, Purohit et al. (IV) Schematic
illustrating the ratiometric sensing of DOPA by using gold nanodendrites. Reprinted with permission
from [99]. Copyright 2020, Lian et al.

While chloramphenicol (CAP) is frequently utilized to treat numerous infectious ill-
nesses due to its lower cost and good efficiency, it also represents a danger to human
health. Many countries have banned CAP because of its carcinogenic effects and other
severe effects, including aplastic anemia, bone marrow suppression, and serious blood
diseases. However, because of the low cost and high antibacterial resistance, CAP is still
widely being used. Overuse of CAP causes it to remain in the environment or groundwater.
According to previous findings, it has been identified in water samples in Germany, China,
and Switzerland and affects the human body. Peng et al. in 2021 [100] devised an electro-
chemical sensor using carbon nanotubes and copper nanodendrites. First, carboxylated
MWCNTs were coated on the GCE surface, and then copper nanodendrites (CuNDs) were
electrodeposited to form CuNDs/MWCNTs/GCE. The impact of deposition potential
on CAP determination was investigated using CV. The maximum current of CAP was
enhanced when the accumulation potential was elevated from −0.35 to −0.50 V. However,
the current began to decrease progressively when they applied more than−0.50 V potential.
As a result, the best deposition potential was estimated to be 0.50 V. Similarly, the best de-
position time was calculated as 6 s. The electrochemical behavior of GCE, MWCNTs/GCE,
CuNDs/GCE, and CuNDs/MWCNTs/GCE was studied by utilizing the EIS technique.
The analytical performance of CAP was studied by CV and LSV. The dynamic range of
the sensor was 0.15–12 µmol/L, and LOD was estimated as 9.84 nmol/L. Compared to
all other electrode surfaces, CuNDs/MWCNTs/GCE had a larger electrocatalytic active
surface and a faster electron transfer rate for the reduction of CAP. The electrocatalytic area
and electron transfer rate for reduction of CAP were enhanced for CuNDs/MWCNTs/GCE
compared to electrodes simply modified by MWCNTs or copper nanoparticles [100].

The high concentration of toxic chemicals in edibles poses major health hazards,
making food contamination a serious concern. Melamine (2,4,6-triamino-1,3,5-triazine),
a triazine compound, is highly poisonous and causes foodborne illnesses, namely renal
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failure, kidney stones, and even death. Likewise, the thiram molecules present in food
are toxic to the humans’ mucosal membranes and skin, causing vomiting, nausea, and
diarrhea. Sun et al. in 2020 have designed silver nanoparticles (AgNPs) decorated gold
nanodendrites (AuNDs) biosensors for detecting melamine and thiram in food products
quantitatively (Figure 3I). In this work, a template-free electrochemical deposition was
used to create high-purity 3D AuNDs without the pollution of organic chemicals. The
gold nanodendrites were created after optimizing the synthesis conditions with −1.5 V
potential and a 300 s deposition time. Further, AuNDs surfaces were fabricated with
citrate-reduced AgNPs to produce AgNPs coated AuNDs (Ag–AuNDs), which act as a
hybrid SERS-active substrate. Because of the electromagnetic (EM) field enhancement,
the synthesized composites displayed an outstanding Raman enhancement effect. The
calibration plot showed the linearity between 0.01 and 5 mg/L, and 0.12 to 24 mg/L for
melamine and thiram, respectively. The LODs for thiram and melamine were 86.1 µg/L
and 7.38 µg/L, respectively. Real sample analyses have been carried out in apple juice and
milk to detect thiram and melamine. In the future, the Ag–AuNDs substrate could serve as
a potential platform to ensure food safety [101].
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Figure 3. (I) Scanning electron microscopy (SEM) images of Ag−AuNDs sensors’ surface at electrode-
position time of (A) 50 s, (B) 150 s, (C) 300 s, and (D) 450 s, respectively. Reprinted with permission
from [101]. Copyright 2020, Sun et al. (II) Pictorial representations show the electrodeposition of
dendritic gold nanostructures (DGNs) and immobilization of glucose oxidase (GOx) on a graphite
rod (GR) surface for recognition of glucose. Reprinted with permission from [102]. Copyright 2021,
Ramanaviciene et al.

Diabetes is a serious public health issue that is rapidly spreading worldwide. Hence,
developing a robust, reliable, rapid, accurate, and user-friendly device for diabetic patients
is extremely important. Ramanaviciene et al. in 2021 [102] constructed a template-free
biosensing platform for glucose detection, as shown in Figure 3II. This experiment used fine
emery paper to polish the graphite rod (GR) electrode. Later, gold nanodendrites were elec-
trochemically deposited using a solution containing HAuCl4 in potassium nitrate (KNO3)
to form dendritic gold nanodendrites/graphite electrodes (DGNs/GR). DGN synthesis on
the GR electrode was carried out using three electrochemical methods: pulse amperometry,
constant potential amperometry (CPA), and DPV. The 6.0 mmol/L HAuCl4 concentration,
400 s time, and −0.4 V potential were optimum for electrodeposition. Glucose oxidase
(GOx) solution was further immobilized on DGNs/GR to form (GOx/DGNs/GR). The
as-prepared sensor showed a linear relationship between 0.1 and 9.97 mmol/L. The LOD
was calculated as 0.059 mmol/L. Real sample analysis was done in human serum, and the
developed device paved the way for future developments by employing other enzyme
immobilization approaches and/or redox mediators [102].

Apart from this, we have included a comprehensive Table 1 that shows the nanodendrites-
based sensors for recognizing different small molecules in real matrix, illustrating their sensing
mechanisms, response time, readout systems, dynamic range, and LOD, etc.
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Table 1. Various metallic nanodendrites-based biosensors for sensing of small molecules. (NR—not reported).

Sr. No. Sensing
Molecule

Detection
Techniques Description Deposition

Potential
Response
Time Real Sample LDR LOD Reference

1 Uric acid Amperometry

After being fabricated by ordered
mesoporous carbon (OMC),

screen-printed carbon electrode (SPCE)
was electrodeposited with a

three-dimensional (3D) dendritic
nanomaterial of the

palladium−platinum (Pd−Pt) alloy

0.14 V NR Serum 0.00025–0.80 mM 0.25 µM [103]

2

Pesticides

(a) Paraoxon DPV

First, BiVO4 was hydrothermally
synthesized and characterized. It was
then decorated on the screen-printed
electrode for sensing of Paraoxon, an

organophosphorus pesticide

NR NR River water 0.199–1.96 µM 0.03 µM [104]

(b) Dimethoate Optical

Ag nanodendrite structures were
developed on the optical fibers’ surface

by a cost-effective laser-assisted
photochemical method

NR NR NR 0.005–4 ppm 0.002 ppm [105]

(c) Permethrin Optical

The procedure was initiated with the
synthesis of SERS-active optical fiber

substrates. Then, using a laser-assisted
photochemical technique, silver (Ag)

nanodendrites were deposited on the tip
of the fiber core

NR NR NR 0.1–20 ppm 0.0035 ppm [106]

3

Metal ions

(a) Selenium Anodic stripping
voltammetry

Glassy carbon electrode (GCE) modified
with reduced graphene oxide (rGO) and
further AuNDs was electrodeposited to

form GCE/P-rGO/AuNDs

−0.2 V NR Seawater 3–300 nM 0.9 nM [107]

(b) Cadmium
ion (Cd2+)

and Lead ion
(Pb2+)

DPASV

Bismuth nanodendrites (BiNDs) were
fabricated by one-step electrodeposition

of bismuth (Bi) and simultaneously

detected Cd2+ and Pb2+ ions. Bromide
ion (Br-) was used as a co-reagent to

inhibit agglomeration of Bi

−2.8–−2.6 V NR
Pure water,

seawater, lake
water

2–270 ppb

0.09 ppb

(Cd2+)
0.05 ppb

(Pb2+)

[11]

(c) Mercury

ion (Hg2+)

Electro
chemiluminescent

immunoassay

GCE was modified with gold
nanoparticles (GNP20), and further

nanodendritic structure of Pt/Pd was
loaded on it. In this experiment, GNP50

was employed as a biocarrier to load
more Pt/Pd NDs

NR NR Tap water, Lake
water 0.05–1000 ng/mL 16 pg/mL [108]

(d) Hg (II), Cu
(II), and Pb (II) DPASV

One-step electrodeposition was used to
create AuNDs structures on graphite

pencil lead (GPL)
−0.3 V NR Lake water 1–50 ppb

0.18 ppb for
Hg (II),

0.19 ppb for
Cu (II), 0.12

ppb for Pb (II)

[109]

(e) Nitrite Amperometry

GCE modified with poly dimethyl diallyl
ammonium chloride-reduced graphene
oxide (PDDA-RGO), and further copper

nanodendrites (CuNDs) were
electrodeposited on it to form

PDDA-RGO/
Cu NDs/GCE

−1 V 3 s NR 1–15,000 µM 0.06 µM [110]

4 Bisphenol A CV, DPV
GCE modified with cetyl trimethyl

ammonium bromide (CTAB), and further
AuND were electrostatically deposited

NR 5 min Drinking water 0.025–10 µM 22 nM [111]

5

(a) Glucose LSV

Cu nanodendrite foams (CuND foams)
were electrodeposited on gold array
electrodes under acidic conditions at

negative overpotentials

−5.0 V NR Human serum 0.01–22.55 mM NR [112]

(b) Glucose Amperometry

A simple and easy displacement process,
without any surfactants, was used to

construct silver nanodendrites on
copper rods

NR <3 s NR 0.02–7.4 mM 0.1 µM [113]

(c) Glucose Amperometry

A simple electrochemical deposition
approach was used to produce Ag

nanodendrites on a Cu mesh substrate,
which showed high electrocatalytic

activity and SERS sensitivity

1.7 V NR Human urine 0.5–5 mM 0.005 mM [114]

(d) Glucose CV

A Cu–Co alloy nanodendritic surfaces,
with a hierarchical structure, was

electrochemically prepared for detection
of glucose

−0.80 V 5 s Human blood 0.5 µM–14.0 mM 0.10µM [10]

(e) Glucose Amperometry

Indium tin oxide (ITO) electrode was
decorated with zinc oxide nanorods

(ZnONRs) and further platinum
nanodendrites (PtNDs) were synthesized
on it via the chemical reduction method

NR NR Human blood 0.05–1 mM 0.03 mM [115]

6 Cholera toxin DPV

Using poly-(2-cyano-ethyl)pyrrole
(PCEPy), dendritic gold architecture was

functionalized with antibodies. Here,
conductive polypyrrole polymer PCEPy
and directed electrochemical nanowire
assembly (DENA) were combined to

facilitate functionalization.

NR NR NR NR 1 ng/mL [116]
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Table 1. Cont.

Sr. No. Sensing
Molecule

Detection
Techniques Description Deposition

Potential
Response
Time Real Sample LDR LOD Reference

7

(a) H2O2 Chronoamperometry

GCE modified with p-benzoic
acid-2,2′ :5′ ,2”-terthiophene (TBA)

polymer and further gold nickel (AuNi)
dendrites were deposited

electrochemically to detect H2O2

–0.8 V 3 s Cancer cell, normal
cell

5–40 nM,
80 nM–30µM,

200 µM–2.5 mM
5 nM [117]

(b) H2O2 Amperometry

A simple and easy displacement process,
without any surfactants, was used to

construct silver nanodendrites on
copper rods

NR <3 s NR 0.2–19.2 mM 0.1 µM [113]

(c) H2O2 CV

GCE electrode modified with
(Pd/Pt-NDs) and rGO, which was coated

with poly (diallyldimethylammonium
chloride) (PDDA)

0.018 V 5 s Fetal bovine serum
(FBS) 0.005–0.5 mM 0.027 µM [118]

(d) H2O2 CV

A copper–cobalt (Cu–Co) alloy
nanodendritic surface, with a

hierarchical structure, was
electrochemically prepared for detection

of glucose

−0.80 V 5 s Human blood 1.0 µM–11 mM 0.75 µM [10]

(e) H2O2 CV

DPV technique was used to
electrodeposit bismuth nanodendrites

(BiNDs) on gallium nitride
(GaN) electrode

−0.05 V NR
Fetal bovine serum

(FBS), milk, tap
water

10 µM–1 mM, 1–10 mM 5 µM [119]

8 Pyrazinamide
(PZA) drug DPV

GCE was altered with zinc–aluminum
layered double hydroxide (Zn–Al LDH),

and further nanodendritic silver
(AgNDs) were electrodeposited on

the surface

–0.3 V NR Human serum and
urine 9.0 × 10−7–5.2 × 10−4 mol/L 7.2 × 10−7 mol/L [120]

9 Amino acids

(a) Tryptophan DPV

GCE was modified by new polymeric
materials made from oligolactides by
cross-linking with tetracarboxylated

thiacalix [4] arene in a cone, partial cone
and 1,3-alternate configurations and then
silver was deposited by potential cycling

in the polymer film pores

0.7 V NR Sedative medicine 0.1–100 µM 0.03 µM [121]

(b)
Tryptophan SWV

First, Ag dendrites were synthesized,
and then polythiophene (PT)–Ag

nanodendrites composite were formed
by electrostatic interaction and fabricated

on the GCE surface

NR NR Soybeans extract 200 nM–400 µM 20 nM [122]

10 Acetaminophen Amperometry

First, PDDA-coated gold dendrite, and
poly (sodium 4-styrenesulfonate) (PSS)
coated rGO was synthesized. Finally,

rGO-gold dendritic surface was
constructed by self-assembly of both for

acetaminophen detection

NR NR Tablets, human
urine 0.07–3000 µM 0.005 µM [123]

11 Hydrazine Amperometry

ITO electrodes were modified with silver
dendritic structures by using an aqueous
solution of AgNO3 and KNO3 without

any surfactants

−0.80 V <5 s
Tap water, distilled

water, and river
water samples

100–1700 µM 0.5 µM [124]

12 Paracetamol CV,
Chronoamperometry

Silver nanodendrites and its composite
with graphene oxide (GO) were

constructed by galvanic replacement
method and dropcasted on GCE

NR <3 s NR 0.5–10 mM 0.025 µM [125]

6. Macro-Molecules Detection Using Metallic Nanodendrite-Based Sensors

Macromolecules are polymeric compounds with a high molecular mass and are made
up of thousands of monomers. However, all macromolecules are not polymeric in nature.
DNA, RNA, and proteins are the most common polymeric macromolecules, while lipid
moieties and macrocycles are non-polymeric in nature. Macromolecules play a vital role as
biomarkers, biocatalysts, and hormones in the biological system. This section has described
different biosensors based on nanodendrites for macromolecule detection.

Acute myocardial infarction (AMI), often known as a heart attack, is a fatal disorder
that arises when blood circulation to the heart muscles is blocked suddenly, resulting
in tissue damage. The mortality and morbidity rates of AMI are high, hence finding an
accurate AMI diagnosis method is of utmost importance. The most prominent macro-
molecular biomarker for detecting myocardial damage and necrosis is cardiac troponin
I (cTnI). Cen et al. 2021 have developed a highly selective and sensitive immunosensor
with advanced nanomaterials, as displayed in Figure 4I. First, a one-pot thymine-mediated
method was used to synthesize the porous trimetallic gold/platinum/palladium fluffy
nanodendrites (AuPtPd FNDs). Then AuPtPd FNDs were dissolved in water and sonicated
to get a uniformly dispersed suspension. The suspension mentioned above was coated on
a GCE surface and dried. Further, the cTnI Ab solution was drop-coated on the AuPtPd
FNDs customized GCE at 4 ◦C for 12 h, later bovine serum albumin (BSA) coating was
applied to prevent non-specific binding. The immunosensor fabrication was characterized
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using CV and EIS, while the concentration dependent study of biomarkers was done by
DPV. The calibration plot showed a wide linear range from 0.01–100.0 ng/mL and LOD of
3 pg/mL. The AuPtPd FNDs’ increased catalytic activity is primarily due to two factors: (i)
the tri-metals’ synergistic activity accelerates electron transport, and (ii) the metallic den-
dritic nanostructures have a large surface area and many active sites, resulting in increased
catalytic activity. In the near future, this biosensor can also be used to detect different
cardiac biomarkers in real samples [126].
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Prolactin (PRL), often called lactotrophin, is another proteinaceous macromolecule
of 23 kDa. These 199 amino acids long hormone is secreted by the pituitary gland and
performs many functions. It regulates lactation, reproduction, metabolism, the endocrine
system, immunological system, and osmotic pressure. When there is an increase in pro-
lactin levels, a condition called hyperprolactinemia occurs, which is linked with various
diseased conditions, including primary hypothyroidism, prolactinoma, and polycystic
ovary syndrome (PCOS). Whereas when there is a low level of PRL (<5 ng/mL) in the
body, a greater incidence of metabolic disorders, namely glucose intolerance and insulin
resistance, occurs. As a result, type 2 diabetes is more likely to occur. Zhang et al., 2021,
have constructed a highly sensitive sandwich electrochemical biosensor to detect prolactin
by utilizing a metal–organic framework (MOF) (Figure 4II). PdPt NDs were first produced
at an ambient temperature via a one-step aqueous-phase method. Then, they were conju-
gated with MOF, NH2-MIL-53(Fe), followed by labelling with antibody 2 (Ab 2) to form
Ab2-PdPt NDs@NH2-MIL-53(Fe). Further, gold nanoparticles (AuNPs) decorated with
amino-functionalized graphene sheets (AuNPs@NH2-GS) were formed and fabricated on
GCE and served as a matrix for faster electron transfer and immobilization of antibody
1 (Ab 1). Different concentrations of prolactin were incubated on the modified electrode.
After that, the electrode surface was decorated with Ab2-PdPt NDs@NH2-MIL-53(Fe). The
nanocomposite formed boosted the electrocatalytic activity for hydrogen peroxide (H2O2)
reduction and increased the antibody immobilization by forming a bond between PdPt NDs
and NH2 of Ab2. The electrochemical characterization was done by CV and EIS, while the
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concentration-dependent study was done by the amperometric i-t method. The calibration
curve displayed the linearity between 0.001–500.0 ng/mL, and the LOD was estimated as
1.15 pg/mL. Hence, the suggested immunosensor has higher specificity, sensitivity, and
better stability, implying that it has a great clinical diagnostic potential [127].

Carcinoembryonic antigen (CEA) is a glycoprotein biomarker linked to various tumors,
including lung, pancreatic, and colon cancers. As a result, quick and sensitive detection
of CEA is crucial for clinical diagnosis and timely therapy. Zhang et al. 2021, used a
conducting polymer polydopamine and bimetallic nanodendrites to develop an electro-
chemical aptasensor for CEA measurement (Figure 5I). First, polydopamine@graphene
oxide (PDA@Gr) was prepared and fabricated on GCE, followed by the addition of aptamer
1 (Apt1) to form Apt1/PDA@Gr. The modified electrode was dipped in a solution of CEA
at 4 ◦C for 40 min. Further Pd–Pt nanodendrites were formed on the surface to form
PDA@Gr/Pd–PtNDs. This surface was used as a matrix for hemin/G-quadruplex (G4)
immobilization, having a peroxidase-like activity, to produce the secondary aptamer. The
secondary aptamer (Apt2) was trapped on the top of the electrode surface by the bonding
of CEA and Apt2. A sandwich reaction occurred between the corresponding aptamers
and CEA, whereby the Apt2 facilitated the hydroquinone (HQ) oxidation with H2O2. The
signal was amplified and was proportional to CEA concentrations. The linear dynamic
range is between 50 pg/mL–1.0 µg/mL, with a LOD of 6.3 pg/mL. PDA@Gr/Pd-PtNDs
and hemin/G4 showed synergistic catalysis toward HQ, resulting in a dual amplification
and increased sensitivity [128].

Similarly, carbohydrate biomarkers also serve a similar function as proteins and
glycoproteins in disease diagnosis. Breast cancer, a malignant tumor in women, poses a
significant health danger with a high fatality rate. One of the most well-known markers
for breast cancer diagnosis is carbohydrate antigen 15-3 (CA15-3). Ge et al. 2021 have
devised a label-free immunosensor using a directing growth agent, as shown in Figure 5II.
In this experiment, the first alloyed nanodendrites of platinum and cobalt (PtCo NDs)
were synthesized using a solvothermal process. Herein, L-carnosine was used as the co-
directing agent for the formation of nanodendrites. Then, the PtCo NDs suspension was
fabricated on GCE. The CA15-3 antibody solution was attached through Pt–N bonds on the
PtCo NDs surface, followed by BSA binding. This unique dendritic architecture provides
a high surface area and a greater catalytic active site for the ORR. A label-free surface
for sensitive recognition of CA15-3 was built, based on ORR signal amplifications. The
stepwise assembly of the biosensor was studied by DPV and EIS techniques, while DPV
did the concentration-dependent study. The as-prepared sensor displayed a dynamic range
between 0.1–200 U/mL with a LOD value of 0.0114 U/mL. This research paves the way for
detecting other tumor biomarkers in clinical diagnosis [129].

Enzyme biocatalysts speed up the chemical reactions and, hence, metabolism. Alkaline
phosphatase (ALP) is a phosphate-cleaving enzyme in various biofluids such as serum,
saliva, and other secretions of the body. It plays a vital role in various physiological pro-
cesses in the body. However, when it exceeds 350 U/L, it causes liver and bone disorders,
hepatitis C, and cancer. Mahato et al. 2019 have designed an impedimetric immunosensor
by using a new type of Au-branched structures (Au nanodendroids) (Figure 5III). First,
AuNPs were electrochemically deposited on bare SPCE, followed by electrochemical de-
position of Au nanodendroids. Further, graphene oxide sheets were coated on the sensor
surface, and the surface was then activated for anti-ALP immobilization. The stepwise
assembly of the biosensor was evaluated by LSV and EIS methods, while a concentration-
dependent study by EIS. The linear range between 100 and 1000 U/L and LOD value of
9.10 (±0.12) U/L were achieved for ALP detection. The sensor developed is label-free,
robust, and is easy to fabricate, as well as it is employed in point-of-care testing of ALP [95].
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Nucleic acid, another macromolecule that acts as a blueprint for life, stores and
expresses genetic information. For the sensing of the same, Li et al. constructed an
electrochemiluminescence (ECL) emission sensor by utilizing a DNA tetrahedral scaffold
as a switch to modulate the gap between cadmium–tellurium nanocrystals (CdTe NCs) and
AuNDs (Figure 5IV). AuNDs, on the other hand, served as an ECL quencher and enhancer.
In this experiment, GCE was first to be electrodeposited with a chitosan solution, followed
by coating of CdTe NCs to form CdTe NCs/GCE. The further electrode was dipped in a
DNA tetrahedron solution to attach DNA tetrahedron in a stem loop hairpin structure on
the surface of the electrode. In turn off mode, the DNA tetrahedron was in a relaxed state
on the CdTe NCs layer and the hairpin structure was closed. Due to Förster resonance
energy transfer (FRET), the CdTe NCs ECL emission was suppressed by AuNDs, present
on the top of the DNA tetrahedron. In the presence of target DNA, the hairpin structure
gets converted to a rod-like form, and it increases the distance between CdTe NCs and
AuNDs, leading to a considerable rise in ECL, generated by LSPR of AuNDs. EIS was used
to characterize the surface of the electrode and the calibration plot showed the linear range
from 1.0 to 500 fM and LOD of 30 fM. The ECL biosensor based on nanodendrites showed
excellent sensitivity and selectivity in the serum sample; hence, we hope that it will open
up new possibilities for the detection of other biomarkers with high sensitivity [130].
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Apart from this, we have included a comprehensive Table 2 that shows the nanodendrites-
based sensors for recognizing different small molecules in real matrix, illustrating their
sensing mechanisms, response time, readout systems, dynamic range, and LOD, etc.

Table 2. Various metallic nanodendrites-based biosensors for sensing of macromolecules. (NR—not reported).

Sr. No Sensing
Molecule

Detection
Techniques Description Deposition

Potential
Response

Time
Real

Sample LDR LOD Reference

1

Proteins

(a) Human
epididymis

protein 4
DPV

Trimetallic AgPtCo nanodendrites were
synthesized by convenient one-pot

method
NR NR

HE-4-
positive
ovarian
cancer

patients

0.001–50 ng/mL 0.487 pg/mL [131]

(b) Alpha-
fetoprotein

(AFP)
Amperometry

Graphene (NH2-GS) doped mesoporous
Au@Pt nanodendrites (NH2-GS/Au@Pt)

and poly-dopamine coated N-doped
multi-walled carbon nanotube

(PDA-N-MWCNT) was used to
synthesize sandwich electrochemical

immunosensor for AFP sensing

NR NR NR 0.1 pg/mL–10 ng/mL 0.05 pg/mL [132]

(c) Alpha-
fetoprotein

(AFP)
CV

First, poly (diallyldimethylammonium
chloride) decorated molybdenum
disulfide nanosheet (MoS2) was
synthesized and hybridized with

polypyrrole nanotubes. Then, platinum
nanodendrites were fabricated to form Pt

NDs/PDDA/MoS2@PPy NTs

NR NR Human
serum 50 fg/mL–50 ng/mL 17 fg/mL [133]

(d)
Ovalbumin

(OVA)
Optical

Antibody-modified silver
dendrites were coupled with

surface-enhancedRaman scattering
(SERS) phenomena for identification of

OVA

NR 30 min Milk NR 5 µg/mL [134]

2 Hemoglobin DPV

On the Au electrode surface,
haemoglobin (Hb)-imprinted poly(ionic

liquids) (HIPILs) were built to create
Au/AuND/HIPILs. Gold nanodendrites

were earlier used to alter the Au
electrode surface

−0.9 V NR
Bovine
blood

sample
1.0 × 10−14 –1.0 × 10−4 mg/mL 5.22 × 10−15 mg/mL [135]

3

Nucleic
acid

(a) DNA Chronoamperometry

The one-pot method was utilized to
construct PdPt

nanodendrites, which acted as a carrier
for the DNA probe. Further, the PdPt
NDs were combined with melamine

NR NR Human
serum 1 fmol/L–1 nmol/L 0.33 fmol/L [136]

(b) miRNA DPV

Nanodendritic gold structure was
electrodeposited on the ITO/Ti/Au, and
further graphene was deposited on the

surface.

−1.8 V NR NR 0.43 pM–1.13 nM 0.34 nM [137]

(c)
lncRNAs CV

Graphene oxide/Au/horseradish
peroxidase surface was decorated with
Pt–Pd bimetallic nanodendrites to form

PtPd/BND/BNF@GO/Au/HRP
nanocomposites. Thionine or a detecting

probe was coated over Au particles

NR NR Serum 1.00 × 10−3–1.00 × 103 pM/mL 0.247 fM/mL [138]

4 Enolase DPV

GCE modified with AuNPs and further
forms GCE/Au/Ab1/BSA/NSE surface.

Finally, TB/WP6@PdPt-Ab2 were
deposited on the surface

NR NR Human
serum 0.0003–100.00 ng/mL 0.095 pg/mL [139]

Carbohydrates

(a) Carbohydrate
antigen

15-3
(CA15-3)

DPV

First, Au@Pt core–shell nanodendritic
crystals (Au@Pt NCs) were synthesized
by one-pot wet-chemical strategy. Then,

it was dispersed homogenously with
ferrocene-grafted-chitosan (Fcg-CS) on

GCE surface

NR NR Serum 0.5–200 U/mL 0.17 U/mL [140]

5

(b) Carbohydrate
antigen

15-3
(CA15-3)

DPV

Using a one-pot solvothermal technique,
and co-structure-directing agent,

L-carnosine platinum-cobalt
nanodendritic (Pt-Co NDs) surfaces

were made

NR NR Human
serum 0.1–200 U/mL 0.0114 U/mL [129]

6 Insulin
hormone Amperometry

Antibody 1 was immobilized on glassy
carbon electrode

(GCE) surface altered with gold
nanoparticles (AuNPs). Finally, antibody

2 conjugated Pt-Co-Cu nanodendrites
were electrodeposited

−0.2 V NR Serum 0.2–2000 pM 0.08 pM [141]

7

17
β-estradiol

(E2)
hormone

EIS

Boron doped diamond (BDD) electrode
surface was used to grow dendritic gold
by a double template method. Further 17

β estradiol (E2) aptamers were
functionalized on the surface of the

Au/BDD electrode by covalent bonding
(Au-S) to capture E2.

NR NR Water 1.0 × 10−14 to 1.0 × 10−9 mol/L 5.0 × 10−15 mol/L [142]

8

Glycoprotein
Carcinoembryonic

antigen
(CEA)

DPV

Bimetallic core–shell
rhodium@palladium nanodendrites

(Rh@Pd NDs) synthesized on MWCNT,
functionalized with sulfo

group (MWCNTs-SO3H) to prepare
Rh@PdNDs/MWCNTs-SO3H composite

surfaces

NR NR Human
serum 25 fg/mL to 100 ng/mL 8.3 fg/mL [143]
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7. Detection of Cells Using Metallic Nanodendrite-Based Sensors

Nanodendritic-based biosensors also play a vital role in the sensing of harmful cells.
However, very limited work has been done to detect whole cells. Two reported results are
discussed here. In a fascinating study by Yang et al. in 2013, an underwater transparent nan-
odendritic silica coating-based device was designed for capturing cancer cells (Figure 6I).
First, a three-step template method was used to fabricate nanodendrites. Further, biotiny-
lated epithelial cell adhesion molecule antibody (anti-EpCAM) was immobilized to the
nanodendritic coating. The modified coatings showed excellent efficiency of cell capture, by
enhancing the topographic communications between the unique nanodendritic structure
and cancer cells. The MCF 7 breast cancer cell line overexpresses a membrane antigen called
the epithelial cell adhesion molecule, EpCAM. As a result, covalently adsorbed biotinylated
anti-EpCAM on the surface captured and detected the cancerous cell. To investigate the
therapeutic properties of the anti-EpCAM-fabricated nanodendrites, they conducted a
number of tests to identify cancer cells in blood samples. MCF 7 cells, labelled with red
dye, were injected into rat whole blood at different doses of 20, 50, 100, and 250 cells/mL.
It resulted in a significant capture of 43–60% of spiking cells from blood under ideal cir-
cumstances. Hence, fabricated nanodendritic silica coating showed a dual-capability of
effectively trapping and monitoring cancer cells [144].
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Later, Ge et al. in 2015 have designed an electrochemical sandwich sensor by combin-
ing three metals to form Au@PtPd dendrites as displayed in Figure 6II. A simple approach
was used to make Au@PtPd core–shell trimetallic dendritic NPs (Au@PdPt NPs), having
a core of Au and shell of Pt−Pd alloy dendrites. First, in the sample zone of the paper
working electrode (PWE), a porous layer was created by growing the AuNPs layer on the
surface of cellulose fibers. Then, folic acid was decorated on its surface, and target cells
were trapped on folic-acid-terminated Au-PWE. Further, the co-deposition of dendritic
PtPd shells occurs on citrate-capped gold nanoparticles. The dendritic gold@platinum
palladium nanoparticles (Au@PtPd NPs) displayed peroxidase-like activity and improved
catalytic properties. Click chemistry was used to conjugate folic acid on dendritic Au@PtPd
NPs’ surface, which further interacted with overexpressed folate receptors on the cancer
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cells’ surfaces. The detection of K-562 leukemic cells was performed using DPV curves,
and the current was linear between 1.0 × 102 and 2.0 × 107 cells/mL. The LOD for cell
concentration was estimated to be 31 cells/mL. Hence, the postulated robust non-enzymatic
nanodendritic sensor with high sensitivity could be a promising choice for point-of-care
diagnostics compared to enzymatic sensors. Enzyme-based sensors have some limitations,
including low stability due to denaturation, as well as their preparation and purification
being time-consuming and costly [145].

8. Conclusions and Future Prospects

Metallic nanodendrites have made remarkable progress in recent years and hold
great promise in several biomolecular analyses. The first section highlighted the unique
properties, various synthetic methods, and growth mechanisms of the branched metallic
nanostructure. Different synthetic methods include GRR, seed-mediated, co-reduction,
sonochemical reduction, laser-assisted methods, electroless deposition, and electrochemical
deposition. In contrast to other methods of nanostructure synthesis, electrodeposition is
very quick, requires no chemical reductants or oxidants, uses very little energy and raw
materials, and is eco-friendly and cost-effective. In this review, we mainly focused on
electrodeposited nanodendrites for detection of molecules due to the major advantages
of this technology over other traditional methods. Several monometallic, bimetallic, and
trimetallic nanodendrites based on Ni, Cu, Au, Pt, Ag, Co, and other metals have been
utilized for diverse applications. The surface engineering of bimetallic and trimetallic nan-
odendrites to make varied dendritic composites is gaining wide interest because it tunes the
nanodendrites’ electronic structure, boosts conductivity, increases the efficacy of the sensing
layers, and reduces fouling effects. Different positively charged metal ions flow towards
the negatively charged working electrode and get deposited on the surface in accordance
with Faraday’s law, resulting in the formation of layers of nanodendrites. It is also worth
mentioning that all these processes happen on the surface of electrodes/chips based on the
electrochemical nanotuning optimization approach. The formation of these structures on
different types of electrodes (shape, area, etc.) are optimized in every experimental setup.
The nanodendrites on the electrode’s surface modify the electrode’s geometric/effective
area, which leads to an accumulation of more charge carriers and thus increases the output
current values. We have extensively discussed several biosensing strategies, including
immunosensing and sandwich-type electrochemical sensing, based on branched metallic
dendrites to detect small molecules, macromolecules, and cells. Label-free immunosensors
provide potential applications for biomarkers screening as it shows sensitive detection
with a wide linear range and low detection limit. In addition, label-free sensors reduce
cost and sensing time, and their simplicity facilitates the formation of portable devices.
These nanodendrite-based sensors exhibit excellent repeatability, even between five to ten
analyses for various analytes, and have a standard deviation of less than 4%. Although,
the features of 3D bimetallic nanodendritic materials are of great interest in developing
sensors, there are only a few reports available. Hence, additional research is needed in this
field to fabricate more efficient dendrites-based nanocomposites. More emphasis should
be given to build miniaturized biosensing platforms that are robust and sensitive. We
hope that the interesting features of metallic nanodendrites may open the doors in the
field of nanomedicine in upcoming years. Additionally, the larger surface area and more
adsorption sites of this unique 3D architecture can provide a surface for attaching a specific
ligand, making it potentially beneficial for future diagnostic applications and the in vivo
delivery of pharmaceuticals.
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