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Abstract: A new N,O-rich covalent organic framework (COFDHNDA-BTH) was synthesized by an
amine-aldehyde condensation reaction between 2,6-dialdehyde-1,5-dihydroxynaphthalene (DHNDA)
and 1,3,5-phenyltriformylhydrazine (BTH) for carbaryl detection. The free NH, OH, and C=O
groups of COFDHNDA-BTH not only covalently couples with acetylcholinesterase (AChE) into the
pores of COFDHNDA-BTH, but also greatly improves the catalytic activity of AChE in the constrained
environment of COFDHNDA-BTH’s pore. Under the catalysis of AChE, the acetylthiocholine (ATCl) was
decomposed into positively charged thiocholine (TCl), which was captured on the COFDHNDA-BTH

modified electrode. The positive charges of TCl can attract anionic probe [Fe(CN)6]3−/4− on the
COFDHNDA-BTH-modified electrode to show a good oxidation peak at 0.25 V (versus a saturated
calomel electrode). The carbaryl detection can inhibit the activity of AChE, resulting in the decrease
in the oxidation peak. Therefore, a turn-off electrochemical carbaryl biosensor based on a flexible
carbon paper electrode loaded with COFDHNDA-BTH and AChE was constructed using the oxidation
peak of an anionic probe [Fe(CN)6]3−/4− as the detection signal. The detection limit was 0.16 µM
(S/N = 3), and the linear range was 0.48~35.0 µM. The sensor has good selectivity, repeatability, and
stability, and has a good application prospect in pesticide detection.

Keywords: acetylcholinesterase; covalent organic framework; carbaryl; electrochemical biosensor
[Fe(CN)6]3−/4−; paper-based electrode

1. Introduction

Pesticide residues and their degradation products are the main pollutants that pose
great potential risks to the ecosystem and human health. They can destroy the ecological
balance in an ecosystem and the main systems of the human body, such as the immune,
nerve, and endocrine systems, and cause various diseases [1–4]. Carbaryl is one of the
most common carbamate insecticides, named 1-naphthalene carbamate. Carbaryl enters
the ecological food chain and endangers human health due to the biological accumulation
and soil accumulation of carbaryl [5–8]. Moreover, carbaryl interferes with the hydrolysis
of neurotransmitter acetylcholine (ATCl) and affects the normal secretion of the neurotrans-
mitter. Therefore, it is very important to rapidly, reliably, and quantitatively detect carbaryl.
At present, the commonly used methods of detecting carbaryl include chromatography [9],
spectrophotometry [10], and immunoassay [11]. These methods are sensitive and reliable.
However, their instruments are expensive, the sample pretreatments are cumbersome and
time-consuming, and they require a trained person for operation and complex sample
pretreatment. Electrochemical sensors are rapid, simple, sensitive, reliable, and low cost,
which make up for the shortcomings of the above technologies and meet the requirements
of portable detection [12–20]. Electrochemical sensors have broad development space and
application prospects in the rapid detection of pesticide residues [21,22].

At present, electrochemical biosensors based on acetylcholinesterase (AChE) have
attracted extensive attention in the detection of carbamate pesticides such as carbaryl
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because of their advantages in terms of nontoxicity, simplicity, high specificity, and high
sensitivity [23,24]. For example, Lara et al. constructed an electrochemical biosensor based
on a polypyrrole nanocomposite loaded with AChE to detect carbaryl [25]. The detection
mechanism is carbamate pesticides binding to AChE [26,27], resulting in the esterification
of the hydroxyl groups of the serine residues at the enzyme active site by carbamate to
inactivate AChE. Afterward, the production of thiocholine (TCl), the electroactive product
produced by its catalytic hydrolysis of ATCl, is reduced and the response current is reduced
to achieve the detection of pesticides [28–30]. Yang et al. reported the performance analysis
of a biosensor based on AChE. The bioactivity of the immobilized AChE and the direct
electron transfer rate between the enzyme and the electrode affect the performance of the
biosensor. These analyses provided guidance for the development of a new AChE-based
biosensor for detecting organophosphorus pesticides [31]. Despite the AChE electrochemi-
cal biosensors having bright prospects, some concerns cannot be ignored. For example, it
is challenging to maintain or improve the catalytic activity of AChE fixed to an electrode
surface. In addition, the oxidation overpotential of TCl is reduced by the catalytic reduction
of nanomaterial. For example, AChE/Prussian blue (PB)–chitosan (CHIT) showed good
catalytic performance, which greatly reduced the oxidation potential of TCl generated by
hydrolysis from 0.68 to 0.32 V [32–34]. However, the oxidation potential of 0.32 V still
causes significant interference. Therefore, it is necessary to develop a portable electrode
and suitable support material to fix the enzyme and to reduce the detection potential for
portable and selective detection [35–37].

Covalent organic frameworks (COFs) are organic porous crystalline materials con-
structed by self-assembly of various building motifs [38,39]. The COFs have good biocom-
patibility and chemical stability, high specific surface area, and high porosity, and are easy
to modify and functionalize. The highly ordered π–π conjugate system and independent
open regular channels are very conducive to electron and mass transfer [40]. Due to the
variety of methods for synthesizing COFs and the variety of monomers with different func-
tional groups, their structures and properties are also abundant and varied, which result
in the extensive application of COFs in various fields [41–46]. The abundant functional
groups, good biocompatibility, and adjustable hole make the COFs particularly suitable for
attaching biomolecules to build biosensors, which have been proven by some successful
works [47–49].

In this work, 1,3,5-phenyltrimethylhydrazine (BTH) and 2,6-diuronic-1,5-dihydroxyn
aphthalene (DHNDA) were used to synthesize COFDHNDA-BTH rich in N and O through
the amine–aldehyde condensation reaction. Then, an electrochemical biosensor for the
detection of carbaryl was prepared by loading AChE. The free NH, OH, and C=O groups
on COFDHNDA-BTH can covalently couple with AChE. Moreover, it has excellent biocom-
patibility. During detection, it can also interact with TCl through hydrogen bonding, so
as to better capture the detection signal. The biosensor has a low detection limit and
wide linear range. This method has a low detection potential (0.25 V versus saturated
calomel electrode) and good reproducibility, stability and anti-interference ability. This
good analytical performance proves that this strategy paves a new way for the design of
portable AChE biosensors.

2. Experimental Materials and Methods
2.1. Materials and Reagents

BTH and DHNDA were purchased from Jilin Scientific Research Technology, Co.,
Ltd. (Changchun, China). N,N-dimethylacetamide (DMF), trimethylbenzene, acetone,
dichloromethane, anhydrous ethanol, acetic acid (AcOH), AChE, ATCl, K3Fe[(CN)6]3−/4−,
Na2HPO4, NaH2PO4, ascorbic acid (AA), glucose, KCl, NaNO3, CuCl2, HgSO4, CdCl2, and
PbCl2 were purchased from Inokai Co., Ltd. (Beijing, China). Carbaryl was purchased from
Jiangxi Mackenech Technology Co., Ltd. (Nanchang, China). All solutions are prepared
using ultra-pure water purified by a Millipore-Q purification system (18.2 MΩ cm−1).
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Flexible carbon papers were purchased from Beichuan Co., Ltd. (Shanghai, China). White
nail polish was purchased from Clio Co., Ltd. (Guangzhou, China).

2.2. Instruments

Transmission electron microscope (TEM) images were obtained with a JEM-2010 (HR)
(Japan Electronics Co., Ltd., Tokyo, Japan). Scanning electron microscope (SEM) images
were obtained with a HITACHI S-3400N SEM at an acceleration voltage of 15 KV (Hitachi
Limited, Tokyo, Japan). Fourier transform infrared spectroscopy (FTIR) analysis was per-
formed using a Perkin-Elmer Spectro100 from Perkin-Elmer Corporation (Perkin-Elmer,
Waltham, MA, USA). Brunauer–Emmett–Teller (BET) surface areas and pore size distribu-
tions were measured using N2 adsorption/desorption isotherms, which were tested with
an Autosorb-iQ under 77 K (Quantachrome, Boynton Beach, FL, USA). X-ray diffraction
(XRD) analysis was performed on a BRUCKER D8 ADVANCE X-ray powder diffractometer
with scanning steps of 3◦/min in a scanning range of 0–50◦ (Rigaku Corporation, Tokyo,
Japan). All electrochemical characterization was performed with a CHI 760D (Shanghai,
China).

2.3. Preparation of COFDHNDA-BTH

We dissolved 50 mg (0.2 mM) of BTH and 42 mg (0.3 mM) of DHNDA in 5 mL of
mesitylene by ultrasound. Then, the solution was transferred to a reaction kettle with 3 mL
of 6 M AcOH, and the solution was heated to 120 ◦C for 72 h. The obtained solid powder
was washed with DMF, acetone, methylene chloride, and anhydrous ethanol, separately.
Finally, the powder was dried in the oven at 60 ◦C to obtain COFDHNDA-BTH. The prepared
procedures are shown in Scheme 1.
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Scheme 1. Schematic diagram of preparation process of COFDHNDA-BTH and detection principle of
electrochemical sensor based on AChE/COFDHNDA-BTH/GCE.

2.4. Preparation of AChE/COFDHNDA-BTH/Glassy Carbon Electrode (GCE)

Firstly, the surface of GCE was polished with Al2O3 powder and washed with ethanol
and ultra-pure water until the surface of GCE was smooth and clean. Then, 2 mg was
dispersed into 1 mL of ultra-pure water to obtain 2 mg/mL of aqueous suspension.
Next, 10 µL of 2 mg/mL COFDHNDA-BTH was dropped on the polished GCE surface.
After 5 h, the COFDHNDA-BTH/GCE was rinsed with ultra-pure water. After that, 4 µL of
0.2 mg/mL AChE was dropped on the surface of the COFDHNDA-BTH/GCE. It was stored
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in a refrigerator at 4 ◦C. Finally, the electrode was rinsed with ultra-pure water to obtain
AChE/COFDHNDA-BTH/GCE. The subsequent detection mechanism is shown in Scheme 1.

2.5. Preparation of Paper-Based Electrode

To prepare a portable AChE biosensor, a portable paper-based electrode was con-
structed as follows: First, the commercial carbon paper was cut into three long strips 3 mm
in width and 3 cm in length. Next, both sides of a piece of white cardboard, 2 cm in width
and 3 cm in length, were painted with white nail polish. Next, the three long carbon paper
strips were pasted onto one side of the white cardboard in intervals of about 0.5 cm. The
middle sections of the long carbon paper strips (about one-third of the long strips) were
painted with white nail polish. The bottom section of long carbon paper strips was peeled
off with acrylic transparent tape to obtain a new surface with graphene-like foam as a
working electrode (WE), reference electrode (RE), and counter electrode (CE). The active
areas of WE, RE, and CE were all 1 × 3 mm. The prepared procedures and a picture of the
obtained paper-based electrode are shown in Scheme 2.
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electrode.

2.6. Preparation of AChE/COFDHNDA-BTH/Portable Paper-Based Electrode

The preparation procedures of the AChE/COFDHNDA-BTH/portable paper-based elec-
trode were similar to that of AChE/COFDHNDA-BTH/GCE. Briefly, 10 µL of 2 mg/mL
COFDHNDA-BTH was dropped on the surface of WE on portable paper-based electrode.
Then, 4 µL of 0.2 mg/mL AChE was dropped on the COFDHNDA-BTH/portable paper-based
electrode to obtain an AChE/COFDHNDA-BTH/portable paper-based electrode.

3. Results and Discussion
3.1. Characterization of COFDHNDA-BTH

The SEM (Figure 1a) and TEM (Figure 1b) images showed that the as-prepared
COFDHNDA-BTH presented a nanoflower-like morphology that was composited of many
two-dimensional (2D) nanoribbons with good flexibility based on π–π stacking. As shown
in Scheme 1, these nanoribbons were formed by the amine–aldehyde condensation reaction
between BTH and DHNDA. With good flexibility, the thickness of nearly a single molecule,
as well as free NH, OH, and C=O groups, the COFDHNDA-BTH can better load enzymes
and assemble on the electrode surface, which is good for constructing biosensors based
on COFDHNDA-BTH. The FTIR spectrum (Figure 1c) showed the O=C-H peaks of DHNDA
at 2744 and 2836 cm−1, the C=O peak at 1692 cm−1 (green curve), and N-H peaks of
BTH at 3058 and 3156 cm−1 (red curve). In the FTIR spectrum of COFDHNDA-BTH (black
curve), a peak of -C=N- appeared at 1641 cm−1, indicating the successful occurrence of an
amine–aldehyde condensation reaction, which further proved the successful synthesis of
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COFDHNDA-BTH. The XRD patterns of COFDHNDA-BTH showed many peaks at 5.95◦, 12.27◦,
19.67◦, and 27.06◦, corresponding to (200), (121), (111), and (102) crystal planes, respectively,
indicating that the as-prepared COFDHNDA-BTH had good crystallinity (Figure 1d). The AA
and AB model obtained by simulation were compared with the experimental result, in
which the XRD pattern agreed with the simulated AA stacking pattern (Figure S1, Sup-
porting Information) and showed the layered structure with a layer distance of 3.58 Å
(Figures S2 and S3, Supporting Information). The N2 adsorption/desorption isotherm of
COFDHNDA-BTH showed that the BET specific surface area was 46.91 m2 g−1 (Figure S4,
Supporting Information). The aperture distribution of COFDHNDA-BTH showed that the
aperture was 1.379 nm (Figure S5, Supporting Information).
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3.2. Characterization of Commercial Carbon Paper

Figure 2a,b show the morphology and structure of commercial carbon paper with high
and low magnification, respectively. The figures reveal a rough surface with graphene-like
foam, which was more conducive to loading active materials and to transferring electrons
and electrolyte ions.
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3.3. Electrochemical Behaviors of AChE/COFDHNDA-BTH/GCE

Figure 3 shows the CVs (Figure 3a) and EIS curves (Figure 3b) of GCE (curve a),
COFDHNDA-BTH/GCE (curve b) and AChE/COFDHNDA-BTH/GCE (curve c) in 0.1 M KCI
solution with 5.0 mM [Fe(CN)6]3−/4−. As shown in Figure 3a, a pair of redox peaks of
[Fe(CN)6]3−/4− with superior reversibility appeared on the bare GCE. After the
COFDHNDA-BTH was modified on the GCE, the peak current of [Fe(CN)6]3−/4− signif-
icantly decreased, while the peak-to-peak potential difference increased. This might
have occurred because the COFDHNDA-BTH material hindered the transmission of elec-
trons. After the AChE was further loaded, the peak current of the [Fe(CN)6]3−/4− further
decreased, and the peak-to-peak potential difference became wider, because the electri-
cal conductivity of the modified electrode was further reduced by the enzyme loading,
which also indirectly proved the successful fixation of AChE on COFDHNDA-BTH/GCE.
The atom force microscopy image also proved that the enzyme was modified on the COF
(Figure S6, Supporting Information). The charge transfer resistance (Rct) values of bare
GCE, COFDHNDA-BTH/GCE, and AChE/ COFDHNDA-BTH/GCE were 40, 1293, and 2744 Ω,
respectively (the error values of the resistance values were 6.22%, 3.9%, and 6.56%, re-
spectively) (Figure 3b). The result was consistent with that of CVs, further indicating the
successful preparation of the AChE/COFDHNDA-BTH/GCE.
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3.4. Electrochemical Detection of Carbaryl Based on AChE/COFDHNDA-BTH/GCE

Firstly, the loading amount of COFDHNDA-BTH on the AChE/COFDHNDA-BTH/GCE
was optimized by dropping different volumes of 2 mg/mL COFDHNDA-BTH onto the
GCE. As shown in Figure 4a, with the amount of COFDHNDA-BTH dropped onto the
COFDHNDA-BTH increased, its peak current also increased, because the more COFDHNDA-BTH
was present, the more active loading sites were used to bind AChE. The maximum volume
value was 7.5 µL. When the amount of COFDHNDA-BTH further increased, the peak current
gradually decreased because too much COFDHNDA-BTH was loaded on the electrode, which
led to an accumulation on the electrode surface, which hindered the conductivity of the
electrode. As shown in Figure 4b, with the increase in soaking time, the inhibition rate
gradually increased and the inhibition rate reached the maximum value after 12 min, and
then remained stable. Therefore, 12 min was selected as the final incubation time. In the
experiment, the dosage of AChE and ATCl and their reaction times affected the detection
performance. Therefore, the loaded amount of AChE on COFDHNDA-BTH/GCE was also
optimized, as shown in Figure 4c. When the amount of AChE was less than 0.6 mM, the
corresponding peak current density increased with the increase in AChE. The amount of
AChE was greater than 0.6 mM, and the peak current density gradually decreased because
excess AChE accumulated on the COFDHNDA-BTH/GCE surface to block electron transport.
Therefore, 0.6 mM AChE was selected as the final drop amount. As shown in Figure 4d,
the content of TCl was related to the amount of ATCl and, accordingly, the amount of ATCl
also needs to be optimized. When the amount of ATCl was less than 0.6 mM, the current
density increased with the increase in ATCl. When the amount of ATCl exceeded 0.6 mM,
the current density slightly decreased. Therefore, 0.6 mM ATCl was selected as the final
detection concentration.
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Figure 4. (a) Effect of COFDHNDA-BTH dosage on AChE/COFDHNDA-BTH/GCE on peak current
density of 5.0 mM [Fe(CN)6]3−/4−. (b) Plot of inhibition rate versus incubation time. (c) Plot of peak
current density versus AChE concentration. (d) Relationship between concentration of ATCl and
peak current density in 0.1 M KCl with 5.0 mM [Fe(CN)6]3−/4−.

Under optimized experimental conditions, cyclic voltammetry was used to study
the detection effect of AChE/COFDHNDA-BTH/GCE in a 0.1 M KCl solution containing
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5.0 mM [Fe(CN)6]3−/4− for different concentrations of carbaryl. As shown in Figure 5a, the
peak current density gradually decreased with the increase in carbaryl concentration. This
occurred because the higher the concentration of carbaryl, the more obvious the inhibition
effect on AChE activity, resulting in a decrease in the amount of TCl produced; thus, the
content of [Fe(CN)6]3−/4− attracted on the electrode surface also decreased. Figure 5b
shows the linear relationship between the peak current density and the carbaryl concen-
tration. The detection limit of the biosensor was 0.23 µM (S/N = 3), and the linear range
was 0.69–35 µM. As shown in Figure 5c, with the increase in carbaryl concentration, due to
the inhibiting effect of carbaryl on AChE, less TCl was produced, and the corresponding
impedance value was larger. Figure 5d shows the linear fitting diagram of the correspond-
ing impedance value and carbaryl concentration. The corresponding detection limit was
0.13 µM (S/N = 3), and the linear range was 0.39–35 µM. Finally, we compared the per-
formance of our biosensor with that of other biosensors (Table 1), and the results showed
that our biosensor had a wider linear range and better sensitivity. Its good performance
might be ascribed to the good catalytic activity of AChE in the constrained environment of
COFDHNDA-BTH’s pore.
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Finally, the current response of the AChE/COFDHNDA-BTH/portable paper-based elec-
trode was measured with the accumulation of carbaryl concentration. Figure 6a shows the
results of the peak current response increase with the increase in carbaryl concentration,
and the linear range was 0.48~35 µM. Figure 6b shows the corresponding linear relation-
ship between peak current density and carbaryl concentration. The linear equation was
jp = –0.031c +3.342 (R2 = 0.98), where jp and c are peak current density and carbaryl con-
centration, respectively. The detection limit of the paper-based electrochemical biosensor
was 0.16 µM (S/N = 3). The results showed that the AChE/COFDHNDA-BTH/portable
paper-based electrode biosensor has good performance. In general, compared with the
three-electrode system composed of glassy carbon electrodes, the experimental results of
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paper-based electrodes were similar, which proves that the preparation of paper-based
electrodes was successful.

Table 1. The comparison of AChE/COFDHNDA-BTH/GCE biosensor with other biosensors.

Electrode LOD(µM) Linear Range(µM) Reference

Au/PAMAM/GLUT/AChE 0.032 1.0–9.0 [50]
Carbe/CoPcf/AChE 2 5.0–75.0 [51]

Au/MPA/AChE 0.035 2.0–30.0 [52]
GC/rGO/AChE 0.0019 0.2–10 [53]

GC/PANI/MWCNT/AChE 1.4 9.9–49.6 [54]
AChE/PDDA-MWCNTs-GR/GCE 0.001 0.255–14.9 [55]

GC/MWCNT/CoPc 0.0055 0.33–6.61 [56]
AChE–MWCNTs/GONRs/GCE 0.0017 0.005–5.0 [57]
AChE/PDA-Gr/PPNWs/IdlE 0.04 0.25–7.45 [58]

AChE/COFDHNDA-BTH/GCE 0.23
0.13

0.69–35
0.39–35 This work
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3.5. Selectivity, Stability, and Repeatability of Electrochemical Carbaryl Biosensors

As shown in Figure 7a, the selectivity of the AChE/COFDHNDA-BTH/GCE biosensor
was studied with an interfering substance concentration five times the concentration of
carbaryl. It was observed that the interfering substances including AA, glucose, NaNO3,
Cu2+, Hg2+, Cd2+, and Pb2+ did not produce obvious interference. The good selectivity of
the AChE/COFDHNDA-BTH/GCE biosensor could be ascribed to the low oxidation peak
potential of [Fe(CN)6]3−/4−. Although the oxidation potential of AA was lower (about
0.15 V versus that of a saturated calomel electrode), the oxidation peak of AA was obvi-
ously different from that of [Fe(CN)6]3−/4− at 0.25 V. Therefore, the AA showed obvious
interference for the detection of carbaryl. The electrochemical carbaryl biosensor was stored
in a refrigerator at 4 ◦C, and the peak current change (Figure 7b) at 0, 5, 10, 15, 20, 25,
and 30 days was tested. It was observed that the peak current still maintained 93.3% of
the initial value after 30 days. Next, six AChE/COFDHNDA-BTH/GCE were prepared for
the detection of 5 µM carbaryl (Figure 7c), and the relative standard deviations (RSD) of
the final result was only 3.4%. In conclusion, the electrochemical carbaryl biosensor has
good selectivity, repeatability, and stability, and has a good application prospects for the
detection of carbaryl.
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3.6. Actual Sample Testing

The content of carbaryl in lettuce was determined through a spiked experiment. The
specific procedures were as follows: We chopped 100 g of lettuce (lettuce was purchased at
Changsheng Market in Nanchang, Jiangxi province, on 21 September 2021). We obtained
50 µL of lettuce juice by flittering, which we then put into 5 mL of 0.1 mM KCl solution
containing 5.0 mM [Fe(CN)6]3−/4−. Then, different concentrations of carbaryl standard
solution were added to the above actual samples, and the concentration of carbaryl was
determined by the electrochemical biosensor. The obtained recovery rates and relative
standard deviation (RSD) are shown in Table 2. It was found that the spiked recoveries
of three different concentrations of carbaryl ranged from 94.4% to 106% with an RSD of
less than 10%. These results indicated that the electrochemical carbaryl biosensor has the
potential to detect pesticide residues in real samples.

Table 2. Detection of carbaryl in lettuce juice by electrochemical carbaryl biosensor.

Sample Added (µM) Founded (µM) Average Value (µM) Recovery (%) RSD (%, n = 3)

1 0 – – –
2 5 4.51, 5.10, 4.56 4.72 94.4 6.93
3 10 10.6, 10.4, 10.8 10.6 106 1.89
4 20 20.4, 19.8, 20.6 20.3 101.3 2.07

4. Conclusions

A new COFDHNDA-BTH with abundant NH, OH, and C=O groups was synthesized. The
COFDHNDA-BTH presented a nanoflower-like morphology, which was composited of many
2D nanoribbons. The COFDHNDA-BTH had high porosity, excellent flexibility, and good
biocompatibility. Furthermore, a portable paper-based electrode with a surface of graphene-
like foam was developed. The COFDHNDA-BTH could be firmly assembled on the portable
paper-based electrode to load AchE, whose bioactivity was greatly enhanced in the confined
COFDHNDA-BTH hole. The COFDHNDA-BTH could better capture TCl through hydrogen
bonding. The positively charged TCl attracted the anion probe [Fe(CN)6]3−/4−, which
could detect pesticides at low potential (0.25 V). A turn-off electrochemical biosensor was
constructed using the oxidation peak of the anionic probe [Fe(CN)6]3−/4− as the detection
signal. The linear range of the AChE/COFDHNDA-BTH/portable paper-based electrode was
0.48~35 µM, and the detection limit was 0.16 µM (S/N = 3). The paper-based electrode has
broad application prospects.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12100899/s1. Figure S1: Image of experimental and simulated
XRD pattern for AA stacking and AB stacking structure of COFDHNDA-BTH. Figure S2: Image of
pore size distribution of COFDHNDA-BTH. Figure S3. Image of π-π stacking distance of the layers of
COFDHNDA-BTH. Figure S4: Image of BET pattern of COFDHNDA-BTH. Figure S5: Image of pore size
distribution of COFDHNDA-BTH. Figure S6: Image of AFM of AChE/COFDHNDA-BTH.
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