
Citation: Ko, L.-W.; Chang, Y.;

Lin, B.-K.; Lin, D.-S. Vital Signs

Sensing Gown Employing

ECG-Based Intelligent Algorithms.

Biosensors 2022, 12, 964. https://

doi.org/10.3390/bios12110964

Received: 3 May 2022

Accepted: 8 July 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

Vital Signs Sensing Gown Employing ECG-Based
Intelligent Algorithms
Li-Wei Ko 1,2,3,4,*, Yang Chang 1, Bo-Kai Lin 4 and Dar-Shong Lin 5,6,*

1 Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B),
Institute of Bioinformatics and Systems Biology, College of Biological Science and Technology,
National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

2 Institute of Electrical and Control Engineering, Department of Electronics and Electrical Engineering,
National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

3 Drug Development and Value Creation Research Center,
Department of Biomedical Science and Environmental Biology, College of Life Science,
Kaohsiung Medical University, Kaohsiung 807, Taiwan

4 Department of Biological Science & Technology, National Yang Ming Chiao Tung University,
Hsinchu 300, Taiwan

5 Department of Pediatrics, Mackay Memorial Hospital, Taipei 104, Taiwan
6 Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
* Correspondence: lwko@nctu.edu.tw (L.-W.K.); lin.ds.md@gmail.com (D.-S.L.)

Abstract: This study presents a long-term vital signs sensing gown consisting of two components:
a miniaturized monitoring device and an intelligent computation platform. Vital signs are signs
that indicate the functional state of the human body. The general physical health of a person can
be assessed by monitoring vital signs, which typically include blood pressure, body temperature,
heart rate, and respiration rate. The miniaturized monitoring device is composed of a compact
circuit which can acquire two kinds of physiological signals including bioelectrical potentials and
skin surface temperature. These two signals were pre-processed in the circuit and transmitted to
the intelligent computation platform for further analysis using three algorithms, which incorporate
R-wave detection, ECG-derived respiration, and core body temperature estimation. After the process-
ing, the derived vital signs would be displayed on a portable device screen, including ECG signals,
heart rate (HR), respiration rate (RR), and core body temperature. An experiment for validating the
performance of the intelligent computation platform was conducted in clinical practices. Thirty-one
participants were recruited in the study (ten healthy participants and twenty-one clinical patients).
The results showed that the relative error of HR is lower than 1.41%, RR is lower than 5.52%, and the
bias of core body temperature is lower than 0.04 ◦C in both healthy participant and clinical patient
trials. In this study, a miniaturized monitoring device and three algorithms which derive vital signs
including HR, RR, and core body temperature were integrated for developing the vital signs sensing
gown. The proposed sensing gown outperformed the commonly used equipment in terms of usability
and price in clinical practices. Employing algorithms for estimating vital signs is a continuous and
non-invasive approach, and it could be a novel and potential device for home-caring and clinical
monitoring, especially during the pandemic.

Keywords: miniaturized circuit; ECG; vital sign; heart rate; respiration; core body temperature;
wireless device

1. Introduction

Vital signs are physiological signals that represent the general physical status of an
individual. Monitoring vital signs provides a quick and simple evaluation that can be
used to understand human body health. The primary four vital signs assessed by medical
professionals and health care providers include blood pressure, body temperature, heart
rate, and respiration rate [1], which are regularly measured for periodic assessment to
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hospital inpatients. Once the value of these vital signs falls out of the normal range, the
anomaly of the patient can be detected immediately.

Body temperature is a measurement of the ability to generate and get rid of heat
from the human body. Since humans are homoeothermic animals, the human body is
usually maintained within a stable range of temperature. Body temperature could be
categorized into two types: one is skin body temperature, and the other one is core body
temperature. Skin body temperature is defined as skin temperature that reflects the state
of heat exchange between the human body and a thermal environment [2]. In contrast,
core body temperature is defined as the operating temperature of an organism in deep
structures of the body, resulting in its immunity to external environmental influences. There
are non-invasive and invasive methods to assess core body temperature. The advantage
of the invasive method is that it is more accurate, but it is less comfortable. In [3], it is
found that using a tympanic thermometer to assess temperature is more accurate than
other non-invasive methods, and more comfortable than the invasive method. Therefore,
a tympanic thermometer was applied to validate the core body temperature algorithm
proposed in this study.

The common method to assess heart rate is to measure the pulse from the radial
artery at the wrist [4]. Moreover, heart rate can be calculated from electrocardiography
(ECG) with a specific device by identifying the peaks of ECG [5]. The QRS complex is
the most obvious waveform in ECG; many studies have developed the QRS detection
algorithm to detect QRS complex for assessing heart rate [6–9]. As for respiration rate, the
conventional method to assess it is to count the respiration cycle, i.e., the human chest
undulation [10]. However, it is time consuming and inaccurate to calculate the respiration
rate with such an approach. Moody et al. [11] provided a method to assess respiration rate
from ECG with the “ECG-derived respiration (EDR)”. EDR is defined by the properties of
ECG morphology influenced by respiratory-induced chest movements and the changes in
the electrical impedance during respiration [12]. Several publications have documented
that EDR is reliable for monitoring respiration cycles [13–15].

COVID-19 has become a major challenge for public health worldwide since 2019 [16].
Repeated and continuous measurement of body temperature plays an critical role in in-
fection prevention and control of the pandemic [17]. Furthermore, the changes in body
temperature also correlate with mortality in COVID-19 patients [18]. Research also found
that COVID-19 patients who deteriorate in hospital experience rapidly worsening respi-
ratory failure. In a previous study, Hands et al. [19] proposed warning methods based
on monitoring human vital signs. A review paper has also documented that accurate,
regular monitoring of vital signs improves recognition of patient deterioration [20]. It is
simple to assess a vital sign separately. However, it remains challenging to assess multiple
vital signs simultaneously and continuously. Devices in hospitals which are capable of
monitoring multiple vital signs continuously are commonly operated by medical special-
ists, and are neither portable, nor low-priced. The main aim of this study is to design a
compact, wireless device which can assess three of the most commonly used vital signs:
core body temperature, heart rate, and respiration rate, from only two indicators: skin
body temperature and ECG. The device employed QRS detection, EDR, and a novel core
body temperature estimation algorithm which were experimentally tested to validate their
reliability. With the device and algorithms, this study provides a convenient, comfortable,
and affordable method to monitor vital signs constantly and precisely.

2. System Architecture

The proposed long-term vital signs monitoring system consists of two components: a
vital signs sensing gown and intelligent computation platform (Figure 1). Data acquisition
is accomplished in a “vital signs sensing gown”, which is a gown embedded with a novel,
compact circuit with two kinds of physiological sensors. The raw data are pre-processed
in the circuit and are transmitted to the “intelligent computation platform” for further
analysis. After processing, the calculated vital signs would display on a portable device
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screen including ECG, heart rate (HR), respiration rate (RR), and core body temperature.
Through this long-term monitoring system, users can monitor their ECG signals and vital
signs, and especially core body temperature consistently, to know their body condition.
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Figure 1. System architecture of long-term vital signs monitoring system. The system consists of two
components: (a) a sensing gown which acquires lead II ECG signal and surface temperature with the
embedded miniaturized circuit, and (b) a computation platform. The signals obtained by the gown
are pre-processed within, and then transmitted to the computation platform. (RLD, IA, LPF, HPF,
NOTCH, and ADC denote right leg driver, instrumentation amplifier, low pass filter, high pass filter,
notch filter, and analog-to-digital converter, respectively).

2.1. Vital Signs Sensing Gown

The vital signs sensing gown integrates a general gown used in hospitals and a
wireless, lightweight, battery-powered miniaturized circuit which acquires two primary
physiological signals: ECG (specifically lead II) and skin surface temperature. The circuit
is placed in a plastic case to avoid moisture. The wires connected to the electrodes were
sewed on the surface of the medical gown. The embedded circuit in the sensing gown
was composed of filters, an analog amplifier, an analog-to-digital converter (ADC), and a
Bluetooth transmitter module in a compact size, measuring 28 × 28 × 6 mm (Figure 2a). A
typical three-lead wireless ECG device was attached to fixed positions of the user’s body via
buckles, corresponding to the right arm (RA), left leg (LL), and ground electrodes at the left
arm (LA) to collect the signal. The lead II ECG signal was the voltage difference between
the LL and RA electrodes, directed from RA toward LL at +60 degrees, yielding the highest
R-wave peak among the different limbs’ leads (Figure 2a) [21]. In the miniaturized circuit,
the raw ECG signals were sampled at 256 Hz with a 10-bit resolution. The raw data were
bandpass filtered from 0.1 to 100 Hz and filtered by a 60 Hz notch filter to remove artifacts
including eye blink, muscle movement, and alternating current artifacts. Afterward, the
filtered ECG signals were amplified by a magnitude of 800 and converted from analog to
digital. The skin surface temperature was acquired by component DS18B20, located on the
gown in contact with the skin near the ribs of the human body. The digital thermometer
exhibits a ±0.5 ◦C accuracy ranging from −10 ◦C to +85 ◦C. Finally, component HC-06, a
Bluetooth module, transmits filtered ECG signals and skin surface temperature values to
the Java-based computing platform for further analysis.
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2.2. Intelligent Computation Platform

The intelligent computation platform is compatible with Bluetooth-enabled portable
devices, such as mobile phones and tablets. The filtered ECG signals and skin surface
temperature acquired by the vital signs sensing gown were applied into an intelligent com-
putation platform. The outputs of the algorithms were HR, RR, and core body temperature
(Figure 2b). The processing in the platform is instant; therefore, the portable device would
display real-time vital sign variation. The refresh rate of HR and RR are once every six
seconds; the value of HR is derived by 60 s divided by mean interval of HR in these six
seconds, and RR is derived by multiplying the quantity of RR in these six seconds by ten
times to obtain the values of HR and RR per minute. There was storage in the platform so
every measurement was recorded and can be accessed anytime. The further description of
the intelligent computation platform is introduced in Section 3.

3. Integrated Intelligent Algorithm

The integrated intelligent algorithm consists of three main algorithms—R-wave de-
tection, ECG derived respiration, and a novel core body temperature algorithm (Figure 3).
The first two algorithms derive HR and RR from filtered ECG signals, and the core body
temperature algorithm derives core body temperature from skin surface temperature
and the output of the previous two algorithms.
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two algorithms, R-wave detection algorithm and ECG-derived respiration algorithm, to derive HR
and RR. Later, the values of HR, RR, and surface temperature were applied in a novel core body
temperature algorithm to obtain human core body temperature.

3.1. R-Wave Detection Algorithm

According to the study proposed by Pan and Tompkins [7], HR can be derived from
R-waves, which are normally the easiest waveforms to identify in ECG signals. In this
study, a dynamic threshold method was implemented as the R-wave detection algorithm
due to its lower computational requirement [22,23]. The equation of R-wave detection is
defined as:

T(n + 1) = T(n) +
D(n + 1)− T(n)

K
+ B, (1)

where n is a positive integer, T is a threshold value, D is the present input ECG signal, K
is the weighting factor, and B is the offset value, respectively. According to Equation (1),
whenever D(n+1) is bigger than T(n+1), the present value of the ECG signal will be consid-
ered in the range of R-wave. The algorithm marks the R-peak, which is a local maximum
of the R-wave. Figure 4 demonstrates that when the ECG signal (blue line) exceeds the
threshold (red line), the maximum value within that period would be regarded as a R-peak.
After detecting the R-waves, the algorithm calculates the average time of the RR interval
(RRI) over six seconds, and the HR is derived from 60 divided by the average time of
the RRI. For example, if the average RRI is 0.8 s, 60 divided by 0.8 equals 75. Hence, the
estimated HR would be 75 beats per minute. The input time window is six seconds for the
R-wave detection algorithm, so the average RRI would refresh once every six seconds. The
displayed output is HR with beats per minute as the unit.
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3.2. ECG-Derived Respiration Algorithm

A study by Arunachalam and Brown [14] demonstrated that R-wave amplitudes are
shown to be affected by respiration rhythm. The respiration signal curve can be obtained
by the difference in amplitude of the R-wave sequences.

an(t) ≈
Rn(t)
Rn(t)

(2)

Equation (2) is the EDR algorithm, where an(t) is the amplitude modulation due to
respiratory movement of the thorax, Rn(t) is the composite ECG R-wave amplitude, and
Rn(t) is the average detected R-wave amplitude. The first step in implementing the EDR
algorithm is to find R-peaks derived from the R-wave detection algorithm. The processing
flow of the EDR algorithm are as follows:

1. Employ the R-wave detection algorithm to determine R-wave amplitudes.
2. Apply Equation (2) to extract the respiration signals from R-wave amplitude curves.
3. Derive the amount of respiration oscillations to calculate RR.

The R-wave detection algorithm was employed to find R-peaks as the data pre-
processing for the EDR algorithm. After the R-wave detection algorithm identifies R-peaks,
the R-wave amplitudes are recorded and sent to the EDR algorithm. This model applies
these amplitudes to extract respiration signals. As the amplitude of the R-peaks changes,
the fluctuation can be derived using the values divided by their average (Figure 5). The
EDR algorithm extracts R-wave amplitudes every six seconds from ECG signals, and then
applies Equation (2) to obtain respiration signals. The displayed output of this algorithm is
respiration cycles (breaths) per minute.
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3.3. Core Body Temperature Algorithm

In this study, an innovative algorithm for estimating core body temperature was
proposed. The heat generated inside the body is conducted by blood flow to the skin,
where it is dissipated. Skin blood flow correlates to HR and is the major mechanism for
modulating human body temperature [24]. Another major mechanism for heat regulation
is the removal of heat in the water vapor expelled during respiration. Based on these
two mechanisms, body temperature, and therefore skin temperature, are affected by HR
and RR [25]. Hypothetically, core body temperature can be estimated by combining chest
surface temperature, HR, and RR. Chest surface temperature can be obtained directly
from a digital thermometer, and the other two factors can be determined as previously
described. Consequently, the R-wave detection algorithm and EDR algorithm can be used
as components to implement core body temperature estimation. The standardized input
variables were applied into a multiple linear regression analysis based on the previously
mentioned inputs contributing to core body temperature, and used to construct a multiple
regression model for core body temperature [26]:

Core body temperature = factorHR × HR + factorRR × RR + factorT × TChest (3)

where factorHR, factorRR, and factorT are generated by multiple linear regression analysis.
The values of HR and RR are acquired by the R-wave detection algorithm and ECG-derived
respiration, and TChest is the skin surface temperature acquired by DS18B20 measurement,
respectively. The processing flow of the core body temperature algorithm works as follows:

1. Calculate HR by the R-wave detection algorithm.
2. Calculate RR by the EDR algorithm.
3. Apply Equation (3) to implement core body temperature.
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The data pre-processing for the core body temperature algorithm is applying the
R-wave detection algorithm and the EDR algorithm to obtain HR and RR, respectively. HR,
RR, and chest surface temperature are three parameters for Equation (3). The core body
temperature estimation algorithm on the Java-based computing platform extracts an ECG
signal every six seconds, and applies ECG signals to the R-wave detection algorithm and
EDR algorithm to obtain HR and RR. After receiving the values of HR, EDR, and chest sur-
face temperature, the core body temperature algorithm derives core body temperature from
these three parameters. The displayed output of the algorithm is core body temperature
value in Celsius as the unit.

4. Experimental Design and Materials
4.1. Subjects

Thirty-one volunteers were recruited for this study (seven females and twenty-four males;
overall mean age: 26.4 ± 22.0 years; male: 26.0 ± 20.2 years; female: 22.7 ± 26.8 years). Ten
healthy participants took part in the healthy participant trials at National Chiao Tung University
(one female and nine males; overall mean age 23.6 ± 0.5 years; male: 23.7 ± 0.5 years; female:
23.0 ± 0.0 years). Twenty-one clinical patients took part in clinical patient trials in the hospital.
Ten adult patients participated in the experiment at Mackay Memorial Hospital, Taipei Branch
(two females and eight males; overall mean age: 54.4± 9.7 years; male: 53.1 ± 9.0 years; female:
59.5 ± 14.8 years). Eleven child patients participated in the experiment at Mackay Memorial
Hospital, Tamshui Branch (four females and seven males; overall mean age 3.5 ± 1.0 years;
male: 3.1 ± 0.9 years; female: 4.3 ± 1.0 years). All the healthy participants did not habitually
smoke or drink and had no history of cardiovascular disease. One of the adult patients had the
experience of heart surgery, and four of the child patients had a fever during the experiment.
All healthy participants and clinical patients were informed of the experimental details and
signed the research consent documents prior to experimentation. The procedures of the
experiment were approved by the Institutional Review Board (IRB) of the Mackay Memorial
Hospital, Taiwan.

4.2. Clinical Experimental Design for Algorithm Validation

The experiment was conducted to validate the three algorithms which have been
introduced in previous sections: the R-wave detection algorithm, EDR algorithm, and core
body temperature algorithm under two different environments. The healthy participants
attended the experiment at the National Chiao Tung University, Hsinchu, Taiwan. The
clinical patients attended the experiment on the ward at Mackay Hospital, Taipei or Tamshui
branch, Taiwan. The participants or patients were instructed to sit in a chair or lie in a bed
for twenty minutes. The examiners requested them to be equipped with two devices: the
proposed vital signs sensing gown and NeXus-10 to acquire signals from these two devices
simultaneously (Figure 6). At the same time, the examiners used a Braun thermometer
IRT-4020 to record practical core body temperature repeatedly.

The NeXus-10 (Mind Media) is an equipment approved by the U.S. Food and Drug
Administration (FDA). The NeXus-10 obtains an ECG signal by lead II components and
acquires a respiration signal by the respiration sensor as a belt set. The respiration sensor is
used to monitor abdominal or thoracic breathing to measure breath frequency, which can
be worn over clothing. The sampling rate of the ECG signal is at 256 Hz, the as same as our
device, and the sampling rate of the respiration signal is at 32 Hz. The Bluetooth module
inside the NeXus-10 transmits the acquired signals to computers for further analysis. The
Braun thermometer IRT-4020 is also a device approved by U.S. FDA authentication. It was
adopted for the validation of the core body temperature algorithm.
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5. Experimental Results

To evaluate the effectiveness of the algorithms, the data of three devices—vital signs
sensing gown, NeXus-10, and Braun thermometer—were analyzed and statistics were
gathered to interpret the results.

5.1. R-Wave Detection Algorithm Results

To validate the R-wave detection algorithm, relative error was performed to represent
the accuracy:

Relative Error =
|estimated value− real value|

real value
× 100%. (4)

Relative error is the ratio of absolute error of a measurement to the measurement
being taken (Equation (4)). It expresses the relative size of the error of the measurement
in relation to the measurement itself. The HR values acquired by the R-wave detection
algorithm (estimated value) were compared with the values obtained from the NeXus-10
recording (real value).

In both groups of healthy participant and clinical patient trials, the algorithm extracted
six seconds of ECG signals to derive HR, yielding 200 HR values in a total 20 min experiment
per subject. The ECG records of two adults and one child in clinical patient trials were
discarded due to a data saving problem of the NeXus-10, resulting in 18 data in this dataset.
The validation results of two trials of subjects are shown in Tables 1 and 2. The mean values
of healthy participants’ HR are shown in Figure 7a. The mean values of clinical patients’
HR are shown in Figure 7b. Overall, the relative error in healthy participant trials is 0.45%,
and the values of relative error in clinical patient trials are 0.17% and 1.41% for adult group
and child group, respectively.
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Table 1. R-Wave detection algorithm results (healthy participant).

NeXus-10 Recording Algorithm Estimating

Mean R–R interval ± SD (ms) 757.0 ± 40.3 757.0 ± 37.6
Mean heart rate ± SD (bpm) 79.47 ± 4.28 79.44 ± 3.98

Relative error of heart rate ± SD (%) 0.45 ± 0.64

Table 2. R-Wave detection algorithm results (clinical patient).

NeXus-10 Recording Algorithm Estimating

Mean R–R interval ± SD (ms) Adults 820.7 ± 87.7 821.5 ± 87.8
Children 451.6 ± 44.18 458.0 ± 41.7

Mean heart rate ± SD (bpm) Adults 73.89 ± 8.32 73.81 ± 8.31
Children 133.87 ± 11.64 131.89 ± 10.78

Relative error of heart rate ± SD (%) Adults 0.17 ± 0.10
Children 1.41 ± 2.22
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5.2. ECG-Derived Respiration Algorithm Results

The RR acquired from the EDR algorithm was compared with the NeXus-10 record-
ing which utilized a belt set. In both categories of healthy participant and clinical patient
trials, the algorithm extracts six seconds of ECG signals to implement RR, and a total
20 min experiment was divided into twenty epochs with RR of one minute, resulting in
20 RR values per subject. The data of the NeXus-10 from one adult and eight children in
clinical patient trials were discarded due to the noise caused by extensive movements of
the subjects. The relative error represents the accuracy of the EDR algorithm, the same
as for the R-wave detection algorithm. The validation results of two categories of trials
are shown in Tables 3 and 4. The mean values of the 20 epochs in healthy participant
trials are shown in Figure 8a. The mean values of the 20 epochs in clinical patient trials
are shown in Figure 8b. Overall, the relative error in healthy participant trials is 2.38%,
and the relative error in clinical patient trials is 5.52%.
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Table 3. ECG-derived respiration algorithm results (healthy participant).

NeXus-10 Recording Algorithm Estimating

Mean respiration rate ± SD
(breaths/min) 18.28 ± 1.34 17.85 ± 1.02

Relative error of respiration rate ± SD (%) 2.38 ± 3.58

Table 4. ECG-derived respiration algorithm results (clinical patient).

NeXus-10 Recording Algorithm Estimating

Mean respiration rate ± SD
(breaths/min.) 21.50 ± 7.35 20.56 ± 7.56

Relative error of respiration rate ± SD (%) 5.52 ± 9.83
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5.3. Core Body Temperature Algorithm Results

The values of core body temperature acquired by the novel algorithm were compared
with the recorded values of the digital ear thermometer IRT-4020. As the results of multiple
linear regression, factorHR, factorRR, and factorT were 0.221, 0.583, and 0.171, respectively.
It was noted that the algorithm that estimated body temperature was the summation
of the derived value using the factors and the constant of 35.11. The validity of this
algorithm was tested by calculating the mean of the root-mean-square-error (RMSE). The
RMSE is used to measure goodness-of-fit between values of derived and real core body
temperature (Equation (5)). Furthermore, bias is used to evaluate the algorithm if the model
underestimates or overestimates the core body temperature (Equation (6)) [27]. The closer
the RMSE and bias are to 0, the more precise the proposed method is.

RMSE =

√
1
n

n

∑
i=1

(xderived − xreal)
2 (5)

Bias =
∑(xderived − xreal)

number o f measurement
(6)
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Because of a problem of saving data, one child’s data in the clinical patient trial was
discarded, resulting in 20 data in this dataset. The validation results of the two categories of
trials are shown in Tables 5 and 6. The mean values in healthy participant trials are shown
in Figure 9a. The mean values in clinical patient trials are shown in Figure 9b. Overall, the
RMSE and bias in healthy participant trials are 0.04 and −0.04 ◦C.The RMSE and bias in
clinical patient trials are 0.08 and 0.02 ◦C. Besides statistical results, Figure 10 depicted the
comparison of continuous temperature signals between the thermometer recording and the
algorithm estimation using one subject as the example in both the healthy participant group
and the clinical patient group. The subject in the clinical patient group had a fever, which
resulted in the increasing body temperature (Figure 10b). The body temperature of the
subject in the healthy participant group remained stable during the time period. However,
the derived values with the core body temperature algorithm reflected the ascending trend
of the temperature due to the fever.

Table 5. Core body temperature estimation algorithm results (healthy participant).

Braun IRT-4020
(Actual Recording) Algorithm Estimating

Core body temperature ± SD (◦C) 36.96 ± 0.21 37.01 ± 0.19
RMSE ± SD (◦C) 0.04 ± 0.07
Bias ± SD (◦C) −0.04 ± 0.07

Table 6. Core body temperature estimation algorithm results (clinical patient).

Braun IRT-4020
(Actual Recording) Algorithm Estimating

Core body temperature ± SD (◦C) 37.33 ± 0.74 37.31 ± 0.74
RMSE ± SD (◦C) 0.08 ± 0.11
Bias ± SD (◦C) 0.02 ± 0.13
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6. Discussion

In this study, a vital signs sensing gown employing three algorithms that de-
rive vital signs including HR, RR, and core body temperature in real-time was pro-
posed. To derive the values of HR, a dynamic threshold approach was implemented for
R-wave detection. The low-complexity feature of this approach is compatible with the
proposed integrated intelligent algorithm that requires accurate calculation in real-time.
A study by Chang et al. [23] demonstrated an automated arrhythmia detection using the
dynamic threshold method. The validation results of identifying the R-wave showed
the sensitivity of 97.99% on an MIT/BIH arrhythmia database [28]. It concluded that the
dynamic threshold provided an accurate detection of QRS in a simple approach. The
results of comparing the R-wave detection algorithm estimation and NeXus-10 recording
in this study demonstrated the relative error of 0.45 ± 0.64 in healthy participant trials,
and 0.17 ± 0.10 and 1.41 ± 2.22 for adults and children, respectively, in clinical patient
trials. The relative errors are less than 1% in trials of adults. By contrast, the subjects in
younger ages could cause more movement artifacts, resulting in higher relative error in
the trials of child patients.

The respiration rate in the system was derived using the EDR algorithm which
employed the fluctuations of the R-peak amplitudes. A recent study presented by
Varon et al. [12] evaluated 10 different EDR methods, and concluded that the methods
based on QRS slopes outperformed the other methods. Furthermore, the simplicity that
these methods provided is crucial for development of ambulatory systems. The results
of comparing the ECG-derived respiration algorithm estimation and NeXus-10 recording
in this study demonstrated the relative error of 2.38 ± 3.58 in healthy participant trials,
and 5.52 ± 9.83 in clinical patient trials, which were comparable to the methods based on
QRS slopes. However, the proportion of the discarded data in clinical trials of children
was high, suggesting that the adopted EDR algorithm might be infeasible for children.
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The R-peak detection algorithm and ECG-derived respiration algorithm were pro-
posed by existing research. By contrast, the third algorithm, the core body temperature
algorithm, is a novel and self-proposed algorithm. The HR and RR values derived from the
previous two algorithms were recruited and integrated with the skin surface temperature
acquired by a digital thermometer to obtain a theoretical core body temperature. According
to the validation results, there is no significant difference in HR, RR, and core body temper-
ature between values measured by current devices (NeXus-10) and values estimated by the
algorithms. The core body temperature derived from the core body temperature algorithm
is a continuous recording in real-time, allowing the changes of core body temperature to be
detected immediately, which is important for ambulatory applications. Once the core body
temperature of a patient changes, the medical personnel can respond instantly to avoid
certain or potential harm.

There are some important features that describe the vital signs sensing gown.

1. Wireless: The communication between the miniaturized circuit and portable devices is
wireless (Bluetooth/Wi-Fi), which enhanced the convenience in applying this device
to either healthy participants or clinical patients, inside or outside of hospitals.

2. Mobility: The circuit on the sensing gown is small-sized, lightweight, and power-
saving compared to current vital signs sensing devices. The proposed device is
low-cost, convenient, and most importantly, as accurate as the devices that were
commonly used in clinical environments. Furthermore, the circuit is compatible
not only with the proposed sensing gown, but with other designs of vital signs
sensing systems.

3. Real-time: With the simplicity that the proposed algorithms exhibited, the values
transmitted by the device and derived from the algorithms can be displayed on
portable devices in real-time without any delay.

In conclusion, with the vital signs sensing gown and the intelligent computation
platform, three of the important vital signs can be acquired precisely in real-time and
in a suitable approach. The core body temperature algorithm provides a modern and
accurate method which derives core body temperature through ECG signals and skin
surface temperature. Employing these algorithms for estimating core body temperature
outperformed the current methods of measuring core body temperature with thermometers,
as it is continuous and non-invasive. Exploiting the proposed vital signs sensing gown
can be a novel and potential method for home-caring and clinical monitoring, especially
during the pandemic.

7. Patents

System for detecting core body temperature and method for the same. Patent No.:
I650101. 11 February 2019.
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