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Abstract: Beta-amyloid (βA) peptides accompanying the physiological change in brain induce
Alzheimer’s disease. In this work, a highly sensitive electrochemical (EC) immunosensor platform
has been developed for the quantitative detection of βA peptides, using the gold nanoparticle
functionalized chitosan-aligned carbon nanotube (CS-aCNT-Au) nanocomposites on glassy carbon
electrodes (GCE). The immunosensor has been fabricated by immobilization of the anti-βA an-
tibody upon CS-aCNT-Au/GCE. In the CS-aCNT nanocomposite, CS has high biocompatibility.
Hydroxy and amine functionalities favor the antibody immobilization and prevent the leaching
of nanocomposites of the modified electrode due to the adhesive environment. Moreover, aCNT
offers high conductivity, stability, and a large surface area (the calculated effective surface area of
the CS-aCNT/GCE is 8.594 × 10−2 cm2). However, the incorporation of AuNPs further enhances
the conductivity of the CS-aCNT-Au nanocomposite based on differential pulse voltammetry (DPV)
results, and also improves the effective surface area (9.735 × 10−2 cm2). The surface morphology and
electrochemical studies of the nanocomposite, as well as its modifications by the anti-βA antibody
and BSA, were carried out through field emission scanning electron microscope (FESEM), cyclic
voltammetry (CV), and DPV. The quantitative immunosensing of the βA in phosphate-buffered saline
(PBS) solution is accomplished via DPV, which reveals that the immunosensor has a high sensitivity
of 157.60 µA pg−1 mL cm−2 and a broad detection range of 10.0 pg mL−1–100.0 µg mL−1, with a
limit of detection (LOD) of 0.87 pg mL−1. Subsequently, we detected the spiked βA in diluted serum
with a linear detection range of 10.0 pg mL−1–1.0 ng mL−1 and LOD of 0.95 pg mL−1. Moreover, a
selectivity study exhibited a high affinity of immunosensors towards βA. Thus, we propose that this
highly efficient immunosensor can potentially be applied for the point-of-care (POC) sensing of βA
in clinical samples.

Keywords: Alzheimer’s disease; β-amyloid peptide; electrochemical immunosensor; gold nanoparticles;
aligned carbon nanotube; chitosan

1. Introduction

Alzheimer’s disease (AD) is a common neurological disorder in the human brain,
which is paid high attention due to the results of dementia and millions of deaths. AD
accounts for ~70% of dementia cases, of which ~35 million people have AD and this
number is projected to expand by almost three times (~115 million) in 2050 [1–3]. AD
is most common in the age group older than 65. However, approximately 6% of people
have suffered from AD before the age of 65 years. The World Health Organization (WHO)
estimates that AD causes a high global socio-economic burden of USD ~1.9 trillion by
2030 [4]. AD is the usual chronic and progressive form of neurodegenerative disease.
Studies have revealed that AD is regulated through the growth of fibrils in the brain,
known as amyloid peptides. One of their forms is the βA peptide, which is hydrophobic
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and self-aggregated in brain tissues, causing the primary incidence of AD. βA peptide
is formed due to enzymatic degradation through β- and γ-secretase of βA protein from
the amyloid precursor protein (APP). Therefore, the monomeric and aggregative form of
βA is highly endorsed as a diagnostic biomarker and a therapeutic target. Thus, regular
monitoring is essential to manage their progression and treatment [2,3,5,6].

To date, numerous diagnostic platforms, including capillary electrophoresis (CE),
enzyme-linked immunosorbent assay (ELISA), magnetic resonance imaging (MRI), mass
spectroscopy (MS), positron emission tomography (PET), and immunohistochemistry (IHC)
have been employed for the detection of AD. However, the aforementioned methods are
less sensitive, and also time-consuming, costly, and labor-intensive. Therefore, a highly
selective, sensitive, and cost-effective detection technique is crucial for clinical practice for
early diagnosis and therapeutic of AD [2,3,7].

Accordingly, the immunosensor-based diagnostic platform is considered the most
promising tool for POC application. Numerous immunosensors, such as electrochemical,
surface plasmon resonance (SPR), and surface-enhanced Raman spectroscopy (SERS),
have been utilized for the detection of AD. Amongst, electrochemical immunosensor
has attained much interest due to its remarkable advantages, including ease of use, cost-
effectiveness, high sensitivity and selectivity, ultra-low detection limit, considerable stability,
and rapid detection. Moreover, the electrochemical immunosensor is label-free and easy to
fabricate, does not require pre-treatment of a clinical sample, requires a low sample volume,
and offers an on-site testing facility. Due to the potential advantages, several attempts
have been made to detect βA using an electrochemical immunosensor [8,9]. In a recent
report, Devi et al. developed an Au-NiFe2O4-GO nanocomposite-based electrochemical
immunosensor for βA biomarker detection [10]. However, Abbasi et al. detected the βA
up to the pg mL−1 using a label-free electrochemical biosensor based on polymer-modified
graphene [11]. Similarly, a polymeric nanoparticle-functionalized gold nanocomposites-
based immunosensor has been designed by Zhao et al. to detect the βA early, up to a
nanomolar concentration [12].

Owing to fascinating physical and chemical properties, aCNT paves the way for
highly efficient material in immunosensor design and fabrication. They have several ad-
vantages, including high surface area, light weight, high electrical conductivity, chemical
stability, and excellent electrochemical properties. Moreover, the aligned geometry acts
as a molecular wire, which offers high electron transfer, resulting in a highly sensitive
immunosensor [13–16]. Nevertheless, chitosan (CS) has amine- and hydroxy-functional
groups that offer active sites for the immobilization of antibodies in immunosensor fabrica-
tion. Additionally, the strong adhesive character makes a uniform coating of nanocomposite
on the electrode surface and prevents the leaching of materials, which provides a stable
environment for the fabrication of immunosensors [17]. Moreover, the functionalization of
AuNPs remarkably improved the conductivity and effective surface area of the immunosen-
sor. Thus, they effectively improved the sensitivity of the immunosensor [18,19].

Herein, we report a sensitive electrochemical immunosensor for βA detection. Firstly,
we synthesized the AuNP-functionalized CS-aCNT nanocomposite, in which aCNT has
high electroconductivity and surface area. However, the presence of amine and oxygen
functionalities on CS favors antibody immobilization on the electrode surface, and the
adhesive behavior of CS prevents the leaching of the nanocomposite. Additionally, AuNPs
further improved the working efficiency of the immunosensor through the enhancement
of conductivity and effective surface area of the nanocomposite. Afterward, the surface
morphology of the CS-aCNT-Au nanocomposite and its successful modification by anti-
βA antibodies and BSA has been studied by FESEM. Subsequently, we fabricated the
working electrode by the surface modification of GCE using CS-aCNT-Au, followed by
immobilization of anti-βA antibodies and BSA. Further, the electrochemical characteristics
of the nanocomposites and immunosensor have been studied through electroanalytical
techniques, such as CV and DPV. The fabricated immunosensor has been used for the
detection of the varied concentration of βA in PBS and the achievement of a LOD of
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0.87 pg mL−1. We tested the immunosensor performance in diluted serum as well as
selectivity, where it showed remarkable results concerning βA detection.

2. Experimental Details
2.1. Chemicals

The monoclonal βA antibodies and βA peptides were purchased from Abcam, UK.
Aligned carbon nanotubes (aCNT) were purchased from TCI chemicals, India. Chitosan,
gold (III) chloride trihydrate, sodium phosphate dibasic dihydrate, sodium chloride, potas-
sium chloride, sodium phosphate monobasic dihydrate, bovine serum albumin, potas-
sium ferrocyanide, potassium ferricyanide, N-hydroxysulfosuccinimide sodium (NHS),
N-(3-Dimethylaminopropyl)-N’-ethyl carbodiimide hydrochloride (EDC), dopamine, im-
munoglobulin G, and cortisol were procured from Sigma-Aldrich, USA. The deionized (DI)
water was obtained from the Millipore system.

2.2. Preparation of Chitosan and Chitosan-Aligned Carbon Nanotube

In order to prepare the chitosan solution, a 500 mg chitosan flake was mixed with the
10 mL solution of 0.05 M acetate buffer. Then, the solution was constantly stirred overnight
at 25 ◦C to make a transparent solution of CS. Moreover, the CS-aCNT nanocomposite has
been prepared by mixing 5.0 mg aCNT with 1.0 mL of prepared CS solution. The solution
was bath-sonicated at 1 h and then constantly stirred for 1 h at 25 ◦C to perform the uniform
mixing of aCNT into the CS solution [17,20].

2.3. Preparation of Gold Nanoparticles

The AuNPs were synthesized chemically from auric chloride salt through the reduction
of citrate salt. In detail, a 0.5 mM of 100 mL HAuCl4·3H2O was refluxed at 60 ◦C for 20 min
with continuous stirring. Then, 50 mL of trisodium citrate (50 mM) was added dropwise
into gold aqueous solution, where the color of the solution appeared red, denoting the
formation of AuNPs. When the red color of the AuNPs solution appeared, it was further
refluxed for 20 min and cooled at room temperature with continuous stirring. The prepared
AuNPs solution was stored at 4 ◦C for future applications [21].

3. Result and Discussions
3.1. Physical Characterizations

The FESEM (Make: Carl ZEISS Microscopy, ZEISS Sigma, Germany) images of the
prepared nanocomposites illustrated their successful synthesis [22]. The AuNPs, with a
spherical size and uniform distribution, are shown in Figure 1A. However, a thick layer of
CS film had a rough surface with several tiny particles which is displayed in Figure 1B. On
the other hand, Figure 1C,D CS-aCNT nanocomposite illustrated the incorporation of aCNT
on the CS surface as well as the stacking of the nanocomposite. The stacking may be due
to the contraction of the nanocomposite after drying [23]. However, the AuNP-modified
CS-aCNT nanocomposite is shown in Figure 1E,F. It has been pictured that the AuNPs
embedded on the CS-aCNT surface designate the effective attachment of AuNPs in the
CS-aCNT-Au nanocomposite [24]. However, the immobilization of anti-βA antibodies and
BSA onto the CS-aCNT-Au nanocomposite surface is shown in Figure 1G,H, respectively. It
should be noted that the surface of the CS-aCNT-Au nanocomposite is completely covered
by a thick layer of antibodies and BSA. The results revealed the successful immobilization
of anti-βA antibodies and BSA on the nanocomposite.
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Figure 1. FESEM images of (A) AuNPs, (B) CS, (C,D) CS-aCNT nanocomposite, (E,F) CS-aCNT-Au
nanocomposite, (G) antibody/CS-aCNT-Au nanocomposite, and (H) BSA/antibody/CS-aCNT-Au
nanocomposite.

3.2. Fabrication of the Working Electrode

The GCE surface was modified for the fabrication of an electrochemical working
electrode through the drop-casting method. Before the modifications of the GCE, it was
hand-polished using alumina slurry (0.3 and 0.05 µM), and then cleaned through ethanol
and DI water to eliminate the alumina particles from the electrode surface and to obtain
a mirror-like surface [25]. Subsequently, a 5.0 µL CS-aCNT nanocomposite was drop cast
onto the GCE and dried at atmospheric conditions. Afterward, 5.0 µL AuNPs solution was
drop cast onto the modified surface and dried in a similar conditions to fabricate CS-aCNT-
Au/GCE. Correspondingly, CS-aCNT/GCE was fabricated using the aforementioned
method. Then, the fabricated working electrode was studied electrochemically via CV and
DPV techniques.

3.3. Fabrication of the Immunosensor

The electrochemical immunosensor was fabricated by the modification of CS-aCNT-
AuNPs/GCE. In detail, 5.0 µL of (4:1) EDC/NHS was drop cast onto a CS-aCNT-Au/GCE
surface, where EDC/NHS functioned as a coupling mediator between the nanocomposite
and biomolecules, i.e., antibodies, to allow covalent immobilization on the electrode surface.
However, the unbounded EDC/NHS on the electrode surface was eliminated through
washing with DI water. Subsequently, 5.0 µL of 10.0 µg mL−1 anti-βA antibody solution
was immobilized on a modified CS-aCNT-Au/GCE surface and kept overnight at 4 ◦C.
Afterward, it was washed using phosphate buffered solution (pH = 7.0) to eliminate the
unbonded antibody. Furthermore, we immobilized the 1% bovine serum albumin (BSA) on
the antibody modified electrode surface for an hour, which was further washed to remove
the unnecessary BSA. Here, BSA acted as a blocking agent that blocked the reactive surface
of the electrode, which left after antibody immobilization. The blocking is necessary to
prevent the non-specific responses of the modified electrode; otherwise, it would cause the
incorrect results. After the complete fabrication of the immunosensor, which is termed a
“BSA/antibody/CS-aCNT-AuNPs/GCE”, it was stored at 4 ◦C for electrochemical study.
A schematic illustration of the stepwise modifications of the immunosensor is displayed
in Scheme 1.
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4. Electrochemical Studies of the Modified Electrodes

The studies on the electrochemical properties of the fabricated electrodes were con-
ducted through electroanalytical techniques such as CV and DPV [26,27]. All of the elec-
trochemical measurements were performed on a Metrohm P/G (Autolab) EC workstation
(Model-PGSTAT204, Netherland) using the 3-electrodes system (fabricated working elec-
trode, an Ag/AgCl reference electrode and a Pt-wire counter electrode) in PBS, pH = 7.4,
containing 0.9% KCl and 5 mM ferro/ferricyanide [Fe(CN)6]−3/−4 redox chemical in a
−0.2 to 0.7 V potential range at a scan rate of 0.015 Vs−1. As demonstrated in Figure 2A,
the anodic peak current (Ipa) of the GCE was calculated to be 24.012 µA, at an anodic peak
potential (Epa) of 0.276 V. However, after the GCE modifications, the Ipa of CS-aCNT/GCE
and CS-aCNT-Au/GCE increased, and was calculated of 37.994 and 43.036 µA at an Epa
of 0.247 and 0.243 V, respectively. It should be noted that the incorporation of AuNPs
remarkably enhanced the Ipa of CS-aCNT-Au nanocomposites, suggesting that the AuNPs
have a high conductive nature. CS-aCNT-Au/GCE displayed the highest Ipa amongst the
other modified electrodes. Nevertheless, with the immobilization of the anti-βA antibody
(antibody/CS-aCNT-Au/GCE), followed by the BSA blocking agent (BSA/antibody/CS-
aCNT-Au/GCE), the Ipa reduced to 37.780 and 34.710 µA, at Epa of 0.254 and 0.265 V,
respectively. The reduced CV peak currents suggested effective immobilization of anti-βA
antibody and BSA on the electrode surface, which could potentially detect the βA.

Moreover, we also calculated the effective surface area of the fabricated electrodes
using the Randal–Sevcik equation (Equation (1)) [19]:

Ip = (2.69 × 105) An3/2Cυ1/2D1/2 (1)

where Ip and A represent the peak current and the effective surface area (Aeffective) of
the modified electrodes, respectively. n represents electron(s) participating in the electro-
chemical process (in this case, n = 1), C is the concentration of the redox chemical (in this
case, 5 mmol cm−3), υ represents the scan rate (0.015 Vs−1), and D denotes the diffusion
coefficient (7.26 × 10−6 cm2 s−1) [19].

The A of the fabricated electrodes was directly proportional to the resulting peak
current of the electrochemical system, where the A of the GCE was calculated to be
5.433 × 10−2 cm2. However, for CS-aCNT/GCE and Cs-aCNT-Au/GCE, the A increased
to 8.594 × 10−2 cm2 and 9.735 × 10−2 cm2, respectively. The enhancement of the A of the
modified electrodes indicated the improved conductivity and high surface area of aCNT
and AuNPs. Nonetheless, A slightly reduced to 8.546 × 10−2 cm2 and 7.854 × 10−2 cm2

for antibody/CS-aCNT-Au/GCE and BSA/antibody/CS-aCNT-Au/GCE, respectively.
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This reduction marked the reduced conductivity of the modified electrode, which was
achieved after the successful immobilization of the anti-βA antibody and BSA on the
CS-aCNT-Au/GCE surface.
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Figure 2. (A) CV and (B) DPV measurements of (i) GCE, (ii) CS-aCNT/GCE, (iii) CS-aCNT-Au/GCE,
(iv) antibody/CS-aCNT-Au/GCE, and (v) BSA/antibody/CS-aCNT-Au/GCE.

Moreover, the Brown–Anson model was employed to calculate the surface concentra-
tion on the antibody/CS-aCNT-Au/GCE bioelectrode using Equation (2) [10].

Ip =
n2F2I∗Aυ

4RT
(2)

In this equation, n denotes the number of electrons involved in the reaction (n = 1),
F represents the Faraday constant (96,485 C mol−1), I* is the surface concentration of
redox chemical (mol cm−2), A is the effective surface area of the working electrode, υ
is the scan rate (Vs−1), R is the universal gas constant (8.314 J mol−1 k−1), and T is the
absolute temperature (300 K). The surface concentration of the redox chemical on the
antibody/CS-aCNT-Au/GCE bioelectrode was calculated to be 3.52 × 10−8 mol cm−2.

At the same time, the DPV technique was performed in order to evaluate the property
of the modified electrodes by measuring the peak current. As displayed in Figure 2B, the
DPV peak current was measured at 109.915 µA for GCE. However, after the modification
of the CS-aCNT and CS-aCNT-Au nanocomposite, it remarkably increased to 487.0 and
672.609 µA, respectively. The enhanced peak current also represents the high conductive
nature of the nanocomposite, as well as the successful modification of the GCE surface.
Furthermore, the peak current decreases to 435.356 and 359.743 µA after the immobilization
of the anti-βA antibody, succeeded by the BSA on CS-aCNT-Au/GCE. The reduction in
the peak current revealed the effective immobilization of anti-βA antibodies and BSA,
where the bulkiness of biospecies obstructed the flow of electrons in redox PBS solution
and caused low conductivity. The DPV results are consistent with the CV measurements
of modified electrodes. Therefore, we conclude that the fabricated immunosensor can
efficiently work for the electrochemical detection of βA.

4.1. Scan Rate Study

The electrochemical properties, including electrode reversibility; redox properties,
such as oxidation and reduction in peak current and peak potential of anodes and cathodes;
and kinetics of the electroactive materials, were studied through the CV at varying scan
rates [28,29]. The redox kinetics of the CS-aCNT-Au/GCE and BSA/antibody/CS-aCNT-
Au/GCE immunosensors studied in PBS, containing ferro/ferricyanide redox chemicals,
had varying scan rates, from 0.005 to 0.050 Vs−1 at the interval of 0.005 Vs−1. As illustrated
in Figure 3A,B, the Ipa of both electrodes gradually increased with the function of the scan



Biosensors 2022, 12, 1059 7 of 12

rate. However, the cathodic peak current (Ipc) decreased similarly to the scan rate. The
straight-line correlation of the square root of the scan rate vs. Ipa and Ipc calculated high
correlation coefficients (R2) of 0.998 and 0.998 and 0.998 and 0.999 for CS-aCNT-Au/GCE
and BSA/antibody/CS-aCNT-Au/GCE, respectively (Figure 3C). The results revealed
excellent diffusion-controlled electron transfer kinetics of both electrodes, and stated the
quasi-reversible characteristics. Nevertheless, the Epa and cathodic peak potential (Epc)
slightly increased and decreased with the varying scan rate (Figure 3D).
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Figure 3. Studies of the scan rate effect of (A) CS-aCNT-Au/GCE, (B) BSA/antibody/CS-aCNT-
Au/GCE. The respective straight-line calibration curve of (C) the peak current, (i) Ipa and (ii) Ipc
of CS-aCNT-Au/GCE, (iii) Ipa and (iv) Ipc of BSA/antibody/CS-aCNT-Au/GCE, and (D) the peak
potential, (i) Epa and (ii) Epc of CS-aCNT-Au/GCE, (iii) Epa and (iv) Epc of BSA/antibody/CS-
aCNT-Au/GCE.

4.2. Quantitative Analysis of β-Amyloid Peptide

The quantitative estimation of the βA has been carried out using the BSA/antibody/CS-
aCNT-Au/GCE immunosensor via the DPV technique. In the DPV, the peak height is
proportional to the concentration of the target analyte. Moreover, DPV takes a short time
to generate the electrochemical signal. Therefore, DPV uses a more suitable technique
for rapid quantification of the analyte of interest [30]. Herein, we analyzed the broad
concentrations of βA, ranging from 10.0 pg mL−1 to 100.0 µg mL−1, in PBS (Figure 4A).
We experimentally detected that the DPV current gradually decreases with the increase in
βA concentration. The appearance of a reduced peak current is attributed to the bulkiness
of the electrode surface after the binding of βA with the anti-βA antibody of the electrode
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surface. A bulkier surface would retard the electron flow, resulting in a low peak current
response. The LOD and limit of quantification (LOQ) of the immunosensor were calculated
using Equations (3) and (4), respectively [31].

LOD =
3s
m

(3)

LOQ =
10s
m

(4)

where S is the standard deviation (SD) [SD = S.E. ×
√

N], N denotes the number of samples,
and S.E. and m represent the standard error of the intercept and slope, respectively.
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Figure 4. Immunosensor performance for βA in PBS. (A) The voltammetric response of the
BSA/antibody/CS-aCNT-Au/GCE for the βA from 10.0 pg mL−1 to 100.0 µg mL−1. (B) The related
calibration curve of the immunosensor.

The measured quantitative values of the LOD and LOQ of the immunosensor were
0.87 pg mL−1 and 2.95 pg mL−1, respectively. In addition, the immunosensor had a high
sensitivity of 157.60 µA pg−1 mL cm−2, which is estimated by using the formula for the
sensitivity = S/A, where S and A are the slope of the calibration graph and the effective
surface area of the immunosensor, respectively.

Additionally, the high R2 value (0.988) revealed the excellent performance of the im-
munosensor in wide-ranging concentrations (Figure 4B). Therefore, we determined that the
immunosensor has a high potential that can efficiently detect much lower concentrations,
up to the picogram level for βA, as well as having a wide detection range and high sensi-
tivity. A comparative analytical performance of the previously reported immunosensor
with our developed immunosensor for βA detection is listed in Table 1.

Table 1. Comparative analytical performance of the immunosensor for βA detection.

Material Technique Linear Detection Range LOD Ref.

Au/NiFe2O4@GO-Ch/GCE DPV 1.0 pg mL−1–1.0 ng mL−1 3.0 pg mL−1 [10]

Graphene/SPE DPV 1.0 pg mL−1–1000.0 pg mL−1 1.4 pg mL−1 [11]

MIP/CI-HME SWV 0.1 ng mL−1–1.0 µg mL−1 67.0 pg mL−1 [32]

CS-aCNT-Au/GCE DPV 10.0 pg mL−1–100.0 µg mL−1 0.87 pg mL−1 This work

SWV = square-wave voltammetry.



Biosensors 2022, 12, 1059 9 of 12

4.3. Detection of β-Amyloid Peptide in Biological Fluids

The constructed BSA/antibody/CS-aCNT-Au/GCE immunosensor was employed
for the detection of spiked βA in diluted serum via the DPV technique in order to validate
the clinical applicability. Before the analysis, we prepared the diluted serum samples by
mixing a 1:10 volume ratio of serum with PBS. Afterward, it spiked with βA of varied
known concentrations, from 10.0 pg mL−1 to 1.0 ng mL−1. It was observed that the
electrochemical results in diluted serum samples showed consistency, as was detected
in PBS (Figure 5A). The calculated LOD and LOQ of the immunosensor were 0.95 and
3.17 pg mL−1, with an R2 of 0.970 (Figure 5B). Therefore, the results revealed that the
proposed method could efficiently detect the βA in the biological sample, and could act as
an alternative to traditional detection methods.
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calibration curve of the immunosensor.

4.4. Assessment of Selectivity of the Immunosensor

In order to examine the selectivity of the proposed immunosensor towards βA, it
was tested against different bioanalytes, such as dopamine (10.0 ng mL−1), immunoglob-
ulin G (IgG) (10.0 ng mL−1), cortisol (10.0 ng mL−1), and human albumin serum (HSA)
(10.0 ng mL−1). It was shown that under similar experimental conditions, the change in cur-
rent (∆i) for other bioanalytes was very low compared to βA (10.0 ng mL−1) (Figure 6). The
much smaller change in current revealed the negligible interference, which demonstrated
the high selectivity of the immunosensor. Hence, it can be concluded that the proposed
immunosensor selectively detects βA.
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5. Conclusions

In conclusion, a highly sensitive and efficient electrochemical immunosensor has been
developed for βA detection. A CS-aCNT-Au nanocomposite was utilized for fabrication of
the working electrode. aCNT provides high conductivity, large surface area, and stability,
while chitosan prevents the leaching of the nanocomposite and favors antibody immobi-
lization. Moreover, the functionalization of AuNPs remarkably improved the conductivity
and effective surface area, as examined through the CV and DPV measurements. The
BSA/antibody/CS-aCNT-Au/GCE immunosensor showed high sensitivity for the detec-
tion of a wide range of concentrations of βA, from 10.0 pg mL−1 to 100.0 µg mL−1, with
a LOD of 0.87 pg mL−1. Moreover, the consistent results of detection of βA in biological
fluid, similarly to PBS, as well as the considerable selectivity of the immunosensor, showed
a high ability to detect βA. Thus, the CS-aCNT-Au nanocomposite-based immunosensor
exhibits remarkable potential for early diagnosis of βA against AD, which may be able to
pave the way for timely treatment and disease management.
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