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Abstract: Electrochemical biosensors are a family of biosensors that use an electrochemical transducer
to perform their functions. In recent decades, many electrochemical biosensors have been created for
pathogen detection. These biosensors for detecting infections have been comprehensively studied
in terms of transduction elements, biorecognition components, and electrochemical methods. This
review discusses the biorecognition components that may be used to identify pathogens. These
include antibodies and aptamers. The integration of transducers and electrode changes in biosensor
design is a major discussion topic. Pathogen detection methods can be categorized by sample
preparation and secondary binding processes. Diagnostics in medicine, environmental monitoring,
and biothreat detection can benefit from electrochemical biosensors to ensure food and water safety.
Disposable and reusable biosensors for process monitoring, as well as multiplexed and conformal
pathogen detection, are all included in this review. It is now possible to identify a wide range of
diseases using biosensors that may be applied to food, bodily fluids, and even objects’ surfaces.
The sensitivity of optical techniques may be superior to electrochemical approaches, but optical
methods are prohibitively expensive and challenging for most end users to utilize. On the other hand,
electrochemical approaches are simpler to use, but their efficacy in identifying infections is still far
from satisfactory.

Keywords: electrochemical; biosensors; pathogen quantification; medical diagnostics; pathogen detection

1. Introduction

Pathogens facilitate the transmission of disease. Fungi, protozoans, and bacteria
are only a few of the microorganisms that fall under this category. Pathogens that enter

Biosensors 2022, 12, 927. https://doi.org/10.3390/bios12110927 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios12110927
https://doi.org/10.3390/bios12110927
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0003-1715-0198
https://orcid.org/0000-0003-3847-4247
https://orcid.org/0000-0001-7998-7335
https://orcid.org/0000-0002-5157-7067
https://orcid.org/0000-0003-2296-5623
https://orcid.org/0000-0001-7169-1361
https://orcid.org/0000-0002-3854-667X
https://doi.org/10.3390/bios12110927
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios12110927?type=check_update&version=2


Biosensors 2022, 12, 927 2 of 23

the body via food, drink, and the air affects over 15 million fatalities worldwide [1–3].
Virulence and infectious dosage statistics for the COVID-19 virus, a worldwide pandemic,
are only beginning to emerge. Rapid and sensitive pathogen detection methods are vital
for the treatment of infectious illnesses, and the prevention of illness [4–7]. Both fluids and
aerosols, and surfaces, are covered in this review (Figure 1).
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Immunoassays and deoxyribonucleic acid (DNA)-based assays are often used to iden-
tify and quantify infections [8,9]. For example, toxin- and species-specific gene sequence
data can influence the use of immunoassay or a DNA test at different stages of infection. Im-
munoassays are regularly used in medical diagnosis and food safety [10]. Immunoglobulins
(Igs) are created during and after infection, making them useful for pathogen identification
(when the pathogen is gone). These tests involve both the biorecognition component and
the target antibody. Immunoassays can be used to detect infections in the body if antigens
are made available. Immunoassays can identify infections via antibodies and pathogen
epitopes, making them extremely flexible [8,10,11]. Because of the lack of antibodies and
the need for extremely sensitive findings, or because the pathogen is present but does not
create a significant number of antibodies, DNA-based tests are widely utilized in diagnos-
tics [8,10]. Detecting pathogens that have recently been present in a sample is essential
for DNA-based testing to work. Toxins, antibodies, and genes that create toxins can be
used to identify pathogens. Toxins, nucleic acids, and viruses are examples of pathogen
detection targets. There are many biorecognition components to choose from, from anti-
bodies to aptamers to imprinted polymers [12–14]. Enzyme-linked immunosorbent assay
(ELISA) [15] and polymerase chain reaction (PCR) [16,17] have been extensively studied
for the detection of infections.

Because of its high sensitivity and specificity, applicability in monitoring, early de-
tection of biothreat agents, and antimicrobial resistance profiling, PCR technology (con-
ventional and real-time PCR) is most frequently utilized in pathogen detection [18,19].
However, it has shortcomings, including the inability to distinguish between infections
with identical genetic composition. For instance, when PCR has been used to identify
Listeria monocytogenes [20] and Bacillus cereus [21], respectively, false signals of Listeria in-
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nocua and Bacillus thuringiensis have been recorded [22]. The inability of PCR to distinguish
between the DNA of dead and living cells is another significant drawback, and this issue is
crucial for the food sector, regulatory bodies, and the customer [19,22].

ELISA demonstrates the following benefits: (1) a straightforward process using af-
fordable equipment; (2) high sensitivity and specificity because of an antigen-antibody
response; (3) high efficiency since many analyses can be run simultaneously without ex-
tensive sample pre-treatment; (4) generally safe and environmentally benign because no
radioactive materials or significant quantities of organic solvents are needed; and (5) as
low-cost reagents are utilized, the assay is cost-effective. ELISA, however, has the following
drawbacks: (1) antibody preparation is time-consuming and costly because it requires a
sophisticated technique and expensive culture cell media to produce a particular antibody;
(2) a high likelihood of erroneous positive or negative results exists because the surface of
the microtiter plate immobilized with antigen has not been sufficiently blocked; (3) antibody
instability exists because an antibody is a protein that needs to be transported and stored in
a refrigerator; and (4) it has restricted use in foods with a solid matrix or that are viscous,
such as peanut butter, jam, and honey [22,23].

Even though label-free biosensors for pathogen detection can be useful for monitoring,
they have seldom been reviewed. An analytical system is used in conjunction with a specific
biorecognition element, such as a molecular probe, to measure one or more components of
a sample. Although they can be extremely sensitive and robust, these testing methods are
destructive. They need significant sample preparation and the addition of reagents, which
prolongs the time it takes to obtain findings. The presence of background species in a sample
can also inhibit bioanalytical techniques, such as PCR [24–26], increasing the amount of
error introduced into the measurement process [27,28]. Plate-based bioanalytical systems
have limitations and need continual real-time monitoring across several applications; hence,
other bioanalytical processes should be investigated.

Merging of targeted biorecognition elements with very sensitive transducer compo-
nents improves pathogen detection and quantification in biosensors. The International
Union of Pure and Applied Chemistry (IUPAC) has said that, to create an effective biosen-
sor, an element that may be directly connected to the biorecognition element must be
included [29]. Although the biosensor can measure everything from droplet sizes to contin-
uous flow forms, it must also be a self-contained, integrated instrument. Biosensors that
can detect pathogens in real-time without sample preparation may now be used in several
settings. A wide range of matrices and conditions may now be analyzed using biosensors,
including food and body fluids, as well as surfaces of objects [30]. Biosensors allow both
sample preparation-free and label-free approaches [31–34]. Examples of molecular species
known as “reporters” include organic dyes and quantum dots. Biorecognition elements or
secondary binding stages can be used to directly affix labels to a target or through a suc-
cession of sample preparation operations or secondary binding stages [35]. Consequently,
label-free biosensors do not rely on a reporting species to detect the target species [36,37].
Using a label-free assay means fewer sample preparation steps and lower costs than using
a label-based assay, both of which are key factors in applications with limited preparation
facilities or trained personnel [36–38].

Pathogen biosensing transducers of many sorts have been examined [13,26,38]. Either
mechanical or optical transducers, such as cantilever biosensors or surface plasmon reso-
nance (SPR)-based sensors can be used to detect infections [39–41]. A transducer consisting
of conducting or semiconducting materials is used. An electrochemical approach can be
used to convert the chemical energy released by pathogens and electrode-immobilized
biorecognition components into electricity. Biosensors based on electrochemical processes
are able to detect pathogens without the need for sample preparation, enabling in situ detec-
tion of pathogens on surfaces, quick and low-cost pathogen detection platforms, multiplex-
ing pathogen detection, and wireless data collection actuation gathering (Table 1) [39,42–46].
Table 2 shows the chronological order of using biosensors to detect bacteria or viruses.
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Table 1. Pathogen-based biorecognition elements.

Recognition Element Advantages Disadvantages Reference(s)

Antibodies High affinity
High selectivity

Selectivity may be affected by
antibody labeling

Alteration of binding affinity
to antigen

Low temperature
High cost

[47–49]

Carbohydrate binding
proteins

Binding ligands unique to the
Target organism

Low cost
High-yield automated synthesis

Pathogens detection abilities
using electrochemical

biosensors lack sufficient data
[41,50]

Oligosaccharides
Pathogens have receptors for

Carbohydrate-specific trisaccharides
Utilized with electrochemical biosensors

Limited selectivity
Low affinity

Carbohydrate–protein
interaction

[41,51]

Oligonucleotides

Utilized with electrochemical biosensors
Strong binding affinity and selectivity

Low cost
Feasible to extract and amplify particular

binding sequences

Possibility of cross-reactions
Lack of repeatability when
using different procedures
Degradation of aptamers

[52,53]

Cell-and molecular-imprinted
polymers Use morphology particular to target Poor selectivity [54,55]

Phages
Utilized with electrochemical biosensors

Effective biorecognition component in
water monitoring

High cost [56,57]

Table 2. Chronological table of biosensor usage for bacterial or viral detection.

Bacteria/Virus Method and Materials Biorecognition Element * LOD/LOQ Year Reference(s)

E. coli Electrochemical
impedance spectroscopy Polyclonal anti-E. coli 104 CFU/mL 2005 [58]

V. cholerae Carbon electrode Polyclonal anti-V. cholerae 8 CFU/mL 2006 [59]

L. monocytogenes Electrode nanostructuring Monoclonal anti-L.
monocytogenes 4.7 × 102 CFU/mL 2008 [60]

S. typhimurium Ceramic electrodes Anti-S. typhimurium 103 CFU/mL 2009 [61]

West Nile virus
(WNV)

Anodic stripping
voltammetry Monoclonal anti-WNV 0.02 viruses/mL 2009 [62]

B. anthracis Ag electrode
(Conductometry)

Monoclonal and
polyclonal anti-B. anthracis 420 spores/mL 2009 [63]

Campylobacter jejuni Nanoparticles on carbon
electrode

Monoclonal
anti-Flagellin A 103 CFU/mL 2010 [64]

Bovine viral diarrhea
virus (BVDV)

Nanofiber array electrode
(Conductometry)

Monoclonal and
polyclonal anti-BVDV 103 CCID **/mL 2010 [65]

Helicobacter pylori
Graphene interdigitated

microelectrode array
(Conductometry)

Odoranin-HP peptide 100 cells 2012 [66]

L. innocua Phage L. innocua-specific
bacteriophage

1.1 × 104–105

CFU/mL
2012 [67]
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Table 2. Cont.

Bacteria/Virus Method and Materials Biorecognition Element * LOD/LOQ Year Reference(s)

E. coli Cell- and molecularly
imprinted polymers Anti-E. coli 1.6 × 108 Cells/mL 2014 [68]

E. coli Composite on carbon
electrode Anti-E. coli 13 CFU/mL 2014 [69]

S. typhimurium
Electrochemical

Impedance Spectroscopy
(EIS)

Monoclonal anti-S.
typhimurium 3 × 103 CFU/mL 2015 [70]

Enterococcus faecalis Carbon-based electrodes
on Au electrode Clavanin A peptide 103 CFU/mL 2015 [71]

Dengue virus AuNPs on Au electrode Anti-DENV --------------- 2015 [72]

Norovirus Au microelectrode (square
wave voltammetry) Anti-norovirus aptamer 10 PFU ***/mL 2016 [73]

Rotavirus
Electrochemical

Impedance Spectroscopy
(EIS) and nano structuring

Anti-rotavirus 2.3 PFU/mL
R2 ****: 0.993 2016 [74]

S. epidermidis
Au microelectrode
(Electrochemical

Impedance Spectroscopy)

S. epidermidis-imprinted
polymer film 103 CFU/mL 2017 [75]

Influenza A virus
(H1N1)

Oligosaccharides
(PEDOT:PSS)

Hemagglutinin-specific
trisaccharide ligand 0.13 HAU ***** 2017 [51]

E. coli and human
influenza A virus Polymer electrode Hemagglutinin-specific

trisaccharide ligand 0.025 HAU 2018 [76]

E. coli Carbohydrate binding
proteins Anti-E. coli

12 CFU/ml
---------------

6.0 × 103–9.2 ×
107 CFU/mL

2011
——
2019

[41,77]

SARS-CoV-2 CRISPER-Cas --------------- Fold change: 10 2020 [78]

S. typhimurium DNA functionalized Amine labeled S. Typhi 6.8 × 10−25 molL−1 2022 [79]

SARS-CoV-2 Electrochemical
immunosensor SARS-CoV-2 spike protein 12 ng/mL–40 ng/mL 2022 [80]

* Limit of Detection (LOD), Limit of Quantification (LOQ). ** Cell Culture Infective Dose (CCID). *** Plaque-
Forming Units (PFUs), Colony-Forming Units (CFUs). **** Linear Relationship: R2. ***** Haemagglutinin
Unit: HAU.

Application of real (sometimes complex) samples at the point-of-care (POC) and in
the field is one of the issues that researchers are still attempting to solve for all types of
biosensors. The type of instrument required to advance electrochemical biosensors to
point-of-care has been made available by screen-printing technology [81]. Because of their
reliability, reproducibility, mass production, and low cost, screen-printed electrodes (SPEs),
which first debuted in the 1990s, have significantly contributed to the advancement of
electrochemical biosensors [81–83]. SPEs have been found to be flexible tools that could
be molded into many shapes, manufactured of various materials, and modified with a
range of biological components, including enzymes, antibodies, DNA, synthetic recog-
nition elements, and others [82]. Additionally, when using the enhanced electrocatalytic
characteristics of nanoparticles, modifications with a variety of nanomaterials and synthetic
recognition elements have been used to increase sensitivity [82]. For instance, nanomateri-
als (carbon nanotubes, graphene, gold nanoparticles, etc.) applied on an SPE’s working
electrode (WE) can greatly increase surface activity due to their superior electrocatalytic
capabilities and substantially larger specific surface area. This technique can be carried out
automatically on the planar SPE by a mass-producible dispenser or just before mixing the
modifier with the ink while printing. One benefit of this improvement is that it can aid
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in the direct detection of some conductive analytes. In addition, it is frequently used to
enhance the immobilization of the recognition element, which is frequently a biomolecule,
to facilitate analyte identification and signal transduction [84].

Additionally, the appealing characteristics of carbon—chemical inertness, low back-
ground currents, and a broad potential window—have attracted a large amount of attention
to SPEs. In addition to carbon, which is still the most affordable option, other metals such
as gold also have advantages. The suitability of gold SPEs in electrochemical biosensors has
been greatly increased by the affinity between thiol moieties and gold, which enables SPEs
with gold working electrodes to be easily adjusted with the production of self-assembled
monolayers [81].

This review analyzes all electrochemical biosensor pathogen detection aspects, in-
cluding the design, manufacturing, measurement format, and performance. Research on
electrochemical biosensors for pathogen detection will address current technological and
methodological issues and new application fields.

2. Pathogen Detection with Electrochemical Biosensors

One of the most common functions of chemical sensors is to produce an analytically
useful signal [29]. Electrochemical biosensors uniquely detect their targets. Biosensor-
based pathogen detection strategies and the electrochemical approach have several other
characteristics in terms of sample processing and sensor-specific actions. The following
section discusses transduction, bio-recognition, and measurement formats for electrochemi-
cal biosensors.

Generally, pathogens can be identified through the presence of generated antibodies
in an organism, which may be present both during and after an infection. In such assays,
both the biorecognition element and the target are antibodies. Electrochemical biosensors
combine an analyte-receiving mechanism and an electrochemical transducer, where the
interaction between the targeted analyte and the transducer generates an electrochemical
signal in current, potential, resistance, or impedance format [85,86]. There is a wide range
of electrochemical biosensor schemes with different signal mechanisms, e.g., differential
pulse voltammetry (DPV), voltammetric cyclic voltammetry (CV), polarography, square
wave voltammetry (SWV), stripping voltammetry, alternating current voltammetry (ACV),
and linear sweep voltammetry (LSV). Furthermore, electrochemical biosensors can use
different types and forms of nanomaterials, nanoparticles, and nanocomposites to enhance
the sensitivity of the detection mechanisms and to provide better detection limits through
different strategies [87,88].

2.1. Transduction Elements

The working electrode is often the principal transduction element when employing an
electrochemical biosensor. Conventionally, a three-electrode potentiostat system employs
three electrodes; however, conductometry and impedance measurements often utilize
two electrodes (working and auxiliary). Manufacture of electrodes can use a range of
materials and procedures. Electrons and holes pass through an electrode to transfer charge.
Electrodes are made from conductive and semiconducting materials such as gold (Au)
and carbon (C). Different manufacturing methods may be utilized to make electrodes of
different sizes. For instance, Fortunati et al. recently quantified the SARS-CoV-2 spike
protein using an Internet of Things-Wifi (IoT-WiFi) smart and portable electrochemical
immunosensor (Figure 2) with integrated machine learning characteristics. Based on the
immobilization of monoclonal antibodies against the SARS-CoV-2 S1 subunit on screen-
printed electrodes (SPEs) functionalized with gold nanoparticles, the immunoenzymatic
sensor was developed. The working electrode diameter of the SPEs was 4 mm, and their
dimensions were 3.4 × 1.0 × 0.05 cm. The counter electrode was made of carbon, while the
reference electrode and electrical connections were silver [80].
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An electrode’s material type, manufacturing method, and design all play a role in
categorizing it. The form factor may be used to classify electrode designs into planar,
wire, nanostructured, and array-based types of structures. A biosensor’s ability to detect
a specific biological agent, and its sensitivity and dynamic range, are determined by the
electrode’s shape and characteristics and the material, production technique, and design of
the biosensor. As a result, the entire cost of the biosensor is significantly affected [89].

2.1.1. Metal Electrodes

The detection of pathogens has traditionally relied on gold (Au) and platinum (Pt)
electrodes. A cutting process is commonly used to create thick metal electrodes. Traditional
microfabrication methods, such as physical vapor deposition and screen printing, are
frequently used to make thin-film metal electrodes [90,91]. Transducer elements are often
built using Teflon, polyether ketone (PEK), and glass as insulating polymers or ceramic
substrates for the resulting conductive components. Pathogen detection applications have
yet to utilize 3D printing technologies such as inkjet printing [92–94]. Selective laser melting
and microextrusion printing have also been employed to manufacture electrochemical
sensors and electrodes. The detection limits of unstructured metal electrodes can vary
widely. These biosensors for bacteria have detection limits of 1 to 104 CFU/mL, for example,
using unstructured metal electrodes [95–97].

2.1.2. Ceramic Electrodes

Pathogens in food may be detected using semiconducting and conducting ceram-
ics such as indium tin oxide (ITO), polysilicon, and titanium dioxide (TiO2). A silicon
electrode was used by Das et al. to detect Salmonella typhimurium (S. typhimurium) [61].
Antibody-functionalized indium tin oxide (ITO) electrodes developed by Barreiros dos
Santos et al. can detect E. coli, according to researchers [98]. Specifically, ITO’s high conduc-
tivity and transparency directly correlate with biosensor response and pathogen surface
coverage [99,100]. Due to ITO’s high conductivity and transparency, biosensor response
and pathogen surface coverage are linked [101].

2.1.3. Polymer Electrodes

Pathogen-detecting electrodes have also been made from polymers. Polymers are not
just good for human health and the environment, but are also relatively low-cost. Various
biorecognition element immobilization techniques are also compatible with polymer elec-
trodes [102,103]. Implantable and wearable biosensors require electrode–tissue mechanical
matching, which is made possible by polymers’ mechanical properties. An (organic) con-
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jugated polymer (CP) electrode or a polymer composite can be categorized as a type of
polymer electrode, and they have long been used for pathogen detection [104–106].

Remarkable transparency, biocompatibility, low oxidation potential, outstanding con-
ductivity, ease of fabrication, low cost, and a small band gap (e.g., 1.6 eV) are some of the
special qualities of organic CPs [107–109]. Poly (acetylene), poly (pyrrole), poly(thiophene),
poly(terthiophene), poly(aniline), poly(fluorine), poly (3-alkylthiophene), poly tetrathiaful-
valene, poly naphthalene, and poly (p-phenylene sulfide), poly(para-phenylene vinylene)
are examples of common types of organic CPs [107,109].

E. coli and human influenza A virus were detected using spin-coated films coated with
poly (3,4-ethylene dioxythiophene) [76]. Organic CPs’ semiconducting nature gives them
unique optical and optoelectronic capabilities. Thus, synthetic chemists’ capacity to modify
the chemical structures of polymerized monomers allows for the design and tweaking of
CPs for particular purposes [109].

Polymer composite electrodes, which comprise a nonconductive polymer combined
with a conductive one, frequently conduct or convey scattered words. Dispersed phases
such as graphite or gold nanoparticle (AuNP)-graphene or carbon nanotubes (CNTs) have
been widely employed in conjunction with different polymers, including poly ethyleneimine
(PEI), poly allylamine (PA), and chitosan (PAA) [110–113].

Researchers have developed a poly allylamine/CNT polymer composite electrode
that may be used for anodic stripping voltammetry to detect bacteria including E. coli,
S. typehimurium, and Campylobacter at concentrations as low as 103–105 cells/mL [113].
S. typhimurium was detected using AuNP-coated synthetic polymer composite electrodes
made of poly (amidoamine), carbon nanotubes, and chitosan [110,114].

Polymer composite electrodes have a detection limit of 1–103 CFU/mL, which is
equivalent to that of metal and polymer electrodes. Nanomaterials may be disseminated
throughout the polymer in polymer composite electrodes rather than using electrode nanos-
tructuring methods. Polymer electrodes have risen in popularity because of the growing
need for flexible biosensors. Electrodes consisting of a polymer or a film that may be affixed
to a flexible substrate, such as paper, are among the most recent biosensor technologies
being researched [115], because 3D printing processes are compatible with conjugated
polymers and composites of polymers [116,117]. Additionally, polymer electrodes are
becoming attractive candidates for wearable biosensors that can conform to the wearer’s
body [118,119]. Regarding polymer electrodes, the most common form factor is a thin film,
but nanowires and nanofibers can also be used [119,120].

2.1.4. The shape and Design of the Electrodes

Electrodes made from Au have been utilized to detect infections of all forms and sizes.
Advanced masks and programmable tool paths can be utilized to create electrodes using
lithography and 3D printing [121,122]. In addition to complicated form factors, electrode
patterning may be used to fabricate electrode arrays using lithographic, 3D printing, and
assembly techniques [122]. Biosensor sensitivity and multiplexing have been improved
by electrode arrays, which include interdigitated microelectrodes and other patterned
electrodes. There are alternating, parallel fingers on the electrodes in an interdigitated array
microelectrode (IDAM) with excellent response time [123]. For pathogen detection, Au
interdigitated microelectrode arrays are a popular choice.

S. typhimurium can be detected using electrochemical impedance spectroscopy (EIS)
using interdigitated Au micro electron arrays, such as those used by Dastider et al. [70].
Detection of S. typhimurium has also been performed utilizing interdigitated arrays of
ceramic electrodes such as ITO [66,124]. Electrode arrays with geometries other than
interdigitated designs can be made using the aforementioned emerging manufacturing
processes for electrochemical sensing applications. Arrays of silver (Ag) microelectrodes
may be created using aerosol jet additive manufacturing [125].
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2.1.5. Electrode Nanostructuring

Nanotechnology represents a multidisciplinary field that covers materials and devices’
design, fabrication, and functionality with dimensions in the nanometer (nm) domain [126].
Sensitive biosensors can be made using transducers whose physical dimensions are similar
to those of the target species [127,128]. A wide variety of electrode sizes, ranging from
micro- to nanometer, have been studied in the search and nanoscale planar electrodes
are among the most common methods [10,129]. Nanomanufacturing techniques, such as
making nanowires from the bottom up and from the top down, have produced pathogen
detection electrodes with nanostructures [130].

Nanomanufacturing processes from the bottom up and from the top down have both
been used to make nanowire-based electrodes [131]. Nanowires can even have triangular
cross-sections. When addressing the length-to-width ratio, nanowire aspect ratios from 1 to
more than 10 are possible [132,133].

Detection of pathogens by use of metallic and ceramic micro and nanowire electrodes
has been investigated. For instance, TiO2 electrodes for the detection of Listeria (L. monocy-
togenes) were created by Wang and colleagues using a bottom-up wet chemical technique
(Figure 3) [60]. Moreover, an array-based file format of the human influenza virus was
detected using a chemical vapor deposition approach developed by Shen and colleagues
(Figure 4) [134].
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In another study, label-free chemiresistive sensors based on a nanoribbon made of
polypyrrole (PPy) through a lithographically patterned nanowire electrodeposition (LPNE)
technique were used to detect cucumber mosaic virus [135].

Electrode surfaces have also been studied for infection detection using micro and
nanostructured characteristics. Nanostructuring allows for an increase in electrode surface
area without a corresponding rise in electrode volume [136]. The electrical characteris-
tics of electrodes can be affected by changes in the electrode’s surface topography. Re-
duced electrical resistance across a wide frequency range benefits neural monitoring and
recording applications when using poly (3, 4-ethylenedioxythiophene) (PEDOT) on silicon
electrodes [137]. Pathogen-detecting nanostructures that go beyond the bottom-up wet
chemistry and electrochemical techniques used to create nanowire-based electrodes are
being created. Electrode nanostructures can be created via wet chemical processes [138]. In
many cases, nanoparticles are deposited or coupled to planar electrodes to create nanos-
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tructured electrodes. Nanostructured surfaces for biorecognition elements can be created
by depositing AuNPs on planar electrodes. In these studies, physical adsorption processes
are used to affix the particles to the planar electrode [74] or chemical methods [139]. Elec-
trode nanostructuring can benefit from CNTs and AuNPs, according to a growing body of
research. For instance, Attar et al. [74] developed a straightforward and accurate label-free
assay for rotavirus detection utilizing electrochemical impedance spectroscopy (EIS). Cys-
teine monolayers self-assemble on a glassy carbon electrode that has been modified with
gold sono nanoparticles (AuSNPs) to create the immunosensor (Figure 5).
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Figure 4. (A) Shows an experimental method for detecting Influenza virus and 8 iso Prostaglandin
F2α (PGF 2a) in exhaled breath condensate (EBC) samples using a silicon nanowire (SiNW) sensor
device with and without magnetic concentration. The EBC samples were collected, diluted 100 times,
and then flowed at a rate of 170 L/min to the sensor device. (B) SiNW sensor apparatus used in the
sensing tests: (1) an optical image of the chip device; (2) a scanning electron microscopy (SEM) image
of a single SiNW sensor; (3) an atomic force microscopy (AFM) image of a SiNW device modified
with an anti-H3N2 virus antibody and infected with viruses; and (4) SEM photos of magnetic beads.
(C) Bacteria found in indoor air and EBC samples taken from human participants with and without
the flu (Influenza virus). Following culture, bacteria were found in the following samples: (1) EBC
samples; (2) SEM images of the bacteria present in the samples; (3) indoor air samples; and (4) higher
resolution SEM photographs of the bacteria present in the samples (2). (D) The use of quantitative
PCR (qPCR) to identify bacteria in EBC samples obtained from flu patients and healthy individuals.
Reproduced with permission from ref. [134]. Copyright 2012, American Chemical Society.

The aggregation of biorecognition elements on high-curvature nanostructured gold
microelectrodes was shown to be less than on flat electrodes in DNA sensing experiments
combining experimental research and molecular dynamics simulations, as revealed by
De Luna et al. [140]. Researchers used carbon nanoparticles to identify the Japanese
encephalitis virus [47].
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Recognition of pathogens has been made possible via electrochemical nanostructuring
and bottom-up electrochemical techniques. Gold (III) chloride hydrates were electro-
chemically deposited onto a nanostructured gold electrode to detect norovirus in lettuce
extracts [129]. Nanoporosity, a type of electrode porosity, allows for electrode nanostruc-
turing in addition to the more typical way of depositing materials on planar electrodes.
Nguyen and colleagues used platinum (Pt) microwires coated with nanoporous alumina to
look for the West Nile virus. [62]. Nanostructured electrodes have been proven to boost
biosensor sensitivity and the limit of detection (LOD) [129,141]. The fluctuation in electrode
nanostructure quality from device to device and batch to batch still needs to be understood.
Nanostructured surface features (such as topography and structure) and material qualities
may differ among mass-produced electrodes. Biosensor repeatability may also be affected
by this variability in nanostructure quality; however, this is not yet discovered.

2.1.6. Complimentary Transduction Components

Pathogen detection applications have also looked at biosensors with integrated elec-
trodes and complementing transducers, given the necessity for quick and reliable readings.
It is possible to concurrently monitor fluid mixing and molecule binding events with the use
of electrodes and transducers [142]. Biosensors having multiple transducers, such as hybrids,
allow for in situ target binding verification and complement analytical observations.

Hybrid electrochemical biosensors have been coupled with optical and mechanical
transducers for pathogen detection. In Electrochemical Optical Waveguide Lightmode
Spectroscopy (EC-OWLS), optical and electrochemical sensing are combined into a single
apparatus [143]. With EC-OWLS, it is possible to monitor electrode surface changes and
development [144]. Pathogens may be identified by using this method. Electrochemical
sensing is combined with surface plasmon resonance to detect changes in the electrode–
electrolyte (conductive interface) interface refractive index caused by binding (surface
plasmon resonance (SPR)) [145]. These functions can be tracked with this technology but
can also identify infections with better accuracy [146]. Complementary responses can also
be used to confirm the presence of binding functions [147]. Using mechanical transducers’
principal radiation effects, pathogens may be identified both at the conductive contact and
in the bulk solution [121]. Secondary transducers can be used to provide force to constrain
or catch targets. Shear-mode resonators and cantilever biosensors are useful in removing
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surface-bound proteins in various investigations [148,149]. Hybrid designs might help
biofouling-prone electrodes.

Some biosensor-based pathogen detection methods are based on coupling electrochem-
ical biosensors with a standard biological methodology. For example, an electrochemical-
colorimetric biosensor is a biosensor that combines electrochemical-colorimetric (EC-C)
biosensing methods. Target-to-active species reactions are detectable via electrodes or
colorimetric transduction pathways. AuNP-modified ITO electrodes with monoclonal
antibodies and dual-labeled magnetic beads were utilized to detect human Enterovirus 71
in the EC-C method by Hou et al. [150]. Using magnetic nanobeads tagged with antibodies
and Horseradish Peroxidase (HRP), a second binding step was performed after exposing
the electrode to enterovirus-containing samples. Color, fluorescence, and luminescence
detection are all common uses for laser-active labels. The most advantageous aspects of
employing magnetic fields are that they can be tuned by varying the applied current on
the micro-conductors, and that they can be applied externally or from integrated micro-
conductors. Furthermore, high-gradient magnetic fields that can be measured by magnetic
sensors can be used to modify the magnetic markers inside microfluidic channels [151].
Organic fluorophores that are not protein-based include fluorescein and rhodamine. A
wide variety of quantum dots, including CdS, CdSe, and GaAs, are frequently employed in
the design of electronic devices [152,153]. Detection of the target species is covered in the
next sections.

2.2. Biorecognition Elements

This section covers the components of electrochemical biosensor pathogen detection.
Biorecognition elements used to identify infections and the methods used to attach them to
electrodes in a biosensor are the subject of our next discussion. The biocatalytic properties
and biocomplexity of biorecognition components can be used in electrochemical biosensors.
Biological biorecognition components employ macromolecule-catalyzed reactions in their
biosensor responses. One of the most common biocatalytic biorecognition components is
enzymes. Various chemical sensing applications can benefit from enzyme-based biorecog-
nition elements, although pathogen detection is the most common usage. When analytes
interact with macromolecules or structured molecular assemblies, biocomplexity biorecog-
nition elements are triggered. To identify infections, the body relies on biocomplexity
biorecognition components such as antibodies, peptides, and phages.

Lately, modified molecules including DNAzymes, peptide nucleic acids, and molecules
that suffer a selective screening, such as aptamers and peptides, are gaining interest due
to their biorecognition capabilities and other advantages over purely natural molecules,
such as robustness and lower product costs. Antimicrobials with a broad- spectrum
activity against pathogens, similar to antibiotics, are also used in dual diagnostic and
remedial strategies.

Other successful pathogen identification strategies use chemical ligands, molecularly
imprinted polymers, and Clustered Regularly Interspaced Short Palindromic Repeats-
associated nuclease [154].

2.2.1. Antibodies and Antibody Fragments

Electrochemical biosensors, such as antibodies and antibody fragments, frequently
incorporate these pathogen-detection biorecognition components. Immunosensors are
biosensors that use biorecognition elements based on antibodies. Due to their high affin-
ity and selectivity for target species, antibodies serve as the gold standard in pathogen
detection as the gold standard biorecognition element. An epitope is an antigen region
recognized by antibodies as a specific binding site [130]. Using fluorescent or enzymatic
tags, antibodies can be labeled as label-based techniques. As a result of the additional
reagents and processing steps needed for label-based approaches, there are measurement
limitations [33,36]. The biosensor’s selectivity may also be affected by antibody labeling,
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which alters the binding affinity to the antigen. Pathogen detection methods based on
label-based biosensing have previously been discussed in depth elsewhere [155,156].

Selected pathogen detection is made possible by using both monoclonal and poly-
clonal antibodies [130]. The production process, selectivity, and binding affinity all vary.
Hybridoma technology is used to create monoclonal antibodies [157]. Because of their
high specificity and affinity for a particular epitope, monoclonal antibodies are more re-
sistant to cross-reactivity. Monoclonal antibodies are better at identifying specific targets.
Immunoglobulin proteins can be isolated from contaminated blood and used to produce
polyclonal antibodies [157]. A single antigen can be specifically targeted by polyclonal
antibodies, which are generated in large quantities and have particular epitopes. Because
of the larger batch-to-batch variability of polyclonal antibodies than monoclonal antibodies,
they are more expensive to produce but may be used in wider applications [158]. Low-
temperature storage is one of the drawbacks of antibody use, as is the high cost. Pathogen
detection relies on biorecognition elements. A monoclonal antibody is the most common
biosensing element utilized in testing, including secondary binding stages, whereas poly-
clonal antibodies are used secondarily to assist in target marking. Immobilized biorecogni-
tion components, such as polyclonal antibodies, are often utilized in pathogen detection
tests that do not require further binding processes.

Single-chain variable fragments (ScFvs), smaller and less bulky versions of antibody
fragments, exhibit selectivity that is very close to that of antibodies. Half-antibody frag-
ments in pathogen detection have increased biosensor sensitivity without sacrificing se-
lectivity [159]. Re-engineered IgGs, dimers, ScFvs, and Fragment Antigen-Binding (Fab)
regions are potential biorecognition components for pathogen detection [158].

2.2.2. Carbohydrate-Binding Proteins

Lectins and other carbohydrate-binding proteins are useful for pathogen detection be-
cause they can bind ligands unique to the target organism. Low-cost, high-yield automated
synthesis processes allow the production of peptide biorecognition elements, which can
be modified [160]. Many studies have examined the ability to detect E. coli using lectins
such as Concanavalin A (ConA) [41,77]. Yet, pathogen detection using electrochemical
biosensors has not been thoroughly studied. Breast cancer cells may be detected in real-time
using oligopeptides, according to Etayash et al. [161].

2.2.3. Oligosaccharides

Infectious disease pathogens have receptors for carbohydrate-specific trisaccharides, a
form of carbohydrate that can interact with these receptors. For the detection of illnesses,
trisaccharide ligands have been used in electrochemical biosensors [162]. Biosensors coated
with hemagglutinin-targeted trisaccharide ligands have been used to detect the influenza A
virus in humans (H1N1) [51]. It is difficult to employ carbs as biorecognition components
because of the limited specificity and low affinity of carbohydrate–protein interactions [163].

2.2.4. Oligonucleotides

Single-stranded DNA can be utilized as a biorecognition element to detect diseases
(ssDNA). Regarding pathogen detection, ssDNA aptamers are widely utilized in electro-
chemical biosensors, whereas ssDNA is more commonly seen in DNA-based tests. These
single-stranded oligonucleotides have strong binding affinity and selectivity for a large
variety of different compounds [164,165]. It is possible to separate aptamers from vast
random sequence pools using Systematic Evolution Of Ligands By Exponential Enrichment
(SELEX) [166]. Extracting and amplifying binding sequences is feasible using a random
oligonucleotide sequence pool. Aptamers can be narrowly targeted to the molecules de-
signed to interact with [166]. An additional benefit of aptamers is their lower production
cost compared to antibodies and other biorecognition components [167]. Ten rounds of
SELEX were utilized for fruit samples by Iqbal and colleagues to discover 14 high-affinity
aptamer clones for Cryptosporidium parvum (Figure 6) [168].
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Figure 6. Schematic illustration of the electrochemical detection method used for the detection of
Cryptosporidium parvum Oocysts. Self-assembling aptamer and primer hybrids were applied to a
carbon electrode that had been screen-printed with gold nanoparticles (GNPs-SPCE). By using square
wave voltammetry, the binding of the C. parvum oocyst to the immobilized aptamer increases the
redox current. Reprinted with permission from ref. [168]. Copyright 2015, PLOS.

As mentioned, the main alternatives to antibodies being studied are derivatives of
nucleic acids such as aptamers, PNAs, DNAzymes, and antibody-derived fragments.
The chief benefit of those molecules is that they can be established much more cheaply
than antibodies. For example, they have proven target affinity comparable with their
antibody counterparts while exhibiting excellent stability and reproducibility, which is a
vital requirement for POC diagnostics. They are also adaptable enough to be combined
with most POC sensor detection platforms, including electrochemical, optical, colorimetric,
and Lateral Flow Assay (LFA). Their main drawback is that they require a selection process
that is time-consuming and sometimes problematic to perform.

Regarding their wide range, they are usually used for pre-enrichment or combined
with other biorecognition elements to improve the sensitivity of the sensor. A huge num-
ber of AMPs are under scrutiny; however, their emerging disadvantage is the lack of
selectivity [155].

The degradation of aptamers and the possibility of cross-reactivity and repeatability
when using different processing processes have not yet allowed them to totally replace
traditional bio-recognition components like antibodies [103].

2.2.5. Phages

Bacteriophages (bacteriophages) are viruses that infect and proliferate within bac-
teria by the usage of tail-spike proteins, which connect to particular receptors on the
host cell [169,170]. Pathogens can be detected using electrochemical biosensors based on
these identification components [155,171–173]. Bacteriophages’ appearance, selectivity, and
structure are categorized into several classes. These biosensors use bacteriophage electro-
chemical biosensors to detect pathogens. For example, Shabani and colleagues studied
selective impedimetric detection with E. coli-specific T4 bacteriophages [174]. In the study
of E. coli detection, Mejri et al. examined bacterial phages and antibodies as biorecognition
components. The biosensor’s water stability and sensitivity were enhanced by a factor
of four when bacteriophages were used instead of antibodies in that investigation, as
evidenced by the EIS measurements [175]. As much as 105 CFU/mL of L. innocua could
be detected using screen-printed gold electrodes that were coated with peptidoglycan
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hydrolase immobilized bacteria. Researchers have demonstrated that bacteriophages can
be effective biorecognition components in water monitoring that need continual liquid
testing [67].

2.2.6. Cell and Molecularly Imprinted Polymers

Developed ScFvs are synthetic molecular biomarkers. Contrary to popular belief,
biorecognition components based on materials use morphology particular to the target
organism to gather data. Molecularly imprinted polymers (MIPs) and surface imprinted
polymers (SIPs) are biorecognition strategies most often used in biomaterials research.
Bacterial lithography, micro-contact stamping, and colloid imprinting have all been used
to make cell-imprinted polymers (CIPs) and MIPs [176,177]. As indicated in the study of
Jafari et al., an impedimetric approach was utilized to detect E. coli utilizing sol-gel films of
tetraethoxysilane (TEOS) and (3-mercaptopropyl)trimethoxysilane (MPTS) [75,178]. Biosen-
sors may be regenerated using MIPs and CIPs. MIPs and CIPs, molecular biorecognition
elements, should be employed instead of structurally altering components to prevent
regeneration. CIPs and MIPs are frequently regarded as less selective for the target than
antibodies because of their poor chemical selectivity [179,180].

2.2.7. Clustered Regularly Interspaced Short Palindromic Repeats/Associated
Nuclease (CRISPR-Cas)

The main advantage of CRISPR is that its single-base resolution selectivity is un-
matched by any other biorecognition element. The nature of the technology enables it to be
leveraged in POC diagnostic sensing platforms.

SARS-CoV-2 can be detected in saliva droplets and nasal discharge. Saliva is a reliable
tool to detect SARS-CoV-2 by RT-rPCR analysis [181]. For the detection of SARS-CoV-2,
Hou et al. [182] proposed an alternative to the standard reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) detection using a rapid assay based on polymerase-
mediated amplification and CRISPR/Cas13a. This isothermal method is highly advanta-
geous because it does not require expensive and bulky thermocycler equipment and only
takes 40 min. Subsequently, CRISPR gRNAs and RPA primers were designed and screened.
A primer set that targeted open reading frame 1ab (orf1ab) displayed the best specificity
and sensitivity and was used to develop the CRISPR assay based on T7 transcription and a
Cas13 detection step.

To evaluate the specificity of the CRISPR assay, target viral DNA was substituted with
human DNA and a panel of bacterial and viral pathogens. None of these test samples
caused a false positive reaction. Further, the CRISPR assay demonstrated 100% sensitivity.
In the future, the role of CRISPR-associated nucleases can be expanded for direct diagnostic
testing of nucleic acids due to their exceptional single-molecule sensitivity [154].

2.2.8. Antimicrobial Peptides

Antimicrobial peptides (AMPs), as biorecognition elements, belong to the innate im-
mune system of living organisms and are very effective in interacting with bacterial mem-
branes. They offer unique advantages compared to other classical bioreceptor molecules
such as enzymes or antibodies. Moreover, impedance-based sensors allow the development
of label-free, rapid, sensitive, specific, and cost-effective sensing platforms. AMPs and
impedimetric transducers combine excellent properties to produce robust biosensors for
the early detection of bacterial infections.

2.3. Biosensing and Surface Immobility

Surface modification of the electrode is crucial to biosensor performance due to the
functional mechanism of biosensors. Biosensing components must be mounted on elec-
trodes. An irreversible bond is formed between the target species, the biorecognition
element, and the electrode when they are both impermeable. Electrochemical pathogen
detectors generally employ proven methods to prepare the biorecognition layer.
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To immobilize enzymes on an electrode using a polymer layer is the simplest and
most used method [78]. However, there are two fundamental drawbacks to this approach.
One is that the enzymes’ activity can be altered due to structural changes brought on by
the polymer layer, which the layer’s pH can modify. The other issue is that the biosensor’s
reaction time and sensitivity can be compromised since the thickness of the polymer layer
cannot be accurately regulated. Some research groups have successfully used neutral pH
polymers, including silicate sol-gel, for enzyme immobilization to avoid these drawbacks
and maintain enzyme function [183]. In addition, surface modification frequently involves
nanomaterials such as carbon nanotubes (CNTs) and metal nanoparticles to achieve higher
performance. The difficulties in assessing and comparing the various modification proce-
dures and determining the ideal one have emerged because of the vastly varying biosensor
performance that results from each. To address this issue, a standardized procedure is
needed that compares the efficacy of biosensors made using various techniques [184].
Immobilization and surface passivation technologies are thoroughly investigated in this
review while explaining methods.

In recent years, electrochemical biosensors have been used extensively as an alternative
to conventional methods for the detection of pathogens because of their high sensitivity,
fast response time, and low cost. They exhibit more versatile detection systems, which
provides various applications that are capable of real time quantification. Despite the
advantages of electrochemical biosensors, there are some issues regarding the analyte
detection. One of the issues to be considered for pathogen detection is that the developed
biosensor system should allow multiple detection. In addition, detection of pathogens is a
significant challenge in medicine due to their vast number and variety [85]. The consistency
of the fabricated biosensors is greatly affected by the surface condition of the electrodes
and the unspecific absorption of compounds in biological samples, and it is difficult to
reproduce and regenerate the electrodes.

3. Conclusions

Despite the excellent sensitivity of traditional pathogen detection tools, using them
to discover pathogens can be like looking for a needle in a haystack. The new gener-
ation of biosensors may be used to detect infections in various situations without the
requirement for sample preparation. It is now possible to identify various illnesses using
biosensors that may be applied to food, bodily fluids, and even objects’ surfaces. Despite
having more sensitivity than electrochemical approaches, optical techniques are costly and
challenging for most end users. Electrochemical methods, on the other hand, are more
user-friendly, but their ability to detect diseases is still far from sufficient. Eventually, using
a small biosensor near a patient’s bed, in a doctor’s office, or even at home may become
viable with the commercialization of biosensor technology and the expansion of biosensor
technology applications.
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