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Abstract: Photodynamic therapy (PDT) has attracted much attention in the field of anticancer
treatment. However, PDT has to face challenges, such as aggregation caused by quenching of
reactive oxygen species (ROS), and short 1O2 lifetime, which lead to unsatisfactory therapeutic effect.
Aggregation-induced emission luminogen (AIEgens)-based photosensitizers (PSs) showed enhanced
ROS generation upon aggregation, which showed great potential for hypoxic tumor treatment with
enhanced PDT effect. In this review, we summarized the design strategies and applications of AIEgen-
based PSs with improved PDT efficacy since 2019. Firstly, we introduce the research background and
some basic knowledge in the related field. Secondly, the recent approaches of AIEgen-based PSs for
enhanced PDT are summarized in two categories: (1) organelle-targeting PSs that could cause direct
damage to organelles to enhance PDT effects, and (2) PSs with tumor-targeting abilities to selectively
suppress tumor growth and reduce side effects. Finally, current challenges and future opportunities
are discussed. We hope this review can offer new insights and inspirations for the development of
AIEgen-based PSs for better PDT effect.

Keywords: organelle targeting; photodynamic therapy; aggregation-induced emission; tumor targeting

1. Introduction

Cancer, as one of the most fatal diseases, caused nearly 10 million deaths in 2020, as
reported by the World Health Organization International Agency for Research on Can-
cer (IARC) [1]. According to the Chinese National Cancer Center, the survival rate has
increased by 10% to 40.5% compared to 10 years ago. This surprising result could be
attributed to the emergence of various therapies to overcome cancer [2]. At present, cancer
treatment methods mainly include surgery, radiotherapy, chemotherapy, immunotherapy,
etc. [3–5]. However, these therapies still come with limitations, such as nausea and vomit-
ing, which are common side effects of chemotherapy and radiation [6], and the effectiveness
of immunotherapy for specific tumors [7]. In recent years, people have gradually turned
their attention to the field of phototherapy [4,8–14], which shows various attractive features
such as non-invasiveness, low toxicity and good biocompatibility [11,15].

From the perspective of photodynamic therapy (PDT) [16], photosensitizers (PSs)
produce ROS to kill tumor cells under light irradiation. PSs generate ROS through two
processes [8,11,17–20]: (a) Type I: through proton or electron transfer [21], direct reaction
with substrate or solvent molecules to form O2

•− and •OH [22]; (b) Type II: the triplet PSs
transfer their energy to triplet oxygen molecules to form 1O2 [10]. Nevertheless, PDT suffers
from problems such as aggregation in aqueous solutions, which leads to both fluorescence
quenching (ACQ effect) [23,24] and ROS quenching. In addition, the short lifetime of 1O2
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shortens its effective radius, which might limit the Type II PDT efficacy [25]. The PSs with
Type I ROS production capacity will be described in this paper, and the remaining examples
without additional description are those of Type II ROS or ROS species not described in
the original literature. Aggregation-induced emission (AIE) was proposed to inhibit PSs
aggregation and promote ROS production. On the other hand, organelle-targeting strategies
could generate ROS in situ and cause severe damage to organelles, which could help to
solve the problem of short 1O2 lifetime [26–28]. In addition, tumor-targeting strategies can
effectively improve the specificity of PDT and reduce side effects, which can help improve
PDT performance [28–31].

In this review, we summarized current approaches to enhance photodynamic therapy
based on AIE from two different perspectives (Figure 1). First, the design strategies and
antitumor applications of AIEgen-based PSs that are able to target cell plasma membranes,
mitochondria, lysosomes, lipid droplets, nuclei, the endoplasmic reticulum, and the Golgi
apparatus were introduced. Second, different approaches for tumor-targeting AIEgen-
based PSs were covered. This review does not aim to be comprehensive; readers are also
encouraged to refer to other excellent reviews for more information [32–37]. Due to the
fast advances in this field, we only summarized some representative works during the
past three years. We hope that this review can provide some ideas for related research and
promote the progress of PDT therapy.
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Figure 1. Different methods of treating tumor hypoxia.

2. Organelle-Targeting AIE-PDT

PSs should be designed to be intracellularly targetable due to high ROS reactivity
and short diffusion distance, which may enhance PDT efficacy significantly. Currently,
many AIEgen-based PSs that showed subcellular organelle-targeting abilities have been
reported. Most of them were constructed to target mitochondria, lysosomes, lipid droplets,
and plasma membranes because the targeting strategies were well-established [28]. AIEgen-
based PSs targeting other organelles, such as the endoplasmic reticulum (ER) and Golgi
apparatus (GA), were less reported.

2.1. Membrane Targeting

In addition to secreting and transporting proteins, the cell membrane also absorbs
and excretes substances inside and outside through endocytosis and exocytosis. If the
cell membrane is damaged, this results in the increased permeability of tumor cells. It



Biosensors 2022, 12, 1027 3 of 35

may promote the uptake of deleterious material [38–41]. There are two main strategies for
targeting cell membranes [28]. One is to build a positive charge structure based on a similar
method of targeting mitochondria, and the introduction of amphipathic structures is able
to obtain stronger cell-membrane-targeting capabilities [42]. The other strategy is using
membrane-specific ligand modification [43]. The antigen-modified PS, for example, can
specifically recognize receptors abundantly expressed on tumor membranes.

Recently, Tang et al. designed and synthesized AIE-PSs with NIR-emission (735 nm)
that could target cell membranes [38]. They infused the cationation structure into TBMPEI,
triggering the cell-membrane-targeting characterization (Figure 2). The fluorescence signals
of DCFH incubated with TBMPEI significantly increased nearly 900 times in 80 s under
white light, indicating remarkable ROS generation ability. The species of ROS produced by
TBMPEI were shown to be a mixture of Type I and Type II. After being stained with TBMPEI,
multiple cells showed high Pearson’s correlation coefficients and high signal-to-noise ratio.
They also confirmed that TBMPEI had good cytotoxicity through the IC50 values of 4T1,
A549 and Hela cells under light excitation. The researchers found that the integrity of
the cell membrane was destroyed, and DNA degradation even occurred. TBMPEI was
shown to induce necroptosis of tumor cells by targeting cell membranes with the Annexin
V-FITC test and tumor section. The tumor in vivo had been inhibited significantly in the
experiment group treated with TBMPEI.
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Figure 2. Schematic illustration of TBMPEI with cell-membrane-targeting function. Reprinted with
permission from Ref. [41]. Copyright 2022 Royal Society of Chemistry.

Recently, Liu et al. developed a cancer immunotherapy that causes pyroptosis through
a membrane-targeted photosensitizer TBD-3C with AIE characteristics (Figure 3) [40]. In
addition to stimulating macrophage M1 polarization, it can cause maturation of dendritic
cells (DCs) and activate CD8 + cytotoxic T lymphocytes (CTLs) (Figure 3). The result of
flow cytometry showed that TBD-3C is capable of successful membrane anchoring. Flow
cytometry and DCFH-DA upon light irradiation (40 mW cm−2 for 10 min) were further
used to confirm the ROS generation ability of TBD-3C in pancreatic cancer. After irradiation,
TBD-3C induced swelling on KPC and panc02 cells, showing the typical morphological
features of pyroptosis. KPC and Panc02 cells treated with TBD-3C release lactate dehydro-
genase (LDH) as the typical signal of pyroptosis. This study developed a pyroptosis-based
photodynamic anti-tumor immunotherapy approach.

Yang et al. reported an amphiphilic perylene derivative AIE-PSs named AP (φ∆ = 0.22,
methylene blue as reference) which is capable of cell-membrane-targeting [44]. AP could
form nanoparticles by self-assembly in an aqueous solution and decompose into free
monomeric molecules after membrane anchoring (Figure 4). CLSM images of MCF-7 cells
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stained with AP were clearly eliminated. H&E staining and TUNEL images indicates that
apoptosis occurred in many tumor cells. In addition, in vivo biocompatibility tests revealed
that AP was almost nontoxic.
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Figure 4. Schematic illustration of AP-based turn-on NIR fluorescence imaging and PDT. Reprinted
with permission from Ref. [44]. Copyright 2021 American Chemical Society.

2.2. Lysosomal Targeting

As the main digestive site in cells, lysosomes degrade intruding toxic substances
using more than 60 hydrolytic enzymes, making them crucial in autophagy and secre-
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tion [28,34,45]. Lysosome-targeted strategies have also become instructive and meaningful
for PDT therapy. There are two main approaches: (1) Most examples target lysosomes
through the modification of lipophilic amines with the addition of morpholines and other
amine groups [46–60]. (2) A promotion of endocytosis can also transport PSs from the
endosome into the cell and capture them in the lysosome [61–70].

According to Niu et al., a BTZPP molecule with A-D-A structure was synthesized and
the PDT effect was investigated (Figure 5) [47]. It had been demonstrated in experiments
that BTZPP NPs are capable of high 1O2 quantum yield (72.3%, rose bengal as a reference),
NIR emission (635 nm) and good photostability under harsh conditions such as acidity.
Moreover, BTZPP with LysoTracker Green had a good Pearson coefficient (0.91). Apoptosis
was observed in Hela cells treated with BTZPP under light conditions. Based on MTT assay,
BTZPP NPs showed IC50 value. In addition, BTZPP NPs exhibit the characteristic of long-
time in vivo imaging, which is helpful for diagnosis. Meanwhile, the in vivo experiment
indicated BTZPP had no obvious systemic toxicity.
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permission from Ref. [47]. Copyright 2022 Elsevier Ltd.

Tang et al. synthesized a series of molecules with varying amounts of thiophene
spacers [70]. As the first single molecules to deliver all phototheranostics, TSSIs can
effectively deliver fluorescence and photoacoustic imaging, such as modalities including
PDT, photothermal imaging (PTI), photothermal therapy (PTT) and so on (Figure 6). The
TSSI NPs simultaneously exhibit NIR-II emission (1000 nm), high ROS generation (Type I),
and good photothermal conversion efficiency (46%). TSSIs have excellent ROS generation
ability, with the emission intensity of DCFH increased over 250-fold after irradiation. The
generation of Type I ROS made the PDT effect more effective under hypoxic conditions.
TSSI showed good lysosomal targeting ability, and the Pearson coefficient was up to 0.964.
Additionally, the authors demonstrated that TSSI NPs are ingested by cells using energy-
dependent endocytosis. H&E staining of tumor slices revealed that tumor cell apoptosis
occurred under NIR irradiation. Moreover, compared with the control group, tumor growth
was significantly inhibited until extinct with TSSI treatment. Meanwhile, no significant
systemic toxicity was discovered.

Similarly, the authors reported another example, TTT-4, with better photoacoustic-
guided imaging ability in 2021 (Figure 7) [59] and a better therapeutic effect on tumor
tissue with a powerful lysosomal targeting ability. TTT-4 also generates Type I ROS with
high generation ability. The fluorescence of DCFH increased 160-fold under white light
(22.1 mW/cm2). MTT assay indicated that the IC50 value of 4T1 cells incubated with TTT-4
was less than 1 µmol, which should be attributed to the excellent effects of PDT and PTT.
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Furthermore, H&E staining of tumor slices revealed the tumor tissue exhibited lots of
apoptotic cells.
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2.3. Mitochondrion Targeting

The mitochondria play vital roles in energy production and intracellular signal trans-
mission in cells [71]. The overexpression of ROS in mitochondria may cause oxidative stress,
which may disrupt the mitochondrial microenvironment and lead to apoptosis, autophagy
and necroptosis [72–74]. Consequently, the mitochondrion is a suitable organelle for PDT.
In order to realize mitochondrial localization, several strategies have been explored, includ-
ing: (1) introducing lipophilic cations structures that are intrinsically or modified [75–109];
and (2) using mitochondria-specific peptides [110–113].

Zheng et al. developed a series of positively charged AIEgens (Figure 8) [71]. DCQu is
capable of specific mitochondrial targeting with high 1O2 generation efficiency and NIR
emission. DCPy and DCQu had superior AIE properties compared to other compounds.
Following co-incubation of DCQu and H2DCF-DA with Hela cells, fluorescence imaging
experiments revealed that DCQu generates 1O2 efficiently (2.1-fold higher than DCPy)
during irradiation. DCQu exhibits high Pearson’s correlation coefficients of 0.95, indicating
superior specificity for mitochondrial staining. Furthermore, MTT assay showed that
DCQu had a good therapeutic effect on tumor tissues. Using hematoxylin and eosin (H&E)
analysis, it was evident that many cells with highly condensed nuclei were apoptotic.
Compared with the control group, the survival rate of mice treated with DCQu increased
significantly.
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Figure 8. (A) Structure of CPy, CQu, DCPy and DCQu; (B) CLSM images of HeLa cells stained
with CPy, CQu, DCPy and DCQu and various probes; (C) detection of 1O2 through ABDA; (D) cell
viability of HeLa cancer cells stained with DCQu; (E) H&E staining analysis of tumor tissues treated
with DCQu. Reprinted with permission from Ref. [75]. Copyright 2020 Royal Society of Chemistry.
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Tang et al. drew on a cationization strategy to synthesize DTPAN, DTPAPy, DTPANPF6
and DTPAPyPF6 (Figure 9) [78]. Using injected cationation with a strong ICT effect,
DTPANPF6 and DTPAPyPF6 are endowed with high Type I radical production capac-
ity and the ability to target mitochondria. The HPF intensity enhancement of DTPANPF6
and DTPAPyPF6 was 37.4- and 30.0-fold under irradiation (20 mW cm−2). Both DTPANPF6
and DTPAPyPF6 exhibited high Pearson coefficients for both Hela and MCF-7 cells. The
viability of HeLa cells suggests they both have therapeutic potential under hypoxic condi-
tions. H&E staining suggested prominent cell necroptosis occurred in tumor tissues. In
in vivo PDT experiments, tumor growth was significantly inhibited when treated with
DTPANPF6 and DTPAPyPF6.
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Figure 9. (A) Structure of DTPAN, DTPAPy, DTPANPF6 and DTPAPyPF6; (B) co-localization of
HeLa cells incubated with DTPANPF6 or DTPAPyPF6; (C) summary of different ROS generation of
DTPAN, DTPAPy, DTPANPF6 and DTPAPyPF6; (D) H&E staining of tumor tissues. Reprinted with
permission from Ref [78]. Copyright 2022 Elsevier Ltd.

Tang et al. reported another study on PDT treatment of mitochondrial targeting to
initiate autophagy (Figure 10) [90]. TACQ exhibits near-infrared emission (635 nm), high
photothermal conversion efficiency (55%), and high 1O2 generation capacity. The reduction
of absorbance for ABDA treated with TACP at 378 nm after irradiation for 60 s reached
90.3%. The quinoline cation of TACQ selectively accumulated in the mitochondria. The
Pearson coefficient of TACQ with Mito-Tracker Green (MTG) was as high as 0.95. In
comparison with MTG, TACQ provided better 3D mitochondrial images with higher lateral
resolution. TEM characterization of HeLa cells indicates that autophagosomes are formed
inducing mitophagy after TACQ treatment. The authors suggest that TACQ accelerates
mitochondrial instability and leads to apoptosis in cancer cells.

2.4. Lipid Droplet Targeting

Lipid droplets are lipid-rich organelles found mainly in adipose tissue. They are highly
dynamic organelles involved in intracellular lipid storage, metabolism, and membrane
transfer. Additionally, LDs are being pursued as a target of PDT [114–120]. The LD-targeted
photosensitizer should have a highly hydrophobic structure and be less polar than the
other fractions in the cell [121–123].



Biosensors 2022, 12, 1027 9 of 35Biosensors 2022, 12, x FOR PEER REVIEW 9 of 34 
 

 

Figure 10. Schematic illustration of chemical structures and multifunctional phototheranostic of 

TACQ. Reprinted with permission from Ref. [90]. Copyright 2021 American Chemical Society. 

2.4. Lipid Droplet Targeting 

Lipid droplets are lipid-rich organelles found mainly in adipose tissue. They are 

highly dynamic organelles involved in intracellular lipid storage, metabolism, and mem-

brane transfer. Additionally, LDs are being pursued as a target of PDT [114–120]. The LD-

targeted photosensitizer should have a highly hydrophobic structure and be less polar 

than the other fractions in the cell [121–123]. 

Dai et al. designed and synthesized an AIE-PSS (TTI) with strong lipophilic and near-

infrared emission (NIR) (Figure 11) [119]. The 1O2 quantum yield of TTI, was determined 

to be 85.16% using an equation. In addition, the calculated Clog p values of TTI and its 

derivatives ranged from 8.3 to 9.4, all within the range of 4.5 to 9.5 which could target LDs. 

The Pearson coefficient of TTI with BODIPY 493/503 was calculated to be 0.9491. Cell 

apoptosis was detected by Annexin V-FITC/PI co-staining. The results showed that TTI 

could effectively induce apoptosis of HepG2 cells under white light irradiation.  
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Dai et al. designed and synthesized an AIE-PSS (TTI) with strong lipophilic and near-
infrared emission (NIR) (Figure 11) [119]. The 1O2 quantum yield of TTI, was determined
to be 85.16% using an equation. In addition, the calculated Clog p values of TTI and its
derivatives ranged from 8.3 to 9.4, all within the range of 4.5 to 9.5 which could target
LDs. The Pearson coefficient of TTI with BODIPY 493/503 was calculated to be 0.9491. Cell
apoptosis was detected by Annexin V-FITC/PI co-staining. The results showed that TTI
could effectively induce apoptosis of HepG2 cells under white light irradiation.
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p values of TTI and its derivatives. Reprinted with permission from Ref. [119]. Copyright 2021
Elsevier Ltd.
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Tang et al. synthesized two AIE-PSs (PI and PTI) with near-infrared (NIR) emission
properties and the ability to specifically target lipid droplets (Figure 12) [124]. PTI was
obtained by introducing a thiophene ring into the PI skeleton to enhance the ISC process.
The authors confirmed that targeting lipid droplets using PI and PTI caused ferroptosis by
monitoring intracellular glutathione (GSH) and glutathione peroxidase 4 (GPX4) levels. Fur-
thermore, it is important to note that the authors used homologous MCF-7 cell membranes
to wrap the PLGA core, composed of PTI and PLGA, to achieve a homologous target-
ing ability. Besides, PTI has a distinguished ROS generation ability with the intensity of
H2DCFH-DA in PBS, increasing 120-fold upon white light irradiation (50 mW cm−2). The
synthesized MCFCNPs have a good inhibitory effect on tumors in vivo without obvious
toxic side effects.
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Similarly, Tang et al. reported another case in 2021 (Figure 13) [114]. They combined the
targeted LDs AIE-PSs (MeTIND-4) with DC cell membranes to achieve antigen functioning
as a biomimetic nano-photosensitizer (DC@AIEdots). While the exogenous cell membrane
stimulates the proliferation and activation of T cells, internal AIE photosensitizers target
tumor cells for PDT. The fluorescence intensity of DCFH treated with MeTIND-4 increased
striking by 600-fold after irradiation (60 mW cm−2). Therefore, PSs not only produces
sufficient ROS to eliminate tumor cells, but also promotes immunogenic cell death. In
addition, the efficiency of the tumor delivery of photosensitizers had been effectively
improved (1.6 times). DC@AIEdots can not only kill in situ tumors, but also suppress
distant tumors by activating the immune system against tumor growth. This work provides
a significant guide for the development of related fields.

In another example reported by Liu et al., they constructed NIR-emitting PSs (TPET-IS,
TPET-FU and TPEF-IS) with the function of targeting LDs [125]. Based on the theoretical
calculations, the Log p values for TPET-IS, TPET-FU and TPEF-IS were 9.39, 7.89 and
8.03, respectively, which were higher than BODIPY 493/503 (a commercial LD marker),
indicating a good LD-specific targeting. The Pearson’s correlation coefficients were 0.94,
0.96, and 0.97. It is worth noting that the survival rate of Hela cells at 50 µm concentration
of the three compounds was more than 90% under dark conditions.
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Figure 13. (A) Schematic illustration of chemical structures and in vivo photodynamic immunother-
apy of DC@ AIEdots; (B) colocalization experiments of 4T1 cells stained with MeTIND-4; (C) flow
cytometry analysis of tumor infiltrating CD8+ and CD4+ T cells; (D) concentration of proinflamma-
tory cytokines TNF-α and IFN-γ. * p < 0.05, ** p < 0.01. Reprinted with permission from Ref. [114].
Copyright 2021 WILEY-VCH.

2.5. Endoplasmic Reticulum Targeting

ROS-induced stress in the endoplasmic reticulum (ER) may lead to the activation of
downstream immune pathways, resulting in immunogenic death of cells [28]. PSs modified
by specific peptides or methyl sulfonamide usually have ER-targeting abilities, and some
ring metal complexes can also target the ER [126].

Based on the reported AIE material TBP, Su et al. grew, in sulfonic acid, functional
groups through a cation strategy to prepare TBP-SO3 to obtain the ability to target the
ER (Figure 14) [127]. TBP-SO3 exhibited high Type I ROS generation capability, while
the fluorescence spectra of DHR123 treated with TBP-SO3 increased nearly 800-fold after
irradiation (23.4 mW/cm2). In CLSM co-localization assay, the Pearson coefficient of HeLa
cells incubated with ER-Tracker Red (targeting ER) and TBP-SO3 was 0.93. It was found
that the cell survival rate was not significantly decreased at 30 µmol concentration without
light. The IC50 value of TBP-SO3 under white light irradiation was less than 5 µmol. The
above experiments showed that TBP-SO3 had a good application prospect in PDT.
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Figure 14. (A) Chemical structure of TBP and TBP-SO3; (B) CLSM images of HeLa cells stained with
TBP-SO3. Reprinted with permission from Ref. [127]. Copyright 2022 WILEY-VCH.

Additionally, Tang et al. reported two ER-targeting Type I AIE-PSs (α-TPA-PIO and
β-TPA-PIO) in 2020 (Figure 15) [128]. The results showed that β-TPA-PIO inhibited tumor
cell growth under hypoxic conditions. Images from colocalization experiments showed
good overlap between β-TPA-PIO and ER. The fluorescence signal of HPF containing α-
TPA-PIO or β-TPA-PIO increased 6- and 11-fold after white light irradiation (20 mW cm−2).
An in vitro study including co-localization, Western blot, and immunohistology analyses
found that PSC could lead to autophagy and apoptosis by inducing ER stress. Additionally,
in vivo experiments indicated that β-TPA-PIO was effective in eliminate solid tumors.
Researchers suggest that PIO induces immunogenic cell death, facilitating the combined
effects of PDT and immunotherapy.
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Figure 15. (A) Chemical structure of α-TPA-PIO and β-TPA-PIO; (B) CLSM images of HeLa cells
co-stained with β-TPA-PIO; (C) schematic illustration of PDT treatment treated with PIO-based PSs.
Reprinted with permission from Ref. [128]. Copyright 2020 Royal Society of Chemistry.
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2.6. Golgi Apparatus Targeting

It has been reported for the first time that photosensitizers with AIE characterizes can
target the Golgi apparatus (GA), as shown by Guo et al. (Figure 16) [129]. They synthesized
and found that TPE-PYT-CPS has ER-targeting capability via caveolin/raft endocytosis.
By utilizing structure–activity relationships, researchers believe cyano-induced rod-like
packing in molecules plays a key role in GA targeting. Pyrene units and cyano-pyridinium
salt moiety have been shown to reduce the energy gap (∆EST) between the lowest singlet
state (S1) and the lowest triplet state (T1), so as to promote the generation of ROS. The
release of ROS causes oxidative stress and damages the GA. Then, the structural protein
p115 is cleaved into N-terminal and C-terminal fragments, which are then transported into
the nucleus and up-regulate apoptosis proteins p53, triggering mitochondrial dysfunction
and leading to apoptosis. The decomposition rate (kd) of ABDA in an aqueous solution
of TPE-PYT-CPS, which represents ROS generation ability, was 32.85 nmol per minute.
Specifically, the intracellular 1O2 was detected using the CLSM method, and the image
showed obvious green fluorescence. A Pearson correlation coefficient of 0.98 indicated that
TPE-Pyt-CPS had an excellent GA targeting ability. After incubation with TPE-PYT-CPS
(0.2 µm), flow cytometry showed 56.7% apoptosis in HeLa cells. The present study provides
a ground-breaking report on a promising AIE-enhanced PDT strategy, whose design has
important implications for related GA-targeted photosensitizers.
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Figure 16. (A) Schematic illustration of TPE-PYT-CPS-induced GA stress and induced cell apoptosis
upon PDT; (B) CLSM of HeLa cells stained with TPE-PYT-CPS and different probes; (C) intracellular
1O2 detection by CLSM; (D) changes of tumor volume treated with different AIEgens. Reprinted
with permission from Ref. [129]. Copyright 2022 Nature Communication.
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2.7. Nucleus Targeting

As the “brain” in the cell, the nucleus is responsible for DNA storage, regulating cell
metabolism, intracellular signaling and regulating the cell cycle [28]. The nuclear pore is
located in the nuclear envelope and is approximately 40 nm in diameter, allowing some
water-soluble small molecules to freely traverse the nucleus. Macromolecules such as
proteins and RNA require energy and transporters to enter the nucleus. Generally, PSs
target the nucleus in two ways: (1) modification of short peptide chains with nuclear
targeting capability [60,61,130,131]; and (2) aptamer modification [132–135].

Recently, Mao et al. developed an AIE-PSs (MeTPAE) with nuclear targeting capability
based on a triphenylamine framework (Figure 17) [130]. MeTPAE can not only combine
with histone deacetylases (HDACs) to inhibit cell proliferation, but also be synergistically
treated with PDT. Additionally, MeTPAE not only has high ROS generation, including
Type I and Type II ROS (Φ∆ = 77.2% in water), but its excellent two-photon absorption
property also provides convenience for PDT. The fluorescence intensity of MeTPAE is fur-
ther enhanced after binding to nucleic acid through electrostatic interaction and hydrogen
bonding. Additionally, the Pearson coefficient of MeTPAE versus Hoechst 33342 was 0.85.
Moreover, MeTPAE binding to telomeric G4 DNA caused efficient destruction of nucleic
acids and inhibited telomerase activity in nucleic acid titration experiments.
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Figure 17. (A) Schematic illustration of chemical structure and mechanisms of MeTPAE with nucleic
acids and histone deacetylase; (B) colocalization images of MeTPAE and Hoechst 33342 in HeLa cells
during cell interphase or division; (C) cell viability of HeLa cell after being treated with MeTPAE.
Reprinted with permission from Ref. [130]. Copyright 2022 WILEY-VCH.
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Tang et al, developed the first AIE-PSs (TPE-4EP+) that can monitor its own pho-
todynamic therapy response in real time in situ (Figure 18). It has an extremely high
singlet oxygen production efficiency (ABDA decomposition rate of TPE-4EP+ reached
118.5 nmol min−1 under 4.2 mW/cm2 white light) and undergoes a process of transfer
from mitochondria to the nucleus during the induction of apoptosis. The authors believe
that this is because the charged TPE-4EP+ gradually dissociates from the binding to the
mitochondrial membrane due to the loss of mitochondrial membrane potential during
apoptosis. Moreover, due to the expansion of nuclear membrane permeability, it binds to
a large number of DNA in the nucleus through electrostatic adsorption and illuminates
the nucleus.
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colocalization experiments of HeLa Cells co-incubation with TPE-4EP+. Reprinted with permission
from Ref. [131]. Copyright 2019 American Chemical Society.
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2.8. Multiple Organelle Targeting

In terms of multi-organelle targeting, a single AIE-PS has multiple-organelle-targeting
capabilities by structural design. Another strategy is the use of different AIE-PSs targeting
various organelles to generate ROS and damage organelles. At the same drug concen-
tration, the therapeutic effect of drugs with the ability to target multiple organelles is
better than that of drugs only target one specific organelle. This can effectively improve
the therapeutic effect of PDT and reduce the use of drug concentration and the toxic side
effects. Therefore, the development of PSs with multiple targeting sites has attracted much
attention [41,136–141].

Tang et al. encapsulated TTFMN by introducing triphenylethylene units on the ba-
sis of TFMN [61]. To facilitate the PDT antitumor effect of TTFMN, a pH-activated TAT
peptide-modified amphiphilic polymer encapsulates TTFMN to transport PSs into the
tumor nucleus (Figure 19). Both TFMN and TTFMN emission wavelengths reached NIR
(651 nm). Moreover, these two compounds had great application potential as they all
produced ROS through Type I mechanisms (intensity of DCFH containing TTFMN was
enhanced by nearly 500-fold under 22.1 mW cm−2 white light irradiation in 5 min). Af-
ter entering the cell, TTFMN first enters the lysosome, where it is activated by acid and
then transported to the nucleus. With the growth of incubation time, some TTFMN-NPs
translocated to the perinuclear region. When the time reached 12 h, a large number of
TTFMN-NPs crossed the perinuclear region and even partially entered the nucleus. The
apoptosis of tumor cells induced by TTFMN-NPs was confirmed by terminal deoxynu-
cleotidyl transferase-mediated nick end labeling (TUNEL) staining. In all organs of mice
treated with TTFMN-NP, H&E-stained slices showed no significant organ damage.
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(B) intracellular tracking on 4T1 cells; (C) CLSM images of nuclear targeting delivery on 4T1 cells.
Reprinted with permission from Ref. [61]. Copyright 2021 WILEY-VCH.
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After that, the authors reported another modified AIE-PS for nuclear targeting (Fig-
ure 20) [60]. TPE-TTMN-TPA was synthesized by infusing a diphenylamine structure on
the basis of TTMN. Compared with the previous work, the TPE-TTMN-TPA nanoparticles
had more red-shifted NIR emissions, higher Type I ROS generation capacity (intensity of
DCFH enhanced nearly 600-fold after 10 min of 22.1 mW cm−2 white light irradiation) and
better nuclear-targeted delivery. T4-NPs composed of TPE-TTMN-TPA and SA-TAT also
needed to be activated by lysosomal acid. After incubation for 1 h, the Pearson coefficient
of T4-NPs and lysosomes reached 0.94, while it decreased to 0.62 after 6 h, proving its
effective escape from lysosomes. As shown in the image, more and more T4-NPs entered
the nucleus as time elapsed. Flow cytometry analysis showed that a large number of tumor
cells underwent apoptosis after photoexcitation, which proved the effectiveness of the
PDT effect.
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of nucleus-targeted T4-NPs, and (C) applications in PDT. Reprinted with permission from Ref. [60].
Copyright 2021 American Chemical Society.

Another example is the single AIE-PS (TBZPy, MTBZPy, TNZPy, MTNZPy) with
lysosomal and mitochondrial targeting capabilities reported by Tang et al., (Figure 21) [138].
By constructing strong intramolecular charge transfer (ICT), the electron-rich system can
facilitate the progress of Type I PDT by providing electrons. In the presence of TNZPy, they
used H2DCF-DA as an indicator to define the ROS generation where the intensity increased
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140-fold after white light irradiation (50 mW cm−2). The Pearson coefficients of TNZPy
for lysosomes and mitochondria were 0.81 and 0.88, respectively. With the development
of time, the Pearson coefficient of lysosomes gradually decreased, and the corresponding
mitochondrial gradually increased. This suggests that TNZPy can efficiently escape from
lysosomes and accumulate in mitochondria. The authors suggest that ROS generation
after photoexcitation synergistically destroys lysosomes and mitochondrial organelles to
induce apoptosis. The IC50 value of TNZPy for Hela cells was less than 6µmol under both
hypoxic and normoxic conditions, indicating potential for treating tumors under hypoxia
conditions. In the in vivo experiment, the body weight of tumor-bearing mice did not
change significantly, while the tumor growth was significantly inhibited.
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Figure 21. (A) Chemical structure of TBZPy, MTBZPy, TNZPy, MTNZPy; (B) CLSM images of HeLa
cells stained with TNZPy and Lysotracker green; (C) CLSM images of HeLa cells stained with TNZPy
and Mitotracker green. Reprinted with permission from Ref. [138]. Copyright 2020 WILEY-VCH.

In 2020, Tang et al. proposed a pioneering strategy of 1 + 1 + 1 > 3 (Figure 22) [41]. They
synthesized a series of different AIE-PSs (TFPy, TFVP and TPE-TFPy) but with the same
skeletal structure through subtle structural adjustments, and they were able to specifically
anchor to mitochondria, cell membranes, and lysosomes to damage organelles by producing
ROS. The 1O2 quantum yield of TFPy, TFVP and TPE-TFPy compared with rose bengal
were 25.2%, 18.3% and 63.0%, respectively, suggesting good ROS production. In situ,
TPE-TFPy aggregates easily form nanosized aggregates that endocytose into lysosomes
and specifically illuminate them. The positively charged pyridine moiety of TFPy may
bind to mitochondria, leading to mitochondrial targeting capability. In part, TFVP’s lower
membrane permeability coefficient may be due to its higher free-energy barrier, which
confers its specific aggregation properties on the cell membrane. Fluorescence imaging
results showed that TFPy, TFVP and TPE-TFPY showed strong targeting ability towards
mitochondria, cell membranes and lysosomes, respectively. Compared with the single
photosensitizer treatment, the combination of the three treatments significantly enhanced
the anti-tumor effect of PDT. Notably, the synergistic treatment of the three did not affect
their biocompatibility.
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Figure 22. (A) Schematic illustration using TFPy, TFVP and TPE-TFPy for achieving 1 + 1 + 1 > 3
synergistic enhanced PDT; (B) co-localization of these three AIEgens. Reprinted with permission
from Ref. [41]. Copyright 2020 WILEY-VCH.

3. Tumor-Targeting AIE-PDT

With the continuous research of anti-tumor drugs and the rapid development of tumor
biology, PSs are usually encapsulated into nanoparticles to enhance their absorption in
the biological environment and obtain better targeting ability [142,143]. For nanoparticles
(NPs), tumor-targeting strategies are divided into active-targeting and passive-targeting
strategies [144–146]. Nanomedicine can extravasate and remained in the pathological
site mainly based on the enhanced permeability and retention (EPR) effect, which can
be classified as passive targeting [147,148]. However, the EPR effect can only deliver
very limited amounts of PS to tumor tissues and its efficiency has been challenged in
recent years. In this regard, some active targeting strategies have been proposed to help
enhance tumor-targeting ability, such as the modification of some ligands that specifically
bind to tumor-overexpressed receptors, and encapsulating PSs into some engineered cell
membranes as camouflage for tumor targeting, etc.

3.1. Passive Targeting

Generally, passive targeting is based on the EPR effect, optimizing the size or surface
properties of nanoparticles [143,149]. Nano-systems (20–200 nm) can selectively pene-
trate tumor stroma via newly formed leaky vessels [150–152]. Compared with free drug
molecules, NPs are preferentially accumulated at tumor sites through the EPR effect.
There are two main ways to enhance the EPR effect: (1) A greater penetration of NPs
through the extracellular matrix (ECM) could improve the EPR effect [144,153,154]. Inject-
ing hyaluronidase (HAase) to decompose the ECM structure would be an efficient method.
However, there is no AIE-PS based on this approach that has been reported. (2) Since
albumin has a long circulation half-life and continuous uptake in tumor tissues, it can
help enhance the EPR effect. (3) Using a carrier such as PEG-encapsulating drugs to form
nanoparticles. There are several AIE-PSs with an association with albumin that have been
reported [155–158].

Recently, Tang et al. first proposed a mitochondria-targeting two-photon PSs (TPABP-
Ir) with AIE properties based on an Ir(III) structure to generate Type I and Type II ROS
(Figure 23) [156]. TPABP-Ir was coated with BSA to form TPABP-Ir@BSA nanoparticles
(Ir-NPs). Colocalization imaging showed that the Pearson coefficient of Ir-NPs with mi-
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tochondria reached 0.86, indicating specific targeting of mitochondria. They also used
DCFH as an indicator to detect total ROS production, and the fluorescence of the group
treated with TPABP-Ir was 10 times higher than RB, and 17 times higher than Ce6. In
addition, a significant increase in ROS production was observed in MCF-7 cells treated with
Ir-NPs compared with the control cells, indicating a good ROS generation capacity. For
in vivo experiments, the Annexin V-FITC and MTT assays demonstrated a good inhibitory
ability of Ir-NPs by inducing apoptosis. Similar to in vitro experiments, Ir-NPs significantly
inhibited tumor growth in tumor-bearing mice without obvious systemic toxicity.
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Figure 23. Schematic illustration of TPABP-Ir@BSA NPs for PDT treatment. Reprinted with permis-
sion from Ref. [156]. Copyright 2022 Elsevier Ltd.

In 2021, Liu et al. [159] reported a new coordination polymer nanoparticle (CPN)
which could achieve synchronous radiotherapy (RT) and radiodynamic therapy (RDT) un-
der X-ray irradiation (Figure 24). They synthesized Hf-AIE-PEG-DBCO nanoparticles with
a significant tumor inhibition effect by encapsulating TPEDC-DAC (AIE-PSs) using PEG
modified with DBCO (dibenzocyclooctyne). Bioorthogonal click chemistry was performed
by adding the metabolic precursor Ac4ManNAz (used to modify azide groups on cell
membrane glycans) and DBCO-modified PEG to enhance the accumulation and prolong
the retention of CPNs in tumors. Compared with the control group, Hf-AIE-PEG-DBCO ex-
hibited a more obvious increase in fluorescence of DCFH-DA pretreated with Ac4ManNAz
under X-ray irradiation, which is consistent with better tumor inhibition in vitro. Hf-
AIE-PEG-DBCO showed a strong inhibitory effect on tumor growth in vivo as well as
in vitro. H&E staining of tumor tissues showed significant tumor death after co-incubation
with Ac4ManNAz and HF-AIE-PEG-DBCO under light. In this study, the combination
of radiotherapy and RDT had a significant killing effect following intravenous injection
of CPNs, due to the high penetration of X-rays and the DBCO-mediated bioorthogonal
click chemistry.
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Figure 24. (A) Schematic illustration of fabrication of Hf-AIE-PEG; (B) H&E staining analysis of
tumor tissues treated with various treatments. Reprinted with permission from Ref. [159]. Copyright
2021 WILEY-VCH.

Liu et al. also developed another example of PEG-modified nanoparticles of variable
size [160]. NPs with a size of 100–200 nm had a better tumor enrichment effect through the
EPR effect, while smaller NPs (<50 nm) had minimal adhesion to the extravasation site of tu-
mor blood vessels and extracellular matrix, which favored intratumoral penetration. They
developed Dox-PEG-PS@MIL-100 NPs for the pH-response of photosensitization and the
nanoparticle size-reducing process (Figure 25). H2O2 could break down the tumor intake of
Dox-PEG-PS@MIL-100 NPs and release TPABTDCT (AIE-PSs) for the activatable PDT pro-
cess. Meanwhile, Dox-PEG can self-assemble into ultra-small nanoparticles (DOX NPs) that
can penetrate deep into tumors. After that, Dox was released into the nucleus to damage
DNA under a low-pH environment. It was proved that TPABTDCT has better 1O2 gen-
eration efficiency than Ce6. This work achieved advanced photodynamic–chemotherapy
combination therapy.
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Figure 25. Schematic illustration of Dox-PEG-PS@MIL-100 NPs for advanced photodynamic–
chemotherapy combination therapy. Reprinted with permission from Ref. [160]. Copyright 2021
WILEY-VCH.

3.2. Active Targeting

In recent years, scientists have become aware that EPR effects vary over time during
tumor development, and that they are highly heterogeneous [145,161–164]. To enhance
specificity, active targeting is increasingly preferred. Active targeting is primarily performed
by modifying bioligands on the surface of NPs that have the ability to target specific
receptors on tumor cells [149,165]. Current active targeting strategies mainly target growth
factor receptors overexpressed in cancers of different tissue origins, such as folate (FA) [166],
transferrin (Tf) receptor [167], epidermal growth factor receptor (EGFR) [168,169] and so
on [170–172]. Active-targeting strategies for PDT are well-summarized in other review
papers [172].

As tumors require more biotin than normal tissues, linking biotin units can be used
to target tumors through overexpressed biotin receptors. In a recent work, Chen et al.
introduced nitrobenzoic acid (TTVBA) and biotin units to synthesize AIE-PSs (TTVBA)
that avoided fluorescence quenching caused by PET [173]. Moreover, the fluorescence
enhancement was the highest that had ever been reported during the aggregation pro-
cess. The colocalization experiment of HeLa cells demonstrates that Biotin-TTVBA was
accumulated in the cytoplasm with a bright red color. Besides, Biotin-TTVBA also had
high photobleaching resistance after 350 s irradiation. Additionally, the IC50 values for
Biotin-TTVBA were 2.5, 2.5 and 10 µM for HeLa, MCF-7, and L-O2 cells, which means
that Biotin-TTVBA could selectively kill tumor cells with a high expression of the biotin
receptor.

Another example is using EGFR to achieve the ability to target tumors. DCTBT
is a newly developed photosensitizer with AIE characteristics, which enables NIR-II
(1000 nm) fluorescence imaging, Type-I PDT and photothermal therapy (PTT), as reported
by Tang et al. (Figure 26) [174]. Amphiphilic polymers modified with an EGFR-targeting
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peptide were doped to encapsulate DCTBT. The ROS species results showed that the
DCTBT produced only •OH and O2

•− through the Type I pathway. Besides, the DCTBT NP
has comparable ROS production efficiency with rose bengal. The photothermal efficiency
experiment showed that DCTBT NPs had better photothermal performance (59.6%) than
CTBT NPs. In vivo testing of DCTBT NPs on PANC-1 tumors revealed that they remained
fluorescent 48 h after injection. It was noted that the Target-NPs (with EGFR-targeting
peptide) had a better anti-cancer effect than the non-Target-NPs (without EGFR-targeting
peptide). The combination of Type I PDT-PTT and DCTBT significantly inhibited the
growth of PANC-1 tumors in vitro and in vivo. This approach shows great promise for
overcoming tumors in hypoxic environments.
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In recent years, a series of new active-targeting methods have emerged, including
targeting tumor tissues under hypoxic conditions by the anaerobic nature of some bacte-
ria [175,176], such as Escherichia coli, or by using cell membrane camouflage or liposomes
to target tumors [177–181]. In addition, using red blood cell membranes to disguise NPs can
deceive the immune system and reduce the immune response to NPs. The use of stimuli-
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responsive PDT therapy such as ROS-responsive, pH-responsive, hypoxia-responsive,
redox-responsive, and so on, is also a major research topic [182–185]. Simply put, a tumor-
targeting strategy can effectively reduce the toxic and side effects of photosensitizers and
improve the killing ability of tumors, especially hypoxic tumors.

Under hypoxic conditions, Tang developed a novel approach for addressing the
problem of drug resistance by combining bacteria with the Type I PDT system of the
TBP-2 (Figure 27) [186]. A PDT intervention of this kind has never been reported before,
which has shown to significantly impair orthotopic colon cancer growth and overcome
pre-treatment toxicity. PDT-mediated cancer treatment can be delivered effectively to
hypoxic tumors, because TBP-2 contains two cationic structures enabling E. coli to absorb it
into the periplasmic space. The authors found that AE had brighter pictures and mainly
concentrated near the cell membrane. The co-localization experiment involving AE and a
hypoxic area proved that AE appeared in a hypoxic environment. Similarly, another work
by Tang et al. using TBPP with similar structure and uropathogenic Escherichia coli (UPEC)
to induce urinary tract infection (UTI) also had the function of targeting hypoxic tumors
and had a good effect on the treatment of bladder cancer [187].
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with TBP-2 for photodynamic therapy. Reprinted with permission from Ref. [186]. Copyright 2021
WILEY-VCH.
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Using PLT-derived vesicles (PV) from mouse blood samples, Tang et al. synthe-
sized a biomimetic nano-enzyme (PMD) by wrapping DCPy and MnO2 nanoparticles
(Figure 28) [188]. In the co-localization experiment, CT26 cell imaging showed that PMD
was more closely related to cells. Subsequently, the authors found that CT26 cells treated
with PMD had stronger fluorescence and higher Mn content at the same concentration com-
pared with erythrocyte-membrane-coated MD (RMD). Compared with control, the group
containing PMD had better ROS production (nearly 15-fold). Hypoxia-inducible-factor
(HIF-1α) staining treated with PMD found that there was almost no HIF-1α. MTT assay
of CT26 cells showed that PMD had a good and similar IC50 value regardless of hypoxia
or normaxia. This indicates that it has a good inhibitory effect on tumor under hypoxic
condition. A superior tumor-targeting effect of PMD particles was demonstrated by intra-
venous injection into CT26 tumor-bearing mice of RMD or PMD, and PMD accumulation
was significantly higher than that of RMD. This work proved that molecules with PLT
derived vesicles have better PDT efficacy than nanoparticles disguised by red blood cells
alone, which provides guidance for the future development of related work.
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Reprinted with permission from Ref. [188]. Copyright 2022 American Chemical Society.
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4. Conclusions and Perspectives

As a new promising anti-tumor method, PDT has attracted wide attention. This
review introduces organelle-targeting and tumor-targeting PSs based on AIE strategies
from the past three years. We introduced the chemical structures of various PSs and their
functions as well as the mechanisms of PSs to treat tumor cells. Additionally, we classified
their targeting mechanisms and principles. Although the emergence of AIE strategies has
solved the problem of poor efficacy of PDT in vivo to a certain extent, PDT still faces many
problems at present [36,189]. However, the main challenges of PDT are not only limited
to light intensity in tissues, tumor hypoxia, and low accumulation efficiency of PSs in
tumors [190–192]. Future efforts should be devoted to the following aspects: (1) Developing
AIE-based PSs targeting the less-reported organelles, such as the GA or nucleus, is worthy of
investigation; (2) developing novel nanoparticle carries and targeting conjugates to modify
AIE-PSs and improve their water solubility, tumor targeting and delivery efficiency [193];
(3) developing AIEgen-based PSs with NIR I or NIR II absorption and Type I PDT abilities
to overcome the limited penetration depth and the drug resistance of tumors under hypoxia;
(4) the construction of AIE-PSs with both tumor-targeting and organelle-targeting abilities
to optimize the therapeutic performance; (5) smart AIEgen-based PSs which show stimuli-
responsive abilities and combined therapeutic effects such as PDT, PTT, immunotherapy
and sonodynamic therapy [193] are also highly desirable; (6) some tumor cells are resistant
to one certain cell death mode, and therefore developing AIE-PSs that can cause multiple
cell death pathways are appealing for the effective inhibition of these tumor cells.
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