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Abstract: Biolayer interferometry (BLI) is a well-established laboratory technique for studying
biomolecular interactions important for applications such as drug development. Currently, there are
interesting opportunities for expanding the use of BLI in other fields, including the development of
rapid diagnostic tools. To date, there are no detailed frameworks for implementing BLI in target-
recognition studies that are pivotal for developing point-of-need biosensors. Here, we attempt to
bridge these domains by providing a framework that connects output(s) of molecular interaction
studies with key performance indicators used in the development of point-of-need biosensors. First,
we briefly review the governing theory for protein-ligand interactions, and we then summarize the
approach for real-time kinetic quantification using various techniques. The 2020 PRISMA guideline
was used for all governing theory reviews and meta-analyses. Using the information from the meta-
analysis, we introduce an experimental framework for connecting outcomes from BLI experiments
(KD, kon, koff) with electrochemical (capacitive) biosensor design. As a first step in the development of
a larger framework, we specifically focus on mapping BLI outcomes to five biosensor key performance
indicators (sensitivity, selectivity, response time, hysteresis, operating range). The applicability of our
framework was demonstrated in a study of case based on published literature related to SARS-CoV-2
spike protein to show the development of a capacitive biosensor based on truncated angiotensin-
converting enzyme 2 (ACE2) as the receptor. The case study focuses on non-specific binding and
selectivity as research goals. The proposed framework proved to be an important first step toward
modeling/simulation efforts that map molecular interactions to sensor design.

Keywords: biosensor design; protein–protein interaction; molecular affinity; binding kinetics; analyt-
ical sensing; SARS-CoV-2

1. Introduction

Understanding biomolecular interactions is critical for biotechnology development
and have diverse applications. Examples include biotherapeutic drug and vaccine devel-
opment [1] and biosensors [2,3]. A wide variety of techniques (both experimental and in
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silico) have been developed for studying the biomolecular complex that forms between
a receptor and target. Data may be used to reveal information on binding mechanism,
complex stability, affinity, specificity, of interaction kinetics.

Currently, the most common experimental instruments for characterization of biomolec-
ular interactions are surface plasmon resonance (SPR) or bio-layer interferometry (BLI).
These techniques allow real-time monitoring of binding events without the addition of
exogenous labeling molecules. High-throughput modern instruments support parallel
sample analysis with low sample volume, thus facilitating testing of many different ex-
perimental designs in multi-well plates [4,5]. When combined with in silico predictions of
biomolecular interactions [6–8], the combination of experimental testing and simulation
represents the state of the art in bioanalytical technology development. Ideally, this ratio-
nal design approach would be the basis of biosensor design, informing the process from
molecular recognition and transduction to signal acquisition and device application.

The operating mechanism of biosensor devices is based on molecular recognition
between an immobilized receptor (also called a biorecognition element) and a target analyte
associated with the sample [9,10]. The number of material combinations for biosensor
development are nearly infinite, but the most common receptors include tethered or en-
capsulated proteins, nucleic acids, or whole microbial cells [11–15]. In principle, biosensor
performance metrics depend on the kinetics of molecular interaction events occurring
at the sensor-sample interface, but the nature of this dependence is not clear [16]. Ra-
tional assembling of biosensors based on computer-aided design are emerging [17,18],
but this approach has been limited to studies that focus only on recombinant receptor
design/synthesis. Particularly when a new material is used as the biosensor receptor
(recombinant or other), a lack of detailed interaction data (experimental and/or in silico
data) can be a bottleneck for the development of biosensors. Even when interaction data is
available, the process of connecting high-throughput laboratory data and/or simulation
data with biosensor development is not trivial. Thus, there is a critical need for approaches
to connect experimental characterization of molecular interactions with biosensor key
performance indicators (Figure 1).
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Figure 1. There is a need for frameworks which delineate the relationship between biomolecular
interaction studies and biosensor development. High throughput instruments and in silico models for
studying biomolecular interactions facilitate detailed characterization of receptor-target affinity under
controlled conditions. Biosensor performance is based on knowledge of biomolecular interactions
and kinetics, but have relatively low throughput. This article reviews key literature and proposes an
experimental approach which may initiate development of a biosensor development framework. We
propose one aspect of such a larger framework, focusing on experimental data and we establish an
eight-step process. We apply this in a case study that focuses on SARS-CoV-2, utilizing biosensor
development data collected from 2020–2022 in response to the COVID-19 pandemic.
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Here, we briefly review models (Section 3), and practices (Section 4) that study
biomolecular interactions relevant to biosensors. We then introduce the first layer of
a framework for connecting the experimental design from these two domains (Section 5)
and suggest a process composed of eight-steps. The purpose of the framework is to help
biosensor developers choose from a vast library of biorecognition elements and transducers
that are available for creating biosensor tools. The proposed framework applies bio-layer
interferometry technology to select biorecognition and transducer combinations in sen-
sor development. We provide a case study (Section 6) that focuses on application of the
experimental framework for development of a SARS-CoV-2 biosensor.

2. Methods

The 2020 PRISMA (preferred reporting items for systematic reviews and meta-analyses)
guideline was used for a meta-literature review on the governing theory and instruments
covered in this review [19]. The PRISMA checklist was used to ensure study coherence; the
PRISMA flow diagram was used to report the outcome of the analysis (Figure 2). For the pri-
mary literature meta-analysis, 131 records were identified, and reduced to 63 manuscripts
and two websites that were used. In the case study, a meta-analysis with 720 records was
screened and 39 records were used in the final analysis (see Section 6 and supplemental
section for details of case study). In total, 851 records were identified and 104 were used in
the study (88% screening rate).
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2.1. Information Sources and Search Strategy

The information sources for meta-analyses in this work include three databases (Web
of Science, SCOPUS, Google scholar) and one reference manager (Mendeley). In addition,
website search (Google, Bing) was used to identify potentially relevant information. For
all bibliographic sources, keyword search included the following: molecular interaction,
biomolecular interaction, binding kinetics, molecular affinity, affinity, avidity, biosensor,
electrochemical biosensors, biosensor design, biorecognition, transduction, protein–protein
interaction, ligand-analyte interaction, and biotechnology.
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2.2. Elegibility and Selection Process

Web of Science and SCOPUS: Following keyword search, records were pre-screened
using search engine sort features (date, relevance, times cited) and then organized into
auto-bin categories. Abstracts and article information from the top 20% of the auto-bin
records were exported to Microsoft Excel for further analysis. All other manuscripts were
removed prior to screening. For archiving files that did not meet the inclusion criteria of
this work, the category grouping tool was used. When this tool was not available, authors
independently screened each record and retrieved documents based on relevance.

Mendeley: After keyword search, records were pre-screened using search engine sort
features (date within last 10 years, document type limited to journal and books, organized
by relevance, times cited). A Mendeley folder was created for organizing the records,
and then abstracts and article information from the top 20% of the auto-bin records were
exported to Microsoft Excel for further analysis. All other manuscripts were removed.

Google Scholar and Bing: After keyword search, records (excluding patents) were
pre-screened by date (within last 10 years), and further sorted by relevance. The library
function was used to organize the records, and then abstracts and article information from
the top 20% of the auto-bin records were exported to Microsoft Excel for further analysis.
All other manuscripts were removed.

Records were combined into a single Excel Spreadsheet and screened for duplicates.
Duplicates were identified using the sort function in Excel, and deleted using a Macro.

2.3. Screening and Synthesis

The title of each article which passes pre-screening was analyzed. Articles which had
descriptive titles that did not fall within the scope of the literature review were archived.
The remaining manuscripts were sought for retrieval. A fraction of articles were behind
a pay wall and inaccessible. Inter-library loans were requested, and if not available the
records were excluded. For records which fulfilled the screening criteria, an excel worksheet
was created which organized each item by associated keyword(s). The sort function was
used to organize the repository by various combination of keyword(s). Any record which
contained missing or unclear information was assumed to be invalid and removed from
the study. To limit bias, record location was conducted independently by each author, and
the results of the process shared during manuscript preparation.

2.4. Proof-of-Concept

To demonstrate the usability of the proposed framework, data obtained from a re-
cently published study on the development of an electrochemical ACE2 biosensor [20] was
analyzed against the framework. The study used bio-layer interferometry as a qualitative
screening tool to check binding interactions between truncated Angiotensin-Converting
Enzyme II (ACE2) from a commercial supplier and recombinant Spike proteins as well
as whole attenuated SARS-CoV-2 viral particles. Binding signatures generated from BLI
outputs were used to access qualitative information about the selectivity of the ligand
with target and non-target viruses. Finally, the BLI output was applied on the develop-
ment of an impedimetric biosensor based on the same buffer conditions and coupling
method approach.

3. Biomolecular Interactions: A Brief Review of Models Based on the
Ligand-Analyte Complex

Biomolecular structure and size play a fundamental role in functions. Biomolecules
may interact in reversible and irreversible binding events that perform a variety of functions.
Biomolecule interactions that are relevant to biosensors include protein–protein, protein-
peptide, carbohydrate-protein, enzyme-substrate, or DNA-protein events [21]. Molecular
recognition is the basis for biosensor design, where both specificity and affinity between
ligand and analyte are required for formation of a specific complex [22].
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Numerous conceptual and mathematical models have described ligand-analyte in-
teractions under the chemistry triplet [23–25]. Binding may be described by the symbolic
representation (equation) or particulate representation (cartoons) shown in Figure 3A. As
an example of protein–protein interaction, the particulate representation uses a generic
monomer as receptor (ligand) and truncated epitope (target analyte). In this representation,
binding (complex formation) is represented as the blue halo in the right box. In this scheme,
target analyte [A] interacts with the receptor [B] to create an analyte-receptor complex [AB].
The stability of the complex [AB] is dependent on the thermodynamics of the system and
the rates of association (kon) and disassociation (koff). An equilibrium interaction is estab-
lished when the concentrations of [A], [B], and [AB] do not change according to the mass
action law [26]. Given the state of quasi-equilibrium between these species, the interaction
may be modeled mathematically using saturation kinetics, where the equilibrium constant
(KD) is the concentration ratio of the involved species. Analogously, KD can be defined as
the ratio of koff and kon, which is experimentally determined at the point in the titration
regime equal to 50% of the maximum association rate. In order to detect and/or quantify
stable binding, in a meaningful biological system, the association rate (kon) must be higher
than the disassociation rate (koff).
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Figure 3. Symbolic and particulate schematics for (A) binding (top) and (B) binding + reaction (bot-
tom). Although the derivation of the two model systems uses a similar approach, the mathematical
underpinnings are quite different, and derivation is based on mutually exclusive assumptions. In
panel A, the particulate representation uses a generic monomer as receptor (ligand) and truncated
epitope (target). Binding (complex formation) is represented as the blue halo. In panel B, the particu-
late representation depicts oxidation of β-D-glucose (red halo) to gluconolactone (green halo) and
hydrogen peroxide (yellow halo) by the enzyme glucose oxidase (Gox), oxygen (O2) is not shown.
3D structure is available in the Protein Data Base (PDB), according to Wohlfahrtet et al. [27] and
Sehnal et al. [28].

When modeling kinetic processes, it is important to note which steps are rate limiting
and the conditions under which the limitations are relevant. In the simplest case of binding,
as depicted in Figure 3A, rate limitations are governed by solution temperature (Arrhenius
behavior), solution pH and osmotic gradients, and occupancy of the binding site. In more
complex interactions, cooperativity between molecules competing for the binding site
alters the rate(s) considerably. This cooperativity (including allosteric mechanisms) may
promote (positive cooperativity) or deter (negative cooperativity) subsequent binding of
analyte molecules. Other multitopic interactions may include other complexities, such
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as surface charge phenomena (e.g., homobivalency or heterobivalency). Taken together,
these interactions may be represented by the global KD, which is an approximation of the
equilibrium between disassociation and association rates. The terms affinity and avidity
are used (sometimes interchangeably) to describe the interaction between ligand and target
analyte, where avidity is an increased association that may be due to one or more of the
aforementioned rate-limiting factors (temperature, osmotic gradient, multivalency, etc.).

For binding kinetics described in Figure 3A, kon is assumed to be significantly faster
than koff for interactions displaying affinity, but it is imperative that koff is not assumed to be
zero. In other words, the quasi-equilibrium between ligand and analyte does not imply the
system is static, in fact disassociation is a necessity for characterization of binding kinetics.
The approach allows for slow off-rates (koff) but does not specify that a non-reversible
(i.e., covalent) bond forms between ligand and analyte. Interaction between ligand and
analyte are dynamic. The time required for analyte disassociation is an important indicator
of the analyte-ligand complex stability. In the disassociation phase, both analyte and
ligand return to their original state (i.e., no conformational changes occur as a result of the
analyte-ligand interaction).

Enzymatic catalysis shown in Figure 3B is an extension of the concept shown above,
and despite the mechanism of binding/reaction in the glucose biosensor. In Figure 3B, the
particulate representation depicts oxidation of β-D-glucose (red halo) to gluconolactone
(green halo) and hydrogen peroxide (yellow halo) by the enzyme glucose oxidase (GOx).
The symbolic states indicate that the interaction between analyte [A] and ligand [B] leads
to formation of an intermediate ligand-analyte complex [AB] as in the previous example,
but the process is extended. An extra post-binding step is included to account for the
reaction that occurs after association. Like all reactions, this step requires an input of energy
to initiate the process, known as the activation energy. Symbolically, the complex [AB]
undergoes a reaction at rate (k+Rxn), which alters the nature of the molecule, in this example
creating a distinct product [P] that is no longer thermodynamically stable in the binding
site of the enzyme. Given the local instability of the molecules, the product [P] disassociates
and subsequently diffuses away from the binding site of the enzyme (referred to as the
binding pocket). The binding site of the enzyme [B] is thus unoccupied and able to undergo
subsequent cycles of this process with additional analyte molecules. To be comprehensive,
the reverse reaction rate (k-Rxn) is also shown. While it is thermodynamically reasonable to
include the reverse reaction rate in the analysis of many oxidoreductase enzymes, we don’t
discuss it here.

Michaelis-Menten (M-M) models this behavior (mathematically) based on the quasi-
equilibrium that occurs between species. In order for this theorem to be valid, a few key
assumptions are necessary. When viewed as a system of reactions, the association rate (kon)
must be orders of magnitude higher than the disassociation rate (koff), as was true in the
affinity discussion in Figure 3A. In addition, the associate rate is assumed to be orders of
magnitude faster than the reaction rate (k+Rxn). This would result in a non-diminishing pool
of [AB], implying that the net reaction rate (V0) may be approximated as k+Rxn*[AB] (note
that this assumes that the reverse reaction rate, k-Rxn, is negligible). This assumption also
implies that at high concentrations of analyte [A], all of the binding sites will be occupied
(as [AB]), and the resulting maximum net reaction rate (Vmax) is equal to the reaction rate
(k+Rxn*) multiplied by the total analyte in the system, bound and unbound ([A] + [AB]).
Another key assumption for the Michaelis-Menten abstraction is that at early time points,
the concentration of product [P] is negligible.

For catalysis kinetics, derivation of M-M kinetics (Figure 3B) assumes koff is negligible
(near zero), which contradicts the assumption for binding kinetics shown in panel A
(Figure 3A). These models employ the free ligand approximation, which postulates that
the target analyte concentration in suspension at any time is equal to the total ligand
concentration in the system. If this postulate is violated (e.g., when the constant KM is lower
than the total enzyme concentration), other equations must be used (such as the Morrison
equation [29]). In addition, reaction kinetics also assume that kon is significantly higher than
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the forward reaction rate (k+Rxn). This condition ensures an infinite pool of complex [AB]
is perpetually available for the reaction to occur. Finally, the forward reaction rate (k+Rxn)
is expected to be orders of magnitude faster than the reverse reaction rate (k-Rxn), which
drives the reaction to the right of the equation shown in panel B (Figure 3B); thus, implying
continuous depletion of analyte and formation of product, while the concentration of the
bioreceptor (i.e., catalyst) remains constant throughout the process. All of these premises
are critical for the kinetics framework shown in panel B (Figure 3B), but the key difference
with the binding kinetics in panel A (Figure 3A) is the mathematical treatment of koff.

Neither the binding kinetics in panel A nor the M-M kinetics in panel B are directly
applicable for allosteric regulation. The most common allosteric models for binding kinetics
are expansions of the classic Hill model [30] and Hill-Langmuir model [31]. Allosteric
models for reaction kinetics include the concerted (MWC) model [32] and the sequential
model [33], among others. It is useful to recognize the elegance of the mathematics in these
models, as well as the diverse uses in myriad of applications. Although allosteric models
may be broadly categorized under cooperative models, care must be taken to ensure that
the assumptions of any model are specifically relevant to the particular study.

Given the assumptions above, the rate-limiting step for enzymatic catalysis is the
conversion of analyte to product in the catalysis step (from complex [AB] to [P] + [B]).
The presence of inhibitors or insufficient activators (i.e., cofactors) can exacerbate this rate-
limiting condition, which leads to a decrease in the catalytic efficiency. In this ideal generic
system, conditions that are non-ideal for binding are neglected (e.g., decreased temperature,
non-ideal pH or osmotic gradient, negative cooperativity). The seminal work by Michaelis
and Menten is still used as a foundation of models today, but emerging adaptations address
the aforementioned non-idealities, as well as other compounding affects (e.g., complex
regulatory modalities) [34,35]. While the calculation of rate constants for both binding
(Figure 3A) and enzymatic reaction (Figure 3B) are each based on the general mathematical
framework of the rectangular hyperbola, the equations are not interchangeable. Some of
the assumptions made during derivation of each model system are incompatible.

These fundamental models for characterizing biomolecule interactions are central to
the first step in a biosensor process (molecular binding and complex formation). In the next
section, we briefly review experimental techniques for quantifying binding interactions.
We focus attention on one modern techniques that provide high throughput analysis, which
are increasingly gaining popularity in biosensor research (biolayer interferometry).

4. Methods for Characterizing Ligand-Analyte Interactions

As reviewed in Section 3, protein structure and substrate binding are interwoven.
Many experimental methods are available to characterize ligand-analyte interactions. Com-
mon techniques for assessing protein structure include X-ray crystallography, Laue X-ray
diffraction, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and
cryo-electron microscopy. In addition to these experimental techniques, in silico simulation
of ligand-analyte relationships are powerful for informing experimental work, and vice
versa. Use of computer simulations for studying biomolecule interplay has been reviewed
extensively [36–40].

In addition to structural characterization (experimental or in silico), thermodynamic
techniques are also used to predict ligand-analyte behavior [41]. Isothermal titration
calorimetry (ITC) and/or differential scanning calorimetry (DSC) are commonly used for
quantitative thermodynamic analysis. The outcome of ITC studies is an overview of the
global thermodynamic parameters associated with the ligand-analyte coupling. DSC pro-
vides information on the biomolecular complex and any free component(s). Combination
of ITC and DSC allows the global parameters from ITC to be decomposed into specific
contributions related to conformational changes. Jelesarov and Bosshard [41] noted more
than 20 years ago that ITC and DSC, if combined with in silico structural modeling, is
one of the most powerful cluster of techniques of linked function analysis of biomolecular
interaction (or any coupled equilibria system). Indeed, this combinatorial approach is
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the current state of the art for studying rigid body binding and/or structure–function
relationships [41–44].

In this manuscript, we focus on experimental analysis of ligand-analyte interactions.
The most common techniques include surface plasmon resonance (SPR) [45] and localized
surface plasmon resonance (LSPR) [46,47], fluorescence polarization (FP) [48,49], grating
coupled interferometry (GCI) [50], bio-layer interferometry (BLI) [51–53] (Table 1). SPR is
capable of quantifying kinetics in the range of 10−9 to 10−3 M [54] and can also provide
insight into the binding enthalpy via van’t Hoff analysis [55]. FP is an equilibrium method
based on determination of IC50 and is capable of simultaneous characterization the ther-
modynamics and kinetics of protein-ligand interactions. FP typically employs competition
assays to displace labeled ligand molecules [56–58], and is a simple and low-cost assay.
GCI is a hybrid phase-shifting Mach–Zehnder interferometer which has reduced noise due
to absence of motors or moving parts and time domain measurement. GCI is becoming
popular for use in analysis of protein-ligand interactions as well as other sensor targets [59].

BLI is a label-free, real-time method for characterizing association and disassociation
kinetics based on interferometric shift at the tip of a glass fiber probe. Numerous protocols
for the BLI technique are available [60]. BLI does not require fluidics or control systems
and is a relatively simple multiplexing system. The technique appears insensitive to matrix
pH or changes in refractive index (i.e., high solvent tolerance) [51,53,61]. In addition to
protein–protein studies [51,62], BLI is also used for other binding system’s aptamer-target
interactions [60,62–64].

Table 1. Comparison of analytical experimental methods for characterization of ligand-analyte interactions.

Analytical Laboratory Method Method Principle Features Reference(s)

Surface plasmon resonance
(SPR)

Flow-based system. Measure changes in the
refractive index near a chip-sensor surface.

Ligand molecule is immobilized on chip-sensor
surface. Analyte molecule is injected into an
aqueous solution as a continuous flow cell.

Real-time, label-free,
high-throughput,

quantification of binding
kinetics in flow through

system

[46,47,65]

Biolayer interferometry (BLI)
Optical dip-and-read system that measures

interference patterns between waves of light on
fiber-optic biosensor with immobilized ligand.

Real-time, label-free,
high-throughput in microwell

format
[66]

Fluorescence polarization (FP) Fluorescent protein variant fused to one of the
protein partners.

Real time,
labelled fluorophore, typically

in microwell format
[67,68]

Grating coupled interferometry
(GCI)

Target protein immobilized onto specialized
sensor chips and the passage of analytes over

the chip surface are monitored as
time-dependent changes in refractive index.

Real time, label-free, reliable
kinetics quantification in flow

through system
[50,69]

Isothermal titration calorimetry
(ITC)

Microcalorimeter quantifies absorption or
release of heat during gradual titration of the

ligand into a sample cell containing the analyte
of interest

Label-free, complex stability
study, evaluation of

thermodynamic parameters in
a sample cell

[70]

The advantages and disadvantages of SPR, FP, GCI, and BLI have been proposed by
instrument manufacturers [71,72]. One peer-reviewed study by Murali et al. [4] compared
the application of SPR and BLI with advantages and limitations for whole virus-binding
studies. This work summarized the principles of both SPR and BLI and the application of
these robust methods for whole virus-based studies based on several case studies. In a study
by Jecklin et al. [73], SPR and ITC were compared for binding studies focused on human
carbonic anhydrase I. This work showed that for some ligands, the agreement between SPR
and ITC was excellent, while it was poor for others. One of the biggest problems with FP
compared to BLI or SPR is that FP uses an indirect response, whereas the aforementioned
techniques are direct read-out [74]. FP is based on proportional binding (IC50), which can
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lead to bias in measured affinity values based on specific experimental conditions used.
Weeramange et al. [16] analyzed the limitations of BLI for lactose repressor protein binding
immobilized DNA and found that the amplitude of BLI signal at equilibrium below KD
was lower than anticipated, which suggests issues with low signal-to-noise ratio. BLI
and SPR both suffer from the practical problem of high experimental variation, which is
associated with manufacturing complications (specifically, biosensor tip variations amongst
manufacturing batches). The techniques in Table 1, which are label-free and real-time (BLI,
SPR, GCI), have a major advantage over other methods when using the data to design
biosensors. The advantage lies in the ability to quantify association (kon) and disassociation
(koff) rates, parameters which inform biosensor design when working in complex matrices.
In this manuscript, we focus on BLI and develop a framework for connecting measured
outcome(s) from real-time, label-free techniques such as BLI.

4.1. Biolayer Interferometry: Basic Principles

BLI is an optical label-free technique based on a dip and read format. Molecular
interactions are measured by the analysis of interference patterns of white light reflected
from the surface of a biosensor tip. The ligand molecule is immobilized on a coated tip
(biolayer) to produce an optical biosensor. Next, the biosensor is dipped in a sample
solution containing the target analyte, and wavelength shifts at the probe-sample interface
are recorded [60]. Interferometric signal (reported as shift, nm) derives from the reflection
of polychromatic light interacting with a layer of immobilized protein on the tip of a fiber
optic sensor [66]. Typical sensorgrams are derived from interferometry plots, which are
time series data that report interferometric shift (in nm) during interactions between ligand
and analyte.

BLI produces chrono-interferometric plots for baseline drift, ligand loading, baseline
equilibration, ligand-analyte association, and ligand-analyte disassociation. Association
curves are used to calculate the half saturation rate (s−1), half-life (nM), and the association
rate constant, or kon (M−1 s−1). The disassociation time series plots are used to calculate
the disassociation rate constant, or interaction half-life, koff (s−1). Under most conditions
(>0.01 KD), koff is not dependent on analyte concentration. Thus, the half-life is equal to
the disassociation constant koff. If the ligand of interest is known to be multivalent in
nature, the KD values must be reported as apparent KD (KD_app). There are numerous
techniques for exploring valency, such as calculation of the Hill number (nH) using the
Hill-Langmuir-Adair theory.

The two most common experimental techniques for improving kinetic analysis are
(i) modifying ligand loading and/or (ii) modifying analyte concentration. To improve data
reliability, many BLI studies utilize two internal controls (referred to as double reference
data): (i) one control sensor to correct for signal drift (a bare fiber with no receptor),
and (ii) one SAV-coated fiber with no analyte binding to correct for non-specific binding
(NSB) [52]. Data from controls are commonly subtracted from association and disassociation
binding curves. Application of data smoothing may appear to improve precision but may
also introduce errors and bias.

Figure 4 shows a representative (ideal) BLI sensorgram, indicating regions of ligand
loading, analyte association, and disassociation. Sensograms typically follow the sequence
shown in Figure 4, including a buffer baseline, ligand loading step, additional buffer
baseline, association step, and finally, disassociation step. It’s important to note that
Figure 4 depicts the deployment of Streptavidin fibers (SA biosensor), but there are dozens
of other material combinations that could be used (for example, Nickel charged tris-NTA
with binds to his-tagged proteins).
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Figure 4. Experimental steps and representative (ideal) sensorgrams in a BLI assay based on Strepta-
vidin fibers (SA biosensors) biosensors. Experimental steps showing the initial baseline in buffer (1),
ligand loading using the streptavidin-biotin coupling method (2), baseline equilibration for drift cor-
rection in buffer (3), association with target analyte (4), and dissociation of ligand-analyte complex (5)
(Figure created in BioRender (accessed on 5 May 2022)). Note that the loading plot shown here is for
100% surface coverage, which is not ideal for kinetic studies due to steric hindrance.

4.2. Bio-Layer Interferometry: Common Experimental Approach for Biosensor Development

The 96 microwell format of BLI (or in some cases 384 microwells) supports a wide
range of testing (Figure 5). The experimental design begins with a baseline step where the
fibers are immersed in a buffer solution. Next, the fibers dip in a loading solution with
the ligand partner at a pre-determined concentration, generally in µg/mL. After ligand
immobilization, fibers are dipped in buffer solution for a second baseline for equilibration,
assess assay drift, and determine the loading level of ligand. Next, fibers are dipped in
the ligand’s binding partners solution for analyte association step. For association step, a
titration down of analyte is prepared to assess kinetics metrics (kon, koff, KD) which leads
to useful information related to the sensitivity and limit of detection. Finally, following
analyte association, fibers are dipped in a buffer solution for dissociation step where the
bound analyte is allowed to come off the ligand partner. A titration regime of up to eight
measurements can be performed in a 96 microwell per run. At least two references may
be added in the experimental plan: (i) a reference sensor with no ligand to correct for
signal drift, and (ii) a reference sample with no analyte to check nonspecific binding. A pre-
hydration step of the fibers are required before running the experiments to decrease assay
drift and background signal during the experiment. Pre-hydration should be performed in
the same assay buffer solution for at least ten minutes. These example of BLI experimental
plans produce outcomes which inform biosensor development, although numerous other
experiments are also possible such as assays for hysteresis and operating range by looking
at the titration and binding regime. Depending on the biomolecules involved in the
interactions, an experimental plan may require specific conditions such as optimum pH or
trace amount of ions. Due to the high-throughput nature of BLI equipment, it allows testing
of experimental conditions to optimize the binding once the ligand-analyte partner has
been selected. In addition, quantitative measurements of biomolecule associations can be
performed to evaluate binding affinities [75]. Once the ligand-analyte partner and optimal
binding conditions are selected, the detection can be simulated through electrochemical
testing by the biosensor and then applied in a real-world sample and/or context.
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Numerous studies have combined kinetic analysis with biosensor development with
the aim of improving device performance through detailed understanding of molecular
interactions [76–79]. However, to date, there is no framework for connecting the output
from molecular interaction studies (e.g., on rate, off rate, affinity constant) with biosensor
key performance indicators (KPI).

5. A Framework for Connecting Biomolecular Interaction Parameters with
Biosensor Engineering

Traditionally, the rational design concept is applied to in silico design of new bio-
materials and/or nanomaterials, followed by experimental verification using various
techniques [80]. Some argue that directed evolution approaches, or combinations of these
two approaches, are advantageous with respect to classic protein engineering [81–84]. Both
of these frameworks have been extremely powerful for protein engineering and have also
advanced the field of biosensor development. What is missing from the current literature is
an extension of the framework for producing key experimental data to ensure the design
features are robust in a variety of scenarios. In this section, we summarize each of the three
areas shown in Figure 6, then propose a sequence of steps for the rational framework in
biosensor design. For a summary of experimental interaction studies, see Section 4.
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rational design framework) to guide biosensor development. The three key domains of are structural
analysis of ligand(s), experimental interaction studies, and biosensor development. These often
occur in iteration, and the diagram is not intended to be restrictive by use of arrows. The proposed
framework is outcome-based and focuses on six key performance indicators (KPI).
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5.1. Structural Analysis

Numerous experimental and computational methods for biomolecule structural char-
acterization are summarized in Section 4 (Table 1). If data are not available from existing
databases (e.g., protein data base, apta-index, etc.), a combination of experimental and
computational methods must be used to produce key information. The important in-
formation derived from structural analysis includes: (i) location and number of binding
site(s), (ii) conditions during analysis (pH, temperature, salinity), (iii) predicted or known
structural stability under planned application of biosensor (if known).

5.2. Biosensor Key Performance Indicators

Biosensor key performance indicators include analytical sensitivity, analytical selectiv-
ity, response time, limit of detection, and clinical performance (if applicable).

5.3. Step-by-Step Guide to Applying Framework

Figure 7 depicts the sequence of steps to applying our proposed framework for
biosensor development. A complete step-by-step guide for applying the framework can be
found in supplemental material.
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decision-making. This process also facilitates updating the quality literature review (use of PRISMA
framework is highly suggested). Green arrows indicate that the prototype meets the requirements,
and we can move to the next process step. Red arrows indicate that the prototype does not meet the
specified requirements and an iteration to prior step(s) is required.

In the following sections, we provide an example case study of the proposed frame-
work based on Moreira et al. [20]. BLI was used to characterize the binding affinity between
SARS-CoV-2 spike protein RBD (recombinant protein containing the receptor binding do-
main) and truncated ACE2 containing the spike protein recognition domain. By truncating
ACE2 and only focusing on the RBD, the work by Moreira et al. [20] reduced the number of
possible molecular interactions and focused only on analyte binding (i.e., TMPRSS2 is unin-
volved). This approach simplified the behavior of ACE2 to the non-reactive biding model,
as depicted in Figure 8, allowing us to explore the use of ACE2 as a functional component
of a device for detecting SARS-CoV-2 [20]. In the next section, we apply the eight-step
process for the framework developed herein to development of a capacitive biosensor.
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6. Case Study: Application of the Framework for Development of a
SARS-CoV-2 Biosensor

The eight-step process for rational biosensor design is discussed in each subsection
below. Note that we limit the case study to one specific research question and the associated
experimental plan. The literate and data collected do not represent the complete study that
was published by Moreira et al. [20] (Supplemental Figure S2).

6.1. Goal of Research

The research goal of the biosensor design shown here was to evaluate the suitability of
ACE2 receptor as biorecognition element in an electrochemical SARS-CoV-2 detection approach.

6.2. Intended Use of Proposed Device

The intended use of the proposed biosensor was to facilitate in situ SARS-CoV-2
diagnosis via saliva testing within moderate-complexity settings (e.g., nursing homes).

6.3. Research Question(s)

In this manuscript, we highlight one key research question: How specific is the ACE2
biosensor when exposed to other RNA viruses, including variants of SARS-CoV-2?

6.4. Perform Meta-Analysis of Published Literature and In Silico Analysis

The literature analysis for the case study followed the same structure as described
in the methods section, with a few key differences. The meta-analysis by Datta [85] was
used as the initial library for the case study (755 total records). The eligibility and criteria
process described above were applied to reduce the number of records (pre-screening). As
described above, screening was based on review of title and abstract. Where necessary,
preference was given to records which were from peer-reviewed journals, and other records
(websites, media outlets, etc.) were excluded from the study (see supplemental Figure S3).
The analysis resulted in 37 records (plus 2 websites) in the case study, including one research
article describing the development of a biosensor [20].

The literature showed that angiotensin-converting enzyme-2 (ACE2) is a suitable
candidate for developing a host membrane receptor biosensor. ACE2 is a metallocarboxyl
peptidase and angiotensin is a crucial regulator of the renin-angiotensin-aldosterone sys-
tem [86]. In virology, ACE2 has been identified as the first point of entry for host infection
with SARS-CoV-2 [85], but the eventual fusion of the viral and host membranes involves a
cascade of events. Subunit 1 (S1) of the spike protein on the SARS-CoV-2 capsid surface
binds with ACE2 during initial interaction [87,88] (it is worth noting that this binding is
unrelated to the physiological enzymatic function of ACE2 and hence must not be concep-
tualized as an enzyme-substrate binding). During the cellular infection with SARS-CoV-2,
the binding step likely involves simultaneous interaction of two S-glycoprotein trimers to
an ACE2 dimer [89,90]. Subsequently, spike protein subunit 1 and subunit 2 are cleaved
by the protease TMPRSS2 and a cascade of events then leads to membrane fusion for cell
entry [90,91].

In this work, we exclusively focus on the affinity of a protein for the analyte of interest
(the anticipated reaction is entirely unrelated to the enzymatic function of the molecule
in use). The modeling of ligand-analyte interactions performed by in silico analysis is
shown in Figure 8. The binding kinetics govern the interaction, and there is no downstream
decrease in activation energy. The analyte of interest herein is the receptor binding domain
(RBD) of the spike protein in the SARS-CoV-2 virus. The ligand is the truncated binding
domain of the ACE2. This case study exclusively examined the binding affinity between
SARS-CoV-2 spike protein RBD and truncated ACE2 containing recognition domain for the
spike protein. By truncating ACE2 and only focusing on the RBD, we are experimentally
reducing the number of possible molecular interactions and focusing only on analyte
binding. This simplifies the expected in vivo behavior of ACE2 to the non-reactive binding
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model, as depicted in Figure 8, allowing us to explore the use of ACE2 as a functional
component of a device for detecting SARS-CoV-2.
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Figure 8. Schematic for binding of recombinant spike protein (subunit 1 core; recognition binding
motif (RBM) not shown) and truncated ACE2 recognition binding domain (RBD). Each recombinant
protein is truncated for experimental isolation of binding kinetics (e.g., enzymatic portion of ACE2 is
cleaved). Most experimental studies focus on binding truncated ACE2 RBD with spike protein subunit
1 (shown here), and subunit 2, but few focus on inactivated SARS-CoV-2 virion. Crystal structures of
spike protein subunit 1 and ACE2 are courtesy of Shang et al. [92]; program by Sehnal et al. [28] used
for modification and export.

6.5. Molecular Interaction Study

In this study, we focused specifically on the ability of ACE2 to interact with the Spike
protein and non-specific binding towards non-target molecules (Supplemental material,
Figure S2). Figure 9A shows representative BLI sensorgrams from interaction of biotinylated
ACE2 and DELTA spike protein (SARS-CoV-2) in bicarbonate buffer at 30 ◦C. Rinse steps
are not indicated in the plot. Another key experimental detail is the recording time, which
must be sufficient for accurate quantification. In this representative example, recording
time was eight times longer than the half-life (8 t), which represents 99.6% binding based
on half-life theory. In general, the change in interferometric signal after ligand loading (0.5
to 0.7 nm) is significantly higher than the association step (0.1–0.2 nm). The signal from the
association step is relatively low due to the reduction of frequency-modulated white light
in the system.
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Figure 9. BLI sensorgrams for ACE2xDELTA in bicarbonate buffer at 30 ◦C. (A) Representative
sensogram for ACE2xDELTA in bicarbonate buffer at 30 ◦C. Regions of ligand loading, analyte
association, and disassociation are indicated at the top of the time series plot. The assay was
conducted over concentrations that span the binding regime and the titration regime. (B) Association
and dissociation curve for DELTA using [biot]ACE2 on SAV-coated fibers as the ligand in bicarbonate
buffer at 30 ◦C.
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Figure 9B shows a typical BLI curve (association and disassociation only, ligand
loading and rinse steps not shown) for SARS-CoV-2 DELTA variant using [biot]ACE2
on SAV-coated fibers as the ligand in bicarbonate buffer at 30 ◦C (raw BLI data with no
smoothing or internal controls). The precision of the data is low when comparing curves
within the titration regime, in particular (see data between 350–500 s). However, differences
in sensorgrams for analyte concentrations in the binding regime are clearly discernable
for raw data. Signal smoothing (a post hoc analytical technique) is used to resolve the data
in the titration regime and compared to double reference data (an empirical technique).
The sensorgram in Figure 9B is similar to the expected values for protein–protein interac-
tions [51,53,61]. The assay was selected as an example of an experiment that was conducted
over concentrations that span the binding regime and the titration regime. The minimum
concentration shown here (≈0.1*KD) represents a common low end of the dilution range,
as analyte concentrations below this value typically do not show binding in other affinity
studies [93]. Careful control of the experimental analyte concentration regime is critical
for accurate determination of kinetic parameters [53]. In particular, experiments should
include at least three data points within the binding regime for accurate quantification of
binding kinetics (as shown here).

Many BLI kinetic analyses produce shift data for binding on the order of 0.1–0.2 nm,
which is assumed to be a significant signal relative to the instrumental noise (reported
to be 3.5 pm by the manufacturer [63]. In addition, BLI studies assume that temperature
and shake speed (mass transfer) does not change during the experiment, but there are no
onboard sensors [94,95] sensor to validate this assumption. The key points for Figure 9
are that: (i) the sensorgram indicates that binding and disassociation are taking place, and
(ii) the recording time (8 t, which represents 99.6% binding based on half-life theory) is
sufficient for capturing on/off kinetics. One caveat for BLI experiments of this type is the
lack of published data studying the effect of mass transfer (shake speed) on binding kinetics
at this level of granularity.

As demonstrated by Moreira et al. [20], BLI sensorgrams provide qualitative informa-
tion about specificity of a ligand towards target analytes and non-target analytes (Figure 10).
The magnitude of the response signal (wavelength shift, nm) could be a preliminary indi-
cation of biomolecular interactions or formation of the ligand-analyte complex. On other
hand, the absence or low intensity of the response signal can give qualitative information
about weak or absence of the ligand-analyte complex. This type of interpretation could be
applied as preliminary indications of the selectivity and specificity of a given ligand for the
development of technologies based on binding events.
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In this case, study, BLI was designed to mainly evaluate ligand selectivity when in
the presence of non-target analytes, composing the first part of the experimental design
in our framework. Next, the receptor-target interaction was demonstrated qualitatively
through representative association and dissociation curves (Figure 10) and quantitatively
through kon/koff maps (Supplemental, Figure S2), composing the second part of the frame-
work. Finally, BLI outputs lead to device development, where sensitivity, response time,
limit of detection, selectivity, and operation range were evaluated for the electrochemical
sensing approach.

6.6. Biosensor Development

Electrochemical biosensors are analytical sensing tools able to transduce biochemical
events in the recognition matrix (biosensor interface) to electrical signals. Within biochemi-
cal events are the classic antigen-antibody interaction and enzyme-substrate reaction. In
addition to the classic biochemical events, any interaction at the molecular level between a
biorecognition element and a target molecule can be transduced into an electrical signal
by electrochemical biosensors. Several electrical signals, such as current, impedance, and
voltage, can be generated depending on the transduction method [96]. The readout signal
is proportional to the concentration of a target analyte in the sample, which allows the
detection and quantification of a specific target in complex biological and environmental
samples [21].

Electrochemistry-driven biosensing approach has attracted attention for allowing the
miniaturization of laboratory analyses for on-site application. Electrochemical sensing
approach for detection and/or measurement provides advantages compared with the
laboratory settings approach. Electrochemical sensing could potentially be highly sensitive
and selective towards a target analyte (a molecule or microorganism). In addition, elec-
trochemical biosensors may be developed based on cost-affordable and environmentally
friendly materials. Furthermore, electrochemical biosensors can be developed as a tiny
device form and be deployed as point-of-care providing simple, fast, and accurate outputs
on-site settings with a user-friendly interface.

As electrochemical biosensing is based on the interactions between a ligand-analyte
partner in the recognition matrix, ideally, the first step in developing biosensors would
be to analyze the nature of these interactions. Ligand-analyte affinity, optimal buffer
binding conditions (pH, temperature, buffer components), and association and dissociation
rates between ligand-analyte are crucial parameters for developing biosensors with high
performance. In this context, BLI provides a high throughput screening for ligand-analyte
and buffer conditions for electrochemical biosensor development. Data generated by BLI
approach may help to define the best receptor for electrochemical sensing based on affinity
constant (KD), association (kon), and dissociation (koff) rate. These metrics indicate the
strength of ligand-analyte interactions. A higher affinity between ligand-analyte means a
lower KD value generated by BLI approach, and it is desired when the biosensor intends
to detect a pathogen, for example. This means that a fast recognizing and tight binding
between molecules occurs after exposure to an analyte (high kon). There is strong stability
of formed complexes which slower dissociation or unbinding (low koff), which can generate
a distinct electrical signal compared to a blank sample in the electrochemical testing.
Development of biosensors based on high-affinity ligand-analyte partners can generate
devices with high performance, such as high sensitivity and selectivity towards the target
molecule with a lower limit of detection.

As demonstrated by Moreira et al. [20], BLI was used for qualitative interaction screen-
ing of hACE2 with target and non-target analytes to prove the selectivity and sensitivity of
the receptor. Based on the same sensing format and conditions, an impedimetric ACE2-
based biosensor was developed. Electrochemical sensing was selected as the transducer
method, using a laser-induced graphene electrode. Streptavidin-biotin affinity was used
as coupling method to attach ACE2 receptor to the electrode surface. Electrochemical
impedance spectroscopy (EIS) was used for signal transduction. It’s important to note that
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the same experimental design (buffer conditions, streptavidin-biotin coupling method, tar-
get, and non-target analytes) was translated from BLI to electrochemical approach. A similar
electrochemical output is depicts in Figure 11 for selectivity assay. As the electrochemical
sensing field evolves, more emphasis is being placed on selectivity, hysteresis, operating
range, and other key parameter indicators. The aforementioned parameters are largely
driven by koff and/or kon. The ACE2-based biosensor developed by Moreira et al. [20]
showed an estimated limit of detection (LoD) of 2960 copies/mL, with a response time of
less than 30 min.
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In addition to its application in the study of molecular interactions, BLI and/or other
techniques such as SPR can also be applied as centralized analytical biosensors [96–98]
or design of advanced materials [99]. As a centralized analytical technique, BLI offers
high sensitivity, response time around 10–20 min, and does not require extensively trained
personnel. Among the limitations is the high-cost of equipment and optical biosensors
tips, and the inability to deploy as point-of-need. Moreover, BLI has been used in the
workflow of biosensor design for numerous aims, including fragment screening [100] and
ligand-target design [101], for application in the drug discovery process and detection of
the disease-specific biomarker.

BLI can provide a suitable understanding of the nature of biomolecular interactions,
in quantitative (kinetics values) and qualitative (binding profiles) terms. However, the
signal (wavelength shift, nm) generated by the BLI is directly proportional to the mass
of the molecules (ligand and analyte). Interactions with small target molecules may not
be detectable since a low molecular mass may not generate distinguishable changes in
the biosensor tip. In addition, constant agitation is required to prevent re-binding be-
tween molecules, and the sample is subject to evaporation over time in BLI experiments.
Electrochemistry-driven biosensing approach is sensitive to small changes on the electrode
surface and has several mechanisms for electrical signal transduction. However, unlike
BLI, electrochemistry approaches to biosensor regeneration are not common practice, as
many electrochemical biosensors are designed for one-time use. For both approaches, the
immobilization method may alter the conformation or orientation of the ligand, compromis-
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ing binding events towards a target. A comparison between optical and electrochemistry
approaches is shown in Table 2.

Table 2. Advantages and limitations of optical and electrochemical biosensors.

Approach Advantages Limitations References

Optical

Fast, sensitive, and high-throughput
technique (96-well or 384-well format). Limited by physics properties (mass).

[102–104]

Rapid screening of molecules and optimum
conditions for binding. One mechanism of transduction.

Real-time qualitative monitoring of
interactions (changes in wavelength shift).

Not suitable for small target-analyte since
their mass may not generate a clear angle

wave shift.
Allow the regeneration of the biosensors

for reuse. One immobilized ligand per biosensor tip.

Real-time and label-free detection. Require costly equipment and laboratory
structure.

Wide range of application, such as,
quantitation, kinetics, isotyping of

biomolecules.

The turbidity of biological samples might
cause limitations on applying optical

biosensors.
False-positive signals from any matrix

artefactual.

Electrochemical

Different electrochemical transduction
signals can be employed (i.e.,

amperometric, potentiometric,
voltammetric, impedimetric).

Limited by chemistry properties (redox
signal).

[105,106]Sensible to small changes on the biosensor
surface.

One-time use. Depending on the
application, regeneration of the electrodes

are not possible.Miniaturization,
Suitable for point-of-care,

Scalability.

7. Conclusions and Future Perspectives

BLI provides sensitive, specific, qualitative, and quantitative information in real-time
assays for screening biomolecule interactions. This review focused on applying BLI as
the first step for electrochemical biosensor development. We proposed a framework to
bridge bio-layer interferometry studies with electrochemical sensing attempting to connect
output(s) of molecular interaction studies with key performance indicators used in the
development of point-of-need biosensors. To date there is no unifying framework for
the rational design of biosensors that is rooted in studies of binding kinetics, connecting
output of interaction studies with input of biosensor design practices. In the next section,
we extend the rational design framework to include this experimental approach. Based
on defined study goal, research questions, and robust literature review, the framework
proposed the development of an experimental design to study molecular interactions as
first step for biosensor development. Qualitative (real-time sensorgrams) and quantitative
(affinity constant, association and dissociation rates) data can be applied to select a receptor
for the target analyte, which can provide a platform to compose biosensors. BLI allows
screening and optimization of binding conditions to improve the electrochemical detection
of binding events. Nonspecific binding is the major limitation in these techniques that
requires an in-depth optimization and selection of immobilization methods to prevent
nonspecific binding. As a study case for proof-of-concept of the proposed framework, we
depicted an analysis of BLI sensorgrams for the interaction between the ACE2 protein with
Spike protein of SARS-CoV-2. The complementarity between optical and electrochemistry
approaches may generate high-performance and point-of-need deployment of analytical
devices. Biosensors are feasible to use in public places and also in field to analyze the
clinical and environmental samples. In addition, biosensors have a great significance for
deployment in real-world contexts with wide application in fields such as agriculture/food
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safety, human health, environmental monitoring, and industry. Point-of-need biosensors
rationalized in this review can offer a sustainable and repetitive diagnostic tool to apply to
a wide variety of samples. Although not discussed here, this framework could be applied
for many types of biorecognition (proteins, aptamers, peptides, etc.) or transducers (optical,
electrochemical, magnetic, whole cell/organism). The aim of this manuscript is to provide
a general platform that may be expanded upon in other studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12110938/s1, Figure S1: Flowchart for applying framework.
Experimental design and iteration in steps 5–7 should always consider the study goal, intended
use, and research question of the study as a guide for decision-making. This process also facilitates
updating the quality literature review (use of PRISMA framework is highly suggested). Green
arrows indicate that the prototype meets the requirements, and we can move to the next process
step. Red arrows indicate that the prototype doesn’t meet the specified requirements, and an iteration
to prior step(s) is required., Figure S2: Description of our process and use of the framework in this
example, Figure S3: Meta-analysis focused on literature that discusses biomolecular interactions
and/or biosensor design.
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