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Abstract: Fresh pork is prone to spoilage during storage, transportation, and sale, resulting in
reduced freshness. The total viable count (TVC) and total volatile basic nitrogen (TVB-N) content are
key indicators for evaluating the freshness of fresh pork, and when they reach unacceptable limits,
this seriously threatens dietary safety. To realize the on-site, low-cost, rapid, and non-destructive
testing and evaluation of fresh pork freshness, a miniaturized detector was developed based on a
cost-effective multi-channel spectral sensor. The partial least squares discriminant analysis (PLS-
DA) model was used to distinguish fresh meat from deteriorated meat. The detector consists of
microcontroller, light source, multi-channel spectral sensor, heat-dissipation modules, display system,
and battery. In this study, the multispectral data of pork samples with different freshness levels
were collected by the developed detector, and its ability to distinguish pork freshness was based on
different spectral shape features (SSF) (spectral ratio (SR), spectral difference (SD), and normalized
spectral intensity difference (NSID)) were compared. The experimental results show that compared
with the original multispectral modeling, the performance of the model based on spectral shape
features is significantly improved. The model established by optimizing the spectral shape feature
variables has the best performance, and the discrimination accuracy of its prediction set is 91.67%. In
addition, the validation accuracy of the optimal model was 86.67%, and its sensitivity and variability
were 87.50% and 85.71%, respectively. The results show that the detector developed in this study is
cost-effective, compact in its structure, stable in its performance, and suitable for the on-site digital
rapid non-destructive testing of freshness during the storage, transportation, and sale of fresh pork.

Keywords: pork freshness; multi-channel spectral sensor; spectral shape feature; qualitative analysis;
on-site detection

1. Introduction

Fresh pork is favored by consumers all over the world due to its freshness, tender-
ness, deliciousness, and nutritional content, but it is also considered to be one of the most
perishable foods [1,2]. It is extremely susceptible to microbial contamination and other en-
vironmental factors in all aspects of production, and a large number of harmful substances
are produced under the action of exogenous microbial reproduction and enzyme-catalyzed
reactions, which seriously threatens food safety and public health [3]. Freshness is an impor-
tant indicator to determine changes in the quality of fresh pork and to measure whether it
is edible [4]. The total viable count (TVC) and total volatile basic nitrogen (TVB-N) content
are the key indicators for freshness evaluation, and countries and organizations such as
China and the FAO have clearly stipulated this. Therefore, judging the freshness of fresh
pork based on TVC and TVB-N content is increasingly valued by producers and consumers.
Traditional detection methods based on physicochemical and biological analyses, such as
the Kjeldahl method [5] and colony counting method [6], can achieve accurate measure-
ments, but they are time-consuming and destructive. It is thus difficult to meet the needs of
producers and consumers for rapid on-site non-destructive detection. Therefore, there is an
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urgent need for real-time and rapid non-destructive detection technology and equipment
for freshness to guide the production and processing by producers and the consumption
by consumers [7,8].

Optical detection technologies, such as visible/near-infrared spectroscopy [9] and
hyperspectral technology [10], have been widely used in the rapid non-destructive detection
of fresh meat. In particular, near-infrared spectroscopy has been accepted by the National
Standards Committee of the People’s Republic of China as the standard method for the
quality inspection of livestock and poultry meat. However, most of these methods involve
the use of expensive spectroscopic instruments and computers, which are bulky and are not
conducive to low-cost and rapid non-destructive detection in the field [11,12]. At the same
time, the spectra obtained by such methods not only contain useful spectral information, but
also contain a large number of other spectral responses caused by the measured object’s own
factors, such as composition, texture, and density, which affect the discrimination accuracy
and efficiency of the model [13,14]. Multispectral technology is one method for reducing the
cost of optical detection technology and simplifying the model, and it has been widely used
in the quality detection of agricultural and sideline products [15]. Compared with other
spectroscopic techniques, although the resolution of multispectral technology is limited,
its cost is low, the wavelength range can be selected according to the situation, which is
beneficial to the development of portable devices, and the model is more interpretable [16].
Multispectral systems with halogen lamps, filters, and photodiodes or LED light sources
and photodiodes as the core components are widely used [17,18]. Based on the combination
of halogen lamps, multiple optical filters, and photodiodes, Guo Wenchuan [19] developed a
multispectral system to distinguish chlorfenuron-treated and untreated kiwifruit. However,
the volume and cost of traditional optical filters and photodiodes restrict the choice of
the number of characteristic wavelengths. Wei Wensong [20] constructed a multi-spectral
detection system based on LED light sources with characteristic wavelength bands by
optimizing the wavelengths related to TVB-N content in pork. Although the TVB-N
content can be predicted, the light source control and arrangement of the system are
complex. Detection can be completed only after LED lights of different wavelengths are
turned on in sequence, and the detection efficiency is low.

With the development of micro-electromechanical processing technology and nano-
optical deposition interference filter technology, chip-level spectral sensor technology has
gradually matured [21,22]. A multi-channel spectral sensor can be selected, combined or
even customized according to the needs of a sensor array. It has the advantages of small
size, high integration, fast response, low energy consumption, good reproducibility, and
easy secondary development. In this study, a multispectral system for freshness detec-
tion was established using multi-channel spectral sensors and low-power halogen lamps,
and software and hardware systems were developed. At the same time, multispectral
information was mined through spectral shape feature (SSF) preprocessing, and then a
freshness discrimination model was established based on the total number of colonies and
volatile base nitrogen content. A handheld freshness detection device for fresh pork has
been developed in order to realize the fast, low-cost, on-site freshness detection of fresh
pork and provide guidance for the safe production and consumption of fresh pork.

2. Materials and Methods
2.1. Fresh Pork Samples

The fresh pork samples used in the experiment were purchased from a supermarket
in Beijing, and the longissimus dorsi of large white pigs that had been cooled for 24 h after
slaughter were selected. After purchase, they were transported to the laboratory within
one hour using a cold storage device. Under sterile conditions, the pork was cut into
pieces to remove the fat and connective tissue and then divided into 5 cm × 5 cm × 2.5 cm
samples with a flat surface. Each sample was individually stored in a sterilized Ziplock
bag, numbered, and stored at 4 ◦C in a refrigerator without any backlog. A total of 96 pork
samples of different freshness levels were obtained.
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2.2. Hardware Design

Since the propagation law of the detection light in the meat sample conforms to the
diffuse transmission theory, when the detection light irradiates the meat sample, it will
experience absorption, scattering, and reflection inside the meat [23]. Diffuse light intensity
represents the ability of meat components to interact with light. Therefore, the diffuse
reflectance technique was used to collect the multispectral information of pork, as shown in
Figure 1a. The detection light cup combined with the low-power halogen lamps arranged
around the circumference can cause the detection probe to form a uniform annular detection
light on the detection surface of the meat sample. Diffuse light from the surface of the meat
sample is concentrated by the lens to a multispectral sensor arranged in the center of the
detection probe where it is received. The designed handheld fresh pork freshness detector
is shown in Figure 1b and mainly includes a detection probe, an ESP8266 development
board, an OLED display system, a voltage regulator module, a lithium battery, a cooling fan,
and a shell. When the detection system starts to work, the diffuse reflection multispectral
data collected by the detection probe can be received and analyzed by the ESP8266 to obtain
the detection result, which is displayed on the display screen. It can also be controlled and
displayed through a remote control terminal.
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Figure 1. Detector structure diagram: (a) Schematic diagram of the detection probe; (b) Schematic
diagram of detector structure.

The diffuse reflection detection probe, composed of a multi-channel spectral sensor
and detection light source, is the core part of the detection system. Its response range
covers the visible/near-infrared band, and it can output 18 bands of spectral information
at the same time. The central wavelengths are 410 nm, 435 nm, 460 nm, 485 nm, 510 nm,
535 nm, 560 nm, 585 nm, 610 nm, 645 nm, 680 nm, 705 nm, 730 nm, 760 nm, 810 nm, 860 nm,
900 nm, and 940 nm, with a full width at half maximum (FWHM) of 20 nm, which has
the advantages of high stability and temperature self-correction. With six 1.2 W halogen
lamps (PHILIPS, 12516CP, Amsterdam, The Netherlands), it can generate a continuous
visible/near-infrared spectrum, which is conducive to the simultaneous acquisition of a
multi-channel spectrum. ESP8266 series modules integrate an ultra-low-power Tensilica
L106 32-bit RISC processor, a storage unit, and a Wi-Fi data transceiver and other hardware
on a small chip. As a microcontroller, it can perform real-time digital signal processing
and low-voltage control operations. The cost is low, and it is convenient for secondary
development and device function expansion, so ESP8266 is selected as the microcontroller
of the detection device. The temperature control module can monitor the temperature of
the device in real time and control the working state of the cooling fan according to the set
temperature threshold to maintain a constant system temperature and reduce the impact of
temperature changes on the system’s detection performance. The design of the system is
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compact, and the diameter of the detection probe is only 4 cm, which is conducive to the
realization of the in situ, rapid detection and evaluation of pork freshness.

2.3. Software Development

The control software of the detector was developed using C language in the Ar-
duino IDE development environment. The software can perform multispectral calibration,
multispectral acquisition and analysis, test result display, and test data transmission and
preservation. The detector can be controlled and displayed independently through the
detection button, as shown in Figure 2a. It can also be controlled and displayed remotely
in real time through LAN, and the remote control interface is shown in Figure 2b. The
remote control interface includes a basic parameter setting and display area (date, loca-
tion, IP and sample number, ambient temperature, and port), a spectrum display area, a
detection control area (calibration button, collection button, and save button), and a result
display area.
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2.4. Physical and Chemical Value Determination
2.4.1. TVC Physical and Chemical Value Determination

The colony culture and count of fresh meat samples were carried out according to
China National Standard GB 4789.2–2016. After collecting the diffuse reflectance spectra of
fresh pork samples, colony culture and counting were carried out under sterile conditions.
The TVC calculation is shown in Equation (1):

N =
∑ C

(n1 − n2)d
(1)

In the formula, N is the total number of colonies; C is the sum of the suitable plate
colonies; n1 is the low dilution plate colony; n2 is the high dilution plate colony; and d is
the dilution factor.

2.4.2. TVB-N Physical and Chemical Value Determination

The standard value of TVB-N content in the fresh pork samples was measured accord-
ing to China National Standard GB 5009.228–2016. The instruments used were mainly a
KDY-9820 semi-automatic K-type nitrogen analyzer and a BL25B12 stirring cup. After col-
lecting the diffuse reflectance spectra of the fresh pork samples, we took 10 ± 0.001 g of the
homogenized samples and mixed them with 100 mL of distilled water and homogenized
them for 2 min. The homogenized mixture stood for 30 min and was then filtered, and the
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filtered supernatant was used for subsequent titrations. The formula for calculating TVB-N
content is shown in Equation (2):

X =
(14 × (V1 − V2)× C)

(m × 10/100)
× 100 (2)

In the formula, X is the TVB-N content in the sample, in mg/100 g; V1 is the volume
of standard titration hydrochloric acid consumed by the sample, in mL; V2 is the volume of
standard titration hydrochloric acid consumed by the blank, in mL; C is the concentration
of the standard hydrochloric acid solution, in mol/L; and m is the sample mass, in g.

2.5. Multispectral Data Acquisition and Preprocessing

The detector was preheated for at least 30 min, and then the black reference (turning
off the light source) and white reference (Teflon) were collected, respectively. After the
spectral calibration, the diffuse reflectance multispectral information of the meat sample
could be collected. Each sample was tested five times in this study, and the average was
calculated for subsequent analysis. The whole process took about five seconds. Because
preprocessing methods such as multiple scattering correction (MSC) and standard normal
variable transformation (SNV) usually need to operate on the continuous bands to obtain
the corrected spectrum, and because the shape of the spectrum and the position of the
characteristic peak or trough change easily after processing, the spectral information of
single wavelength is affected [24]. Therefore, they are not suitable for the pretreatment
of discrete wavelength spectral data. Spectral shape features (spectral ratio (SR), spectral
difference (SD), and normalized spectral intensity difference (NSID)) were calculated
without using the whole or broadband spectrum and were suitable for discrete wavelength
spectral preprocessing [24,25]. Zhang Mengsheng [25] used the combination of SR, SD, and
NSID to establish the apple maturity discrimination model, and the prediction accuracy was
88.46%. Moscetti [26] compared the ability of different spectral shape feature parameters
to detect hazelnut kernel defects and selected the three best SR variables to establish a
discriminant model with an accuracy of 94.8%. Therefore, in this paper, the spectral shape
features (SR, SD, and NSID) were used to preprocess the multispectral data to improve the
efficiency of the multispectral information. Spectral shape features can be calculated by
three different Equations:

RSR =
Ri
Rj

(3)

RSD = Ri − Rj (4)

RNSID =

(
Ri − Rj

)(
Ri + Rj

) (5)

In the formulas, Ri represents the spectral reflectance of the i-th wavelength in the
spectral curve, and Rj represents the spectral reflectance of the j-th wavelength in the
spectral curve.

2.6. Model Building and Evaluation

In this study, partial least squares discrimination analysis (PLS-DA) was used to discrimi-
nate between pork with different freshness levels. PLS-DA adopts the classical partial least
squares regression model, and its response variable is a group of categorical information that
reflects the category relationship between statistical units, which makes it a supervised dis-
criminant analysis method [26,27]. It is often used to grade meat quality [28,29]. In PLS-DA,
matrix X (N × J) is used as the input variable, and the dummy variable is Y (N × 1), such
as 0, 1, and 2 are used as output variables, and its linear relationship can be described as:

Y = XbT + e (6)
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In the formula, b (1 × J) is the vector of regression coefficients, e (N × 1) is the error
vector, and N and J are the number of subjects (N is the sample size and J is the number
of variables).

The performance of the multivariable calibration model obtained by the PLS-DA
method was evaluated by sensitivity, specificity, and accuracy [30]. The calculation formulas
are as follows:

Sensitivity =
TP

TP + FN
(7)

Specik f icity =
TP

TP + FP
(8)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(9)

In the formulas, TP represents the number of positive samples predicted as positive
by the discriminant model; TN represents the number of negative samples predicted
as negative by the discriminative model; FP represents the number of negative samples
predicted as positive by the discriminative model; and FN represents the number of positive
samples predicted as negative by the discriminative model.

3. Results
3.1. Physicochemical Value Statistics and Freshness Grading

We prepared and stored the samples using the method described in Section 2.1. During
the experiment, every 24 h or so, eight samples were taken out from the cold room (4 ◦C)
in sequence of sample number and left at room temperature (22–24 ◦C) for 30 min. Then,
the diffuse reflectance multispectral spectra of the samples were collected by the designed
detector. The physicochemical data of the samples were determined by the method de-
scribed in Section 2.4 as soon as possible after the spectrum collection, and a total of 96 valid
samples were obtained over 12 days. Figure 3 shows the changes in the TVC and TVB-N
contents in the fresh pork with storage time. With the prolongation of storage time, the
average value of pork TVC increased with an S-shaped trend (Figure 3a), which is similar
to the change law in the published literature [4,10]. The growth of spoilage bacteria goes
through a lag phase, a logarithmic phase, a stationary phase, and an extinction phase.
When the internal environment of the package is suitable, the spoilage organism enters the
logarithmic phase to rapidly multiply and decompose nutrients such as pork proteins and
amines. During the extinction period, the total number of spoilage organisms eventually
stabilizes [3,31]. However, the TVB-N content of pork increased with an increase in storage
time, and the increase in speed became greater and greater. The phase of rapid increase
began at around day six (Figure 3b). TVB-N is mainly produced by the degradation of
pork proteins and amines by spoilage bacteria. Therefore, with an increase in TVC in the
short term, the production speed of TVB-N also increases. At the same time, TVB-N may
accumulate rapidly with the degradation and oxidation of amines, proteins, and lipids by
endogenous enzymes. Under the action of the two, the content of TVB-N is significantly
increased [32].

According to China National Standard GB 2707–2016, the TVC limit value of fresh
meat is 6 lg (CFU/g), and the TVB-N content limit value is 15 mg/100 g. In this study, the
TVC of pork had reached the limit value stipulated by the standard by about the fifth day,
while the TVB-N content of pork did not exceed the limit value specified by the standard
until the sixth day. This shows that before the TVB-N content of pork reaches the national
standard limit value, the pork has already begun to spoil. When the TVB-N content reaches
the national standard limit value, the average TVC has reached 6.38 (lg (CFU/g)), and
the pork has been completely spoiled. Therefore, grading pork freshness only based on
TVB-N content has certain limitations and is not enough to provide consumers with a
safe and reliable reference [33,34]. In this study, the two key indicators of TVC and TVB-
N were combined, and the freshness of pork was divided into two grades: fresh meat
(TVC < 6 (lg (CFU/g)), TVB-N < 15 mg/100 g) and deteriorated meat (TVC > 6(lg (CFU/g))
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or TVB-N > 15 mg/100 g). If the two key indicators of fresh meat meet the standards, it can
be eaten with confidence. If either the TVC or TVB-N content level in deteriorated meat
exceeds the standard, the pork has begun to corrupt, which poses a serious food safety
risk. Meat of this kind should be eaten with caution or not at all. All samples were divided
into a calibration set and a prediction set at a ratio of 3:1 by a random selection method.
There were 72 samples in the calibration set and 24 samples in the prediction set. The two
types of samples were designated 0 and 1, respectively, and the freshness of each subset of
samples is shown in Table 1.
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Table 1. Class assignments of pork and their distributions in calibration and prediction sets.

Project Deteriorated Meat Fresh Meat

Class assignment 0 1
Calibration set 43 29
Prediction set 14 10

3.2. Hardware Testing

The stability of the temperature and spectral output of the multispectral system is
extremely important for the detection accuracy of the detection device. In order to study
the influence of warm-up time on system temperature and spectral output, the temperature
and multi-spectral output value of the detection device were continuously monitored for
90 min after startup, and the detection interval was 3 min. Figure 4a shows the temperature
and spectral output values (610 nm) as a function of the warm-up time. With the extension
of preheating time, both the temperature and spectral output value increase. When the
preheating time reaches 30 min, the temperature and spectral output of the device tend to be
stable, the temperature is stable at about 57 ◦C, and the change trend of other wavelengths
is the same as that of 610 nm. After the device was warmed up and stabilized, 50 white
reference diffuse reflectance multispectra were collected continuously with the detection
device. Figure 4b shows the coefficient of variation of 18 wavelengths of the detection
device for 50 outputs, and the coefficient of variation of each wavelength is lower than
1.35%, indicating that the output response of the detection device has good stability when
the preheating time is more than 30 min.
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3.3. Diffuse Reflectance Multispectral Analysis

Multispectral variable analysis includes freshness discrimination based on a univariate
analysis and freshness discriminant analysis based on multispectral shape features. The
pork diffuse reflectance spectrum is classified according to different freshness levels, as
shown in Figure 5, which shows the diffuse reflectance spectrum of all samples in the wave-
length range of 410–940 nm (grey) and the average diffuse reflectance spectrum of fresh
meat (green) and deteriorated meat (blue). Compared with fresh meat, the multispectral
intensity of diffuse reflection is generally lower in deteriorated meat at different wave-
lengths, especially in the near-infrared band. Two reductions in diffuse reflectance spectral
intensity occur at 560 nm and 730 nm, respectively. This may be due to the absorption peak
of oxidative hemoglobin in the band around 560 nm [35] and the absorption peak of O-H
bonds three times frequency band around 730 nm [36].
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3.4. Analysis Results for a Single Variable

Since most traditional spectral preprocessing methods usually need to process the
entire continuous spectral band to obtain an ideal corrected spectrum, we can easily ignore
the importance of a single variable, and thus it is not suitable for the correction of discrete
spectral data. Therefore, more effective spectral information can be obtained by calculating
the spectral morphological features of the multispectral spectrum, and the light scattering
effect can be eliminated at the same time. A total of 153 SR variables, 153 SD variables, and
153 NSID variables were obtained. In this paper, the identification threshold of a single
variable is determined by the Otsu method to verify the ability of a single spectral shape
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feature variable in the original multispectral data to discriminate the freshness of pork. The
result of distinguishing pork freshness by a single spectral shape feature variable is shown
in Figure 6.
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Among the spectral ratios, the spectral indices calculated at 610 nm and 730 nm
obtained the best discrimination results, with a classification accuracy of 82.29%, as shown
in Figure 6a. Among the spectral differences, the spectral indices calculated at 560 nm and
610 nm obtained the best discrimination results, with a classification accuracy of 80.21%,
as shown in Figure 6b. Among the normalized spectral intensity differences, the spectral
indices calculated at 610 nm and 705 nm obtained the best discrimination results, with a
classification accuracy of 81.25%, as shown in Figure 6c. At the same time, it can be seen
from the results of the three kinds of spectral shape feature variables for discriminating pork
freshness that the spectral indices with higher classification accuracy are all related to the
wavelength of 560 nm, 610 nm, 705 nm, 730 nm, and 760 nm. This may be because the band
around 560 nm is the absorption peak of oxidative hemoglobin, 610 nm is in the absorption
area of the S-H bond thiomyoglobin in pork [4,10], and 705 nm, 730 nm, and 760 nm are in
the band where the absorption peak of the O-H bond triple frequency doubles [34,35]. These
wavelengths are all related to the spoilage of pork. Nevertheless, the highest discrimination
accuracy of pork freshness based on a single variable of spectral shape feature is only
82.29%, which is insufficient to meet the needs of pork freshness evaluation.
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3.5. Analysis Results of Different Shape Features and Their Combinations

In this study, partial least squares discriminant analysis (PLS-DA) was used to dis-
cuss the ability of different spectral shape features and their combinations to discriminate
pork with different freshness levels, and the discriminative model of pork freshness was
established according to the best spectral shape characteristic variable. Table 2 shows the
discrimination results of pork freshness via the PLS-DA modeling method based on differ-
ent spectral shape features and their combinations. The original multispectral modeling
can achieve better prediction results than the univariate modeling, with an accuracy of
87.50% for freshness discrimination in the calibration set and 83.33% in the prediction
set. Compared with the original multispectral modeling, the performance of the model
after the preprocessing of the spectral shape features is significantly improved. Among
them, the discriminant model established after SR and NSID preprocessing has better
prediction accuracy, and the model performance is similar. The freshness discrimination
accuracy of the correction set is 93.06%, and the freshness discrimination accuracy of the
prediction set is 87.50%. However, when the three spectral shape features are combined
to establish the discriminant model, the discriminant accuracies of the correction set and
the prediction set are not significantly improved, and even the variability and accuracy
of the calibration set are reduced. This may be because the three spectral shape features
are used in combination, with a total of 459 variables. From Section 3.4, it can be seen
that most of the variables have poor discriminant results and belong to non-informative
variables. An increase in non-informative variables reduces the predictive ability of the
PLS-DA model [28,37]. Therefore, in order to obtain a concise and stable discriminative
model, which is convenient for loading and using the handheld detection device, it is
necessary to screen the spectral shape features.

Table 2. Discrimination results of pork freshness by PLS-DA modeling methods with different
spectral characteristics and their combinations.

Preprocessing
Method

Number of
Variables

Calibration Set Prediction Set

Sensitivity
(%)

Specificity
(%)

Accuracy
(%) Sensitivity (%) Specificity

(%) Accuracy (%)

NONE 18 86.05 89.66 87.5 78.57 90.00 83.33
SR 153 93.02 93.10 93.06 85.71 90.00 87.50
SD 153 90.70 93.10 91.67 78.57 90.00 83.33

NSID 153 93.02 93.10 93.06 85.71 90.00 87.50
SR&SD&NSID 459 86.05 93.10 88.89 85.71 90.00 87.50
VARIABLE

SELECTION 109 93.02 86.21 91.67 92.86 90.00 91.67

3.6. Variable Selection

The existence of a large amount of redundant spectral data will not only reduce the
prediction accuracy of the model, but will also increase the computational burden and
reduce the detection speed. To eliminate invalid variables, the most influential variables
were selected from the PLS-DA model developed based on three spectral shape features
(SR, SD, NSID). The weighted regression coefficient is considered to be the most sensitive
indication of wavelength and accounts for most of the variation in the corresponding
analysis [36–38].

Figure 7 shows that there are 109 spectral characteristic variables that are significantly
affected by the regression model. The variable serial number is composed of three shape
feature variables, SR, SD, and NSID, from bottom to top and from left to right (as shown in
Figure 6). The selected feature variables are highly coincident with the red-colored spectral
features in Figure 6. For example, the 110th and 111th variables correspond to 610/680 and
610/705, respectively. The 230th variable corresponds to 560 − 610; the 416th and 417th
correspond to (610 − 680)/(610 + 680) and (610 − 705)/(610 + 705), respectively. This indi-
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cates that the selected spectral characteristic variables contain effective spectral information
that can fully reflect the spectral differences between fresh meat and deteriorated meat. A
PLS-DA model was established for analysis using 109 selected spectral features (the red
mark). As is shown in Table 2, compared with using single spectral characteristic features
for discrimination, the model based on the preferred variable has better performance,
and the sensitivity and accuracy of the validation set are improved, reaching 92.86% and
91.67%, respectively. Compared with the combination of all spectral shape features, the
model based on the preferred variable has the advantages of fewer variables and higher
discrimination accuracy. Therefore, in this study we decided to use the optimal 109 spectral
shape features to establish the discrimination model of pork freshness, which is conducive
to the realization of the rapid nondestructive testing of pork freshness in situ.
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3.7. External Verification

In order to test the accuracy of the freshness discrimination of the detector, the PLA-DA
model established after variable selection was introduced into the device. Pork samples
with different freshness levels were prepared according to the method in Section 2.1 for
the validation of the device model, and 14 fresh meat samples and 16 deteriorated meat
samples were obtained, respectively. As is shown in Figure 8, the discriminant accuracy of
the validation set was 86.67%, and the sensitivity and specificity were 87.50% and 85.71%,
respectively. The results showed that the detection device was accurate and reliable and
could achieve the nondestructive and low-cost rapid screening of pork freshness.
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4. Discussion

Many aspects of fresh pork production and marketing need to be carried out under
cold storage conditions, and the narrow, closed, and humid testing environment limits
the application of many technologies. At the same time, the test results of pork freshness
have strong timelines, so nondestructive and rapid testing requirements are put forward
for testing equipment technology. Previous studies have demonstrated that continuous
wavelength visible/near-infrared spectroscopy can achieve the rapid nondestructive test-
ing of pork freshness, but its high price and high processor requirements limit its field
application [9,10,25]. In order to overcome these limitations, a real-time intelligent pork
freshness detector based on multispectral technology was developed.

Compared with the traditional visible/near-infrared spectroscopy technology, the
multi-channel spectral sensor technology has a limited number of wavelengths and a
low separation rate. This limits its application in multi-quality inspection and precision
quantitative inspection [24]. However, it has the advantages of low cost, small volume, and
easy development in qualitative detection. In addition, spectral shape features can be used
to calculate the shape information contained in spectral curves, eliminating the adverse
effects of physical and biological variability on spectral information so as to improve the
detection accuracy of multispectral sensors [21,25]. In this study, a multi-channel spectral
sensor was combined with spectral shape features to realize the discrimination of pork
freshness. The accuracy of the optimal model prediction set established by selecting spectral
shape feature variables was 91.67%, and its accuracy with the independent verification
set was 86.67%. The designed detector has the advantages of low cost, convenience, and
simplicity. With the development of multichannel spectral sensor technology, it will be
widely studied and applied in more fields.

5. Conclusions

In this study, an economical and efficient handheld pork freshness detection device
was designed based on multi-channel spectral sensors. According to the content of TVC
and TVB-N, pork is divided into two grades: fresh meat and deteriorated meat. The
ability of the PLS-DA model to distinguish pork freshness based on different spectral shape
features was compared. Compared with using the original spectrum directly, the spectral
ratio, spectral difference, normalized spectral intensity difference, and the combination of
different spectral types can obtain higher discriminant accuracy, but there are many redun-
dant variables. According to the weighted regression coefficients of the PLS-DA model
developed by three spectral shape feature combinations (SD, SR, and NSID), 109 spectral
shape features were selected to establish an optimized PLS-DA model. Its accuracy with the
prediction set is 91.67%. Its discriminant accuracy with the validation set is 86.67%, and its
sensitivity and specificity are 87.5% and 85.71%, respectively. The device has good stability,
is a reliable discriminant model, and can complete the detection in five seconds, which
is conducive to the rapid and non-destructive screening of fresh pork during production,
transportation, storage, and sale.
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