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Abstract: The respiratory rate is one of the crucial indicators for monitoring human physiological
health. The purpose of this paper was to introduce a head-mounted respiratory monitoring solution
based on electrical impedance sensing. Firstly, we constructed a finite element model to analyze the
feasibility of using head impedance for respiratory sensing based on the physiological changes in the
pharynx. After that, we developed a circuit module that could be integrated into a head-mounted
respiratory monitoring device using a bioelectrical impedance sensor. Furthermore, we combined
adaptive filtering and respiratory tracking algorithms to develop an app for a mobile phone. Finally,
we conducted controlled experiments to verify the effectiveness of this electrical impedance sensing
system for extracting respiratory rate. We found that the respiration rates measured by the head-
mounted electrical impedance respiratory monitoring system were not significantly different from
those of commercial respiratory monitoring devices by a paired t-test (p > 0.05). The results showed
that the respiratory rates of all subjects were within the 95% confidence interval. Therefore, the
head-mounted respiratory monitoring scheme proposed in this paper was able to accurately measure
respiratory rate, indicating the feasibility of this solution. In addition, this respiratory monitoring
scheme helps to achieve real-time continuous respiratory monitoring, which can provide new insights
for personalized health monitoring.

Keywords: respiratory monitoring; wearable devices; bioelectrical impedance; health monitoring

1. Introduction

All human organs require oxygen from breathing to produce energy, indicating that
breathing is essential to maintain the proper functioning of the physiological systems in our
bodies. Respiratory monitoring helps to understand the health status of humans, which can
be used for disease prevention and diagnosis [1–3]. Studies have shown that respiratory
information can help diagnose respiratory diseases [4] and diseases of the nervous system,
cardiovascular system [5], and excretory system [6]. Meanwhile, respiratory information
can also be applied to health and safety monitoring areas such as driving [7] and the
military. In addition, respiratory information is available for emotion analysis [8,9] and
entertainment interaction [10]. Respiratory rate is one of the most critical indicators of respi-
ratory information. In general, adults’ breaths per minute (BPM) are 12 to 20 [11], whereas
the BPM of the elderly are 10 to 30 [12]. Achieving real-time, dynamic, and continuous
monitoring of respiratory rate parameters is of great importance for personalized medicine
and a higher level of healthcare.

Respiration relies mainly on chest expansion [13], accompanied by gas exchange,
which affects the surrounding air’s temperature [14], humidity [15], and composition.
Most of the existing respiratory monitoring methods depend on sensors to acquire the
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undulating changes in chest morphology or gas exchange. The monitoring devices are
classified as contact and noncontact according to how the sensors are deployed. Contact
respiratory monitoring has been widely used for devices in clinical settings [16], such as
spirometry, capnography, and impedance spirometry. However, specialized respiratory
monitors suffer from being bulky and less portable. The wearable respiratory monitoring
devices that have emerged in recent years have made significant progress in optimizing
wearing comfort [17]. In the context of the coronavirus disease 2019 epidemic, masks have
become indispensable in daily life for epidemic prevention. Mitar Simić et al. [18]. proposed
respiratory monitoring masks with embroidered capacitive sensors. Fan, W. et al. [19].
designed respiratory monitoring textiles with woven washable sensor arrays to prolong the
use of sensors. However, as frequently changed and washed items, the textiles need to be
equipped with multiple sets for daily use, which may increase the burden on patients and
cause cross-contamination. Noncontact respiratory monitoring is mainly done by deploying
microphones [20], radar [21], or camera sensors [22] in space to capture information such
as human breath sounds [23], chest changes [7,24], and facial thermography. Although
these methods enable noncontact monitoring, they face new challenges regarding privacy
protection, multitarget monitoring, noise filtering, and measurement accuracy.

Respiration leads to changes in gas volume and associated muscle morphology in the
body, resulting in subsequent changes in the electrical impedance of muscles in multiple
parts of the respiratory system. Therefore, bioelectrical-impedance-sensing-based measure-
ment is a promising technique for respiratory monitoring. Kaan Sel et al. [25] developed
a wearable clothing respiratory monitoring system by integrating multiple sensors and
improved the system measurement accuracy by processing multisensor data with the help
of data fusion algorithms. Chunkai Qiu et al. [26] designed an IoT-connected wearable chest
patch based on electrical impedance changes in the chest to achieve real-time continuous
respiratory monitoring in daily life, significantly improving users’ comfort. Emanuele
Tavanti et al. [27] reported a new method of respiratory monitoring based on electrical
impedance measurements, proposing to use physiological changes in the pharynx to mea-
sure respiratory rate. The scheme provided a new idea for wearable electrical impedance
respiratory monitoring. However, collecting muscle impedance data by surface electrodes
is prone to electrode dislodgement. Moreover, previous signal processing algorithms have
relied on computer programs such as MATLAB for offline analysis, which means that
respiratory rate cannot be provided in real time. Therefore, more researchers must work
towards realizing real-time continuous respiratory monitoring and improving wearable
respiratory monitoring devices.

A head-mounted respiratory monitoring scheme is presented in this paper. The scheme
uses electrical impedance sensors to perceive impedance changes due to physiological
changes in the pharynx during respiration, allowing respiratory frequency extraction. The
scheme embeds electrodes in a head-mounted device placed under the mastoid bone on
both sides of the head, measuring the change in head (pharynx) impedance caused by
respiration to perceive the user’s respiratory pattern and frequency. As shown in Figure 1,
this respiration monitoring system can be integrated into helmets, glasses, and other
wearable devices in daily life with the advantages of comfortable wearing and excellent
experience, making it widely used in scenarios such as transportation, entertainment, and
daily life.

The remaining of this paper is organized as follows: Section 2 analyzes the feasibility
of the pharyngeal impedance respiratory monitoring method based on the anatomical struc-
ture and experiments. Section 3 describes the implementation process of the head-mounted
electrical impedance respiratory monitoring system in detail. Section 4 validates the pha-
ryngeal impedance respiratory monitoring method and system performance proposed in
this paper through controlled experiments. Section 5 compares the existing wearable de-
vices, discusses the advantages and limitations of the proposed system, and looks forward
to future research ideas. Conclusions are given in Section 6.
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Figure 1. Head-mounted respiratory monitoring scheme.

2. Feasibility Analysis
2.1. Anatomical Structure Analysis

The respiratory system consists of two parts, the respiratory tract and the lungs, where
the respiratory tract is the pathway for gas transport. During gas transport, the increase
of the gas volume in the respiratory tract and the widening of the electrical conductivity
path lead to an increase in electrical impedance. Therefore, respiratory activity can be
perceived via bioelectrical impedance. As shown in Figure 1, the respiratory tract located
in the head includes the nasal cavity and the pharynx. Various bones encase the nasal
cavity, and the change in electrical resistance within the nasal cavity during respiratory
activity is fragile due to the relatively poor electrical conductivity of the bones. As shown
in Figure 2a, the pharynx is located below the mastoid bone and is wrapped by muscles.
Due to the muscle’s better electrical conductivity, it can conduct the electrical impedance
changes in the pharynx during respiratory activity better. In particular, the relatively
large amplitude of periodic expansion and contraction of the Eustachian tube leads to a
periodic change in the electrical conductivity distribution within the head over time. As
shown in Figure 2b, the surface electrodes can be placed near the mastoid bone of the head.
Therefore, bioelectrical impedance changes in the subpapillary pharynx of the mastoid
bone measured by surface electrodes can be used to capture respiratory activity. At the
same time, the mastoid position enables an easy integration of the measurement electrodes
into wearable devices such as helmets and glasses, providing a better user experience for
achieving continuous respiratory monitoring.

2.2. Simulation Analysis

To evaluate the feasibility of monitoring respiratory rate with the measurement of
pharyngeal impedance changes, a simple multilayer head geometry model was constructed
in the AC/DC module of COMSOL Multiphysics 5.4 based on the anatomical structure of
the head in this paper. As shown in Figure 2c,d, the model consisted of skin, skull, brain,
muscle, pharynx, trachea, and surface electrodes.
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(a) (b)

(c) (d)

Figure 2. Construction of finite element model. (a) Anatomical structure of the head. (b) Schematic
diagram of electrode adhesion in subjects. (c) Equivalent breathing simulation model of the head.
(d) Head cross-sectional current density mode distribution.

The head was presented as an overall ellipsoidal structure (a = 16 cm, b = 13 cm,
c = 13 cm), where the skin thickness was 2 mm, the skull thickness was 1 cm, and the filling
within the skull was assumed to be a homogeneous medium. The dielectric properties of
each tissue, namely relative permittivity and conductivity, were obtained from published
literature and online reference databases [28–30], and their specific parameters were set as
shown in Table 1.

Table 1. Parameters of simulation model.

Tissue Tissue Thickness Conductivity (S/m) Relative Permittivity

Skin thickness = 2 mm 4.33 × 10−2 1.63 × 102

Skull thickness = 10 mm 2.06 × 10−2 2.64 × 102

Cervical vertebra - 2.06 × 10−2 2.64 × 102

Brain - 1.28 × 10−1 5.46 × 103

Muscle - 3.52 × 10−1 1.01 × 104

Pharynx (gas) volume = 10.54∼
14.84 cm3 0.00 × 100 1.00 × 100

Trachea (gas) radius = 8 mm 0.00 × 100 1.00 × 100

Electrode radius = 10 mm 5.00 × 105 1.00 × 100

For simulating the periodic changes of Eustachian volume over time during res-
piration, the volume was calculated from the paper of Emanuele Tavanti [7] with the
following equation:

dp(t) =
dp,max − dp,min

2
[1− cos(2π frt)] + dp,min (1)
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The pharynx is assumed to be an ellipsoid dp = {a, b, c}, a and b are the equatorial
radius, c is the polar radius, and fr is the respiratory frequency.

In the simulation model, we assumed that the equatorial radius of the pharynx
a = 7.3∼8.7 mm, b = 13.8∼16.3 mm, the pole radius c = 25 mm, and the respiratory frequency
fr = 20 bpm. According to the study by Schwartz, S. [31], muscles are often most responsive
at 50 kHz. We modified the volume of the pharynx according to Equation (1), which was
used to simulate six cycles of respiratory activity. Simultaneously, an excitation current of
1 mA and 50 kHz was added to the electrode below the mastoid bone. We measured the
voltage between the two electrodes and calculated the impedance, the results of which were
shown in Figure 3. Due to the geometric changes in the pharynx caused by respiration,
we found that the head impedance exhibited a sinusoidal waveform similar to that of
respiration. Figure 2d shows the cross-sectional current density mode distribution of the
head. The value of the current density mode in the pharynx was zero, which indicated that
the pharynx could indeed impede the current and thus affect the head impedance. This
result was consistent with the results analyzed in Section 2.1. Changes in the morphology
of the Eustachian muscles during respiration cause changes in bioelectrical impedance,
indicating that appropriately designed impedance acquisition devices can be used for
monitoring respiratory activity.
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Figure 3. Relationship between pharyngeal volume and head impedance during respiration.

3. Systems Design

To validate the simulation results and implement head-mounted electrical impedance
respiration monitoring, we independently designed an electrical impedance sensing system
for respiration monitoring, which could be integrated into helmets, VR glasses, and eye-
glasses. As shown in Figure 4, the system mainly included electrical impedance sensing and
signal processing modules. Two surface electrodes were attached to both sides of the head
under the mastoid bone to measure the change in head impedance and sense the pattern
and frequency of each breath. The choice of this site for impedance measurements had two
advantages. First, monitoring the impedance changes caused by respiratory activity was
easier. The second was that the measurement electrodes at this site were easy to integrate
into a head-mounted wearable device, which could improve the consumer’s experience.
The impedance data measured by the electrical impedance sensing module were trans-
mitted wirelessly via Bluetooth to an intelligent terminal app after a microprocessor’s
impedance calculation and preprocessing the signal. We developed adaptive filtering for
noise reduction and respiratory tracking algorithms on the app for real-time calculation
and visualization of the respiratory frequency.
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Figure 4. Schematic diagram of the electrical impedance sensing system for respiratory monitoring.

3.1. Electrical Impedance Sensing

The electrical impedance sensing module employed the AD5933 high-precision impedance
converter of Analog Devices for detecting respiration-induced changes in pharyngeal
impedance. The DDS output signal was implemented via I2C programming to excite the
external complex impedance. The response signal of the head impedance was sampled
by the on-chip ADC and then processed by the on-chip DSP using a discrete Fourier
transform (DFT).

X( f ) =
1023

∑
n=0

(x(n)(cos(n)− j sin(n))) (2)

where X( f ) indicates the energy of the signal at frequency f , x(n) denotes the output of
the ADC, cos(n) and sin(n) are the sample test vectors at frequency f provided by the
DDS core.

Real and imaginary data were returned for each frequency after the DFT processing
of the sampled signal. After I2C reading and calibration calculation, the impedance am-
plitude and relative phase at the scan frequency point could be calculated. The results
were transmitted to an intelligent terminal app via low-power Bluetooth. The AD5933
supported four voltage excitation mode outputs, each with a different direct current (DC)
bias and output impedance. When measuring small impedance signals, the high DC output
impedance of VOUT at the output and the transimpedance amplifier of VIN at the receiver
may generate saturation distortion, resulting in excessive current flow through the body
and creating a safety hazard. Therefore, we designed an additional analog front-end circuit
by combining data from technical manuals and the literature [26]. Its measurement circuit
is shown in Figure 5. Capacitors C1 and C2 were added at the output to isolate the DC bias
and adjust the DC bias to VCC/2. By adjusting the ratio of resistors R1 and R2 as well as
the value of voltage follower Rout, the maximum output current of the electrical impedance
sensing module was made to meet the human body safety guidelines and achieve higher
precision for small impedance measurements.

To achieve high-accuracy impedance measurements, it is critical to determine a rea-
sonable AD5933 gain factor(GF). When calculating the GF, the receiver stage of the AD5933
must work within its linear interval.

VADC_MAX > VOUTPUT ×
ZRFB

ZUNKNOWN
× PGA (3)

where VADC_MAX is the analog reference voltage of the internal ADC in the AD5933,
VOUTPUT is the output excitation voltage, ZUNKNOWN is the impedance to be measured,
and PGA is the amplification of the input response signal in the ADC.
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According to Equation (3), we designed the analog front-end circuit in combination
with the range of impedance values of the head. It was used for consideration of the gain
of the overall system to meet the linear operating area of the ADC sampling. Based on
the head impedance values derived from the finite element simulation in Section 2.2 and
the available research literature, we determined a head impedance value of approximately
560 Ω for two-electrode measurements. Therefore, we chose a calibration impedance value
of 560 Ω when calculating the gain factor of the AD5933. It was calculated as follows:

GF =
Admittance

Code
=

1
ZCALIBRATION

M
(4)

where M is the magnitude value at the corresponding frequency point after the DFT trans-
form of AD5933. ZCALIBRATION is the calibration impedance. The impedance calculation
formula is as follows:

|Z| = 1
GF×M

(5)

3.2. Signal Processing

As described in Section 2, the periodic movement of the pharynx during respiratory
activity generates a trend in head impedance over time similar to that of respiration. Thus,
the respiratory frequency can be obtained by extracting the signal associated with the
respiratory activity in head impedance measurements. However, the periodic signals
associated with respiration were masked in various noises during the measurement, in-
cluding environmental noise, blood circulation system, and motion disturbances. Due to
the random characteristics of the noise signals, it may not be easy to extract the respiration
rate accurately due to the overlapping phenomenon between the respiration signals and
the noise signals. To this end, we designed and implemented an adaptive filtering tracking
algorithm to extract the desired respiratory signal from the time series signals of head
impedance measurements.

3.2.1. Adaptive Filtering for Noise Reduction

Firstly, we normalized the measured head impedance data in terms of magnitude to
obtain the time series x(n). Then, we designed a filter of order N with parameters W(n),
and the output was as follows:

y(n)−
N−1

∑
i=0

wi(n)x(n− 1) = W
T
(n)X(n) = X

T
(n)W(n) (6)

where X(n) and W(n) were calculated by the following equations:

X(n) = [x(n), x(n− 1), . . . x(n− N + 1)]T (7)

W(n) = [w0(n), w1(n), . . . wN−1(n)]T (8)

Assuming that the desired output signal was d(n), the formula for calculating the
error signal was as follows:

e(n) = d(n)− y(n) = d(n)−W
T
(n)X(n) (9)

According to the minimum mean square error criterion, the minimization objective
function J(W) was calculated to be as follows:

J(W) = E
{
|e(n)|2

}
= E

{∣∣∣d(n)−WT(n)X(n)
∣∣∣2} (10)

For computational convenience, we replaced the mathematical expectation of J(W)
with the instantaneous gradient.
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5 (n) = −2e(n)X(n) (11)

Finally, we could obtain the iterative update formula in the standard time domain
as follows:

W(n + 1) = W(n) + 2µX(n)e(n) (12)

The filter coefficients were updated whenever a new x(n) and d(n) were given, where
µ denoted the update step. The best-estimated output y(n) was obtained by an iterative
error calculation.

Y(n) = [y1, y2, . . . yN ] (13)

3.2.2. Calculation of Respiration Rate

The respiration rate extraction window interval was set as [Ni, Ni + 2 ∗ Tmin ∗ Fs] to
ensure that at least two breaths could be detected within this interval, where Ni represents
the starting position and Fs denotes the sampling rate. Afterward, we found all the wave
peaks in the interval and recorded their indexes.

I f
{

y(k) > y(k + 1)
y(k) > y(k− 1)

, k ∈ {Ni + 1, Ni + 2, . . . Ni + 2 · Tmin · Fs } ⇒ Pn
max =

{
val = y(k)

idx = k
(14)

where Pn
max is the storage array of the wave peaks, val indicates the amplitude of the wave

peaks, and idx denotes the index value of the wave peaks in the y(n) sequence.
In addition, we also found all the wave troughs in the interval and recorded their

indexes as follows.

I f
{

y(k) < y(k + 1)
y(k) < y(k− 1)

, k ∈ {Ni + 1, Ni + 2, . . . Ni + 2 · Tmin · Fs } ⇒ Pn
min =

{
val = y(k)

idx = k
(15)

where Pn
min is the storage array of the wave troughs, val represents the amplitude of the

wave troughs, and idx indicates the index value of the wave troughs in the y(n) sequence.
Finally, we calculated the mean value of the index difference between adjacent wave

peaks and wave troughs.

I f
{

Pk
max.val > 0

Pk
min.val < 0

, k ∈ {Ni, Ni + 1, . . . Ni + 2 · Tmin · Fs } ⇒ ∆idx =
(Pk

max − Pk−1
max ) + (Pk

min − Pk−1
min )

2
(16)

Therefore, the respiration rate can be calculated by the formula as follows:

RR = 60× Fs

∆idx
(17)

3.2.3. Electronic Devices and Software Processes

As shown in Figure 5a, we employed STM32F103RCT6 from STMicroelectronics as
the microprocessor unit. The Bluetooth 4.0 module HC-05 from Guangzhou Huicheng
Information Technology Co., Ltd. (Guangzhou, China) was selected for the Bluetooth
module. The hardware PCB design and fabrication used EasyEDA from Shenzhen JLC Elec-
tronics Co., Ltd. (Shenzhen, China) (https://lceda.cn/, accessed on 23 October 2022). The
battery adopted the 5V1A Boosting Lithium Batteries (1000 mAh) produced by ZONCELL
INTERNATIONAL LIMITED (Shenzhen, China). The circuit device was encapsulated in
a protective case and had an overall size of 68 × 43 × 18 mm, achieving a light weight.
Figure 5b presents the flow chart of the embedded piece of software for the electronic
device. The core process was implemented based on the principles introduced in Section 3.1
and developed in the C language. In addition, the app was developed in the java lan-
guage on Android Studio 4.0.1 platform based on the principles introduced in Figure 4 and
Section 3.2.

https://lceda.cn/
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(a) (b)

Figure 5. Display of electronic devices and software flow chart: (a) The physical diagram of the
electronic device; (b) The flow chart of the embedded software.

4. Experiments and Results
4.1. Experimental Protocol

This experimental protocol was filed and approved by the Key Laboratory of Medical
Devices and Pharmaceutical Technology in Fujian Province. The impedance data from
16 healthy young subjects in the respiratory experiment were collected in a stable indoor
environment. The results were used to initially evaluate the feasibility of the head-mounted
electrical impedance respiratory monitoring system proposed in this paper. Firstly, the
recruited subjects were briefed in detail about the practical steps and signed an informed
consent form for the experiment. After a subject was seated at the assigned position, the skin
below the mastoid bone on both sides of the subject’s head was wiped with alcohol swabs,
and crescent-shaped gel Ag/AgCl physiotherapy electrodes (Jing dian yi kang, LD-1) were
attached to the area, which was shown in Figure 2b. Then, we connected the circuit module
of the electrical impedance respiratory sensing system to the physiotherapy electrodes.
Furthermore, we started the mobile app to complete the Bluetooth connection and set
the excitation frequency of the measurement to 50 kHz and the sampling frequency to
80 Hz. Meanwhile, the subject was asked to wear a commercial airflow sensing-based sleep
breathing monitor (SNORE CIRCLE, Y20). Finally, we started the experiment by measuring
the data when the subjects maintained a steady breathing state, and the acquisition time
was about 3 min for each subject. After the experiments, the collected head impedance data
were processed by an adaptive filtering algorithm for noise reduction, and the respiratory
frequency was calculated accordingly. We used the respiratory rate recorded by Y20 as a
reference value and compared it with the calculated respiratory frequency for analysis.
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4.2. Experimental Results
4.2.1. Noise Reduction Processing

Figure 6 demonstrates the head impedance signal acquired by subject one at the one-
minute duration in the respiration experiment. We found a lot of high-frequency noise
disturbance in the collected impedance data from Figure 6a. Moreover, the waveform
of the head impedance signal caused by respiration was almost drowned, and only the
general trend could be seen. Therefore, extracting the respiration frequency directly from
the original impedance data was difficult. As shown in Figure 6b, we used a time–frequency
analysis toolbox of Matlab to analyze the original signal and plot the wavelet scale. We
found a spectrum of signals near the frequency at 0.3 Hz for the selected signal, consistent
with the finite element simulation results. This frequency corresponded to the respiratory
frequency of adults, indicating that the head impedance data could indeed characterize the
respiratory signals. Therefore, we had to filter out the noise disturbances at other frequen-
cies and then extract a precise impedance characterization for the respiratory waveform.

Figure 6. Impedance data of the head and their time–frequency distribution. (a) Subject one’s head
impedance amplitude changes during breathing. (b) Head impedance time–frequency diagram
during breathing in subject one.

It is known that the standard respiratory frequency of adults is 12–20 bpm, and the
respiratory waveform is close to a sinusoidal waveform. Figure 7 illustrates the impedance
signal after noise reduction processing in the respiration experiment. We employed adap-
tive filtering to denoise the original data and normalized the amplitude. The frequency of
the reference sine wave for the adaptive filter was set to 0.3 Hz, and the filter step was 0.001.
As shown in Figure 7a, a complete waveform of the respiration signal could be restored
after adaptive filtering the raw data. Figure 7b also presents the time–frequency analysis
results of the impedance data in the respiration experiment after adaptive filtering. We
noticed that only one straight line coinciding with the respiration frequency remained in the
wavelet scale plot, indicating that the adaptive filter used in this paper worked effectively.
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Figure 7. Respiratory waveform after adaptive filtering and its time–frequency plot. (a) Adaptive
filtering and noise reduction to extract respiratory waveform based on subject one’s head impedance
data. (b) Time–frequency plot of the extracted respiratory waveform based on subject one’s head
impedance data with adaptive filtering and noise reduction.

4.2.2. Performance Evaluation

To evaluate the reliability of the head-mounted electrical impedance respiratory moni-
toring system, we performed adaptive filtering on the head impedance data of subject one
and extracted the respiratory waveform. As shown in Figure 8, we compared the extracted
respiratory waveform from the impedance data with the reference respiratory waveform
from the Y20 device. We found that the head-mounted electrical impedance respiratory
monitoring device could accurately detect the respiratory waveform from the subject. Al-
though there was a slight difference in amplitude between the respiratory waveform from
the impedance data and the respiratory waveform measured by the Y20, the correlation
coefficient between them was as high as 0.9965. It indicated that the respiratory waveform
could be extracted from the head impedance data, and the respiratory frequency could also
be calculated.
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Figure 8. Comparison of respiratory waveforms measured by the two devices.

Table 2 presents statistical information on the simultaneous respiratory monitoring
of 16 subjects by both devices. The mean respiratory rates measured with the head-
mounted electrical impedance respiratory monitoring device and the Y20 were 18.871
and 18.584, respectively. After using the paired t-test, it was shown that there was
no significant difference between the respiration rates measured by the two devices
(p = 0.111 > 0.05). Moreover, the 95% confidence interval of the difference between the two
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devices was −0.680 to 1.055. Additionally, there was no significant deviation from zero for
the difference between the two devices, providing excellent consistency.

Table 2. Statistical information of the measurement results from the two devices.

Category Values

Effective sample size 16
Mean (head-mounted) 18.781

Mean (reference) 18.594
Mean of the difference 0.188

Standard deviation 0.443
95% CI (Mean of the difference) −0.048∼0.423

95% CI (Difference) −0.680∼1.055
t 1.695
p 0.111

Coefficient of repeatability 0.917

Figure 9 exhibits the Bland–Altman distribution of respiration rates measured by the
two devices for 16 subjects. We noticed that the overall difference in respiration rates
measured by both devices was distributed around zero, and all respiration rates were
within the 95% interval. It indicated an excellent consistency between the respiration rates
measured by the two devices. Therefore, the method of electrical impedance respiration
monitoring proposed in this paper had a good reliability, which was suitable for head-
mounted respiration monitoring scenarios and provided a good experience for users.

16 17 18 19 20 21

Head-mounted and reference

-1

-0.5

0

0.5

1

1.5

H
e
a

d
-m

o
u

n
te

d
 a

n
d

 r
e
fe

r
e
n

c
e

+1.96SD 1.0549

-1.96SD -0.67986

MEAN 0.1875

Figure 9. Bland–Altman distribution of respiration rates measured by the two device.

5. Discussion

Existing wearable respiratory monitoring devices have made significant progress in
being comfortable to wear and coping with complex monitoring scenarios while ensuring
high-accuracy respiratory rate measurements. Table 3 summarizes and compares some
of the latest wearable respiratory monitoring systems. The current research points focus
on the improvement of new materials and sensors. Respiratory monitoring sites include
the mouth, nose, chest, and abdomen, with little exploration of respiratory monitoring
in the pharynx. There is a remarkable improvement in wearing comfort based on the
improvement of textile materials and sensors. However, the washing of textiles may cause
damage to the sensor and also has a risk of cross-infection. Respiratory monitoring based
on radio frequency sensors still faces the problem of signal isolation interference. Compared
to existing studies, this work broadens the focus of the current research, consisting of an
anatomical and experimental analysis. We proposed a respiratory monitoring method
based on pharyngeal impedance changes and designed a prototype respiratory monitoring
system with head-mounted electrical impedance sensing for validation. The electrode
location of this prototype was located near the mastoid bone of the head, which is located
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behind the human ear, and this location overlaps with a large number of wearable device
wearing locations. After further optimization, it could be used as a promising solution for
integrating helmets, glasses, and other devices, enabling sensorless respiratory monitoring,
reusability, and eliminating cross-contamination. At the same time, the solution will not
affect the permeability of breathing. Naturally, there are still many improvements to be
made to our solution.

Table 3. Comparison of respiratory monitoring wearable devices.

Reference, Year Type of Sensor Wearing Style
Data

Transmission
and Processing

Reported Characteristics

[32], 2022 Flexible pressure
sensor Face mask Wifi, PC, Matlab Ultrathin self-powered, sensors affect the

air permeability of the face mask.

[18], 2022 Textile capacitive
sensor Face mask UART, mobile app Disposable and consumable, lightweight

handheld device.

[33], 2022 Pressure sensor Waist belt Wifi, SD card, PC ASiT does not require calibration and is suf-
ficiently sensitive, low air permeability.

[19], 2020 All-textile sensor
array

Chest, abdomen, or
wrist

Wirelessly, mobile
app

Washable, high stability and comfort, tex-
tiles easily stained.

[34], 2019 Ultrasonic sensor Abdomen-apposed
rib cage

Bluetooth, mobile
app

Wireless wearable measurement, relatively
complex circuit, signal susceptible to inter-
ference.

[35], 2019 Radio frequency
identification Shoulder Radiofrequency, PC

Passive radiofrequency identification, low
power consumption, signal susceptible to
interference.

[26], 2022 Bioimpedance Chest patch
Bluetooth, LoRa,
on device in real

time

Real-world scenarios evaluation, chest
movement interferes with the measurement
signal.

This work Bioimpedance Head-mounted
(mastoid)

Bluetooth, on
device, and mobile

app

Pharyngeal respiratory monitoring, com-
fortable to wear, easy to integrated and
reusable.

Reliability: We demonstrated that the system designed in this paper could accurately
measure the respiration rate of 16 healthy young subjects in a laboratory environment.
However, some differences exist between the laboratory environment and daily life scenar-
ios, such as walking or cycling. Motion artifacts may influence the measurement results
of respiration. Furthermore, we are not aware of the suitability of the system for patients
with respiratory tract infections. There is a lack of evaluation of the effect of different age
groups, BMI, gender, and other factors on the system. Therefore, we need further validation
experiments to evaluate and improve the system.

Miniaturization: We designed a prototype of the miniaturized electrical impedance respi-
ratory monitoring system. The prototype confirmed the feasibility of electrical impedance
respiratory monitoring based on pharyngeal changes. The product size was 68 × 43 × 18 mm.
Although it could be integrated into slightly larger helmets and other headed wearable
devices, it would not be easy to integrate into small devices such as glasses. Currently,
we use the impedance measurement scheme combining STM32F103RCT6 and AD5933,
which can be further optimized in terms of power consumption. For example, we could
use the lower-power msp430 series and an integrated circuit design, optimize the excitation
frequency, and downsample to reduce power consumption and product size. Meanwhile,
we used Ag/AgCl electrodes, which still have a considerable size and are not easy-to-use
consumables. We can improve future research by exploring a dry electrode measurement.
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6. Conclusions

In this paper, according to the effects of gas volume and conductance path changes in
the respiratory tract on electrical impedance measurements in the head during respiration,
we proposed a respiratory monitoring method based on electrical impedance sensing of
pharyngeal changes. Firstly, we quantified and analyzed the electrical impedance changes
generated by physiological changes in the pharynx during respiratory activity via a finite
element simulation model. After that, we proposed a head-mounted respiratory monitoring
scheme based on electrical impedance sensing and designed an electrical impedance
respiratory sensing system that could be integrated into wearable devices such as helmets
and glasses. Finally, we conducted controlled experiments to verify the effectiveness of the
pharyngeal electrical impedance sensing system for extracting respiratory rate. We collected
pharyngeal impedance data from all subjects in an inactive state in the laboratory and
performed adaptive filtering for noise reduction. Compared with commercial respiratory
monitoring devices, the correlation between the extracted respiratory waveforms of our
proposed head-mounted electrical impedance respiratory monitoring system and those
collected by commercial respiratory monitoring devices was as high as 0.9965. In addition,
we analyzed the impedance data collected during respiratory monitoring among 16 subjects.
Taking the commercial respiratory monitoring device as a reference, we found no significant
difference in respiration rates measured from the head-mounted electrical impedance
respiratory monitoring system by a paired t-test (p > 0.05). The results showed that
the respiratory rates of all subjects were within the 95% confidence interval, indicating
that our proposed head-mounted electrical impedance respiratory monitoring protocol
had a good consistency with the commercial respiratory monitoring scheme. Therefore,
the head-mounted electrical impedance respiratory monitoring method proposed in this
paper is a promising solution for real-time continuous respiratory monitoring at work, for
entertainment, and in daily life.
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