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Abstract: Nanozymes, as artificial enzymes with the biological action of natural enzymes, have
enormous potential in the fields of disease diagnosis, bacteriostasis, biosensing, etc. In this work,
the Ni0.1Cu0.9S nanoflower was successfully synthesized through a one-step hydrothermal method.
A combined strategy of Ni doping and morphology design was employed to adjust its electronic
structure and active sites, endowing the Ni0.1Cu0.9S nanoflower with excellent peroxidase-like activity.
Therefore, it can catalyze the decomposition of H2O2 to generate •OH with higher antibacterial
activity, establishing a broad-spectrum antibacterial system based on the Ni0.1Cu0.9S nanoflower
against E. coli and S. aureus, which avoids the harm of a high concentration of H2O2. Additionally,
the colorless substrate TMB can be catalytically oxidized into blue ox-TMB via •OH. As a result, a
colorimetric technique with rapid and accurate detection of ascorbic acid (AA) by the unaided eye
was designed, in view of the specific inhibition effect towards the oxidation of TMB. This detection
platform has a wide linear range (10~800 µM) with a low limit of detection (0.84 µM) and exhibits a
satisfactory selectivity toward the detection of AA. This study sheds new light on the application of
copper-containing nanozymes in the fields of biomedicine and bioassay.

Keywords: peroxidase mimicase; reactive oxygen species; antibacterial application; biosensing;
copper-containing nanozymes

1. Introduction

A natural enzyme is a kind of biocatalyst that can catalytically mediate various physi-
ological processes in living organisms [1,2]. The reactions involving natural enzymes are
highly efficient and specific [3]. Regrettably, owing to their easy deactivation, difficulties
in purification, storage and recovery, high price and harsh operating conditions, natural
enzymes are not suitable for reactions in a nonphysiological environment, which severely
limits their large-scale application [4]. As opposed to the drawbacks of natural enzymes,
artificial enzymes (also known as nanoenzymes) with the merits of robust stability, sim-
ple preparation, high reliability, low cost and tunable catalytic properties can be used in
harsh reaction situations [5,6]. Consequently, nanoenzymes, especially those that could
promote the production of reactive oxygen species (ROS), can be wildly applied to disease
treatment [7,8], biological detection [9,10], bacteriostasis [1,11–13] and other fields [14].

In recent years, the outbreak of infectious disease brought by bacteria has become
a public health risk worldwide, which seriously threatens human life and health [15,16].
Bacterial infections are usually treated with antibiotics, which could selectively inhibit
and kill bacteria by restraining DNA replication/repair and protein synthesis [17,18].
However, the overuse of antibiotics has led to inflammatory diseases related to antibiotic-
resistant strains [19]. This situation reduces the effectiveness of antibiotic treatment and
increases the number of infection-related deaths each year. Therefore, the development
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of a functionalized antibacterial material with an enzyme-like performance that can not
only play the role of an antibiotic but also avoid the resistance of bacteria has become a hot
topic. Previous studies have shown that the bactericidal mechanism of many antibiotics
is to induce oxidative stress by ROS (e.g., •OH, •O2−, H2O2) production through the
Fenton reaction [20,21], causing the functional disorder of nucleotides, proteins and other
biological molecules through oxidative damage [22]. As a common and important ROS,
H2O2 has been widely used in bacterial inactivation and wound disinfection [23]. However,
its sterilization process is rather slow and requires a high concentration of H2O2 (volume
ratio: 0.5–3%, ca. 166–1000 mM) to achieve the desired antibacterial effect. Undoubtedly,
this can delay wound healing and even cause damage to normal tissue [24]. Hence, on the
premise of achieving wound disinfection and reducing H2O2 concentration, it is obviously
necessary to develop antibacterial materials [25]. In this regard, with the help of the
Fenton-like reaction, peroxidase mimics can cause H2O2 to produce •OH, which exhibits
greater toxicity towards bacteria. Therefore, the rational design of a peroxidase mimic as an
antibacterial material is an effective measure to improve the antibacterial effect and avoid
the side effects caused by a high concentration of H2O2 [5].

In addition, ascorbic acid (AA) is an important neurochemical substance in living
organisms that is often used as an antioxidant in cells and as a protective agent in the
nervous system [26]. Abnormal levels of AA in the body can lead to various diseases such
as scurvy, mental illness, Alzheimer’s disease, etc. [27]. Evidently, whether the AA content
is normal or not in the organism is a significant indicator for the prevention and diagnosis of
some diseases. Therefore, it is urgent to develop a simple and high-efficiency AA-detection
platform in many fields including the pharmaceutical industry, health monitoring, and
so on. As we all know, AA as an antioxidant can inhibit the catalytic oxidation of the
chromogenic substrate by peroxidase mimics. Therefore, peroxidase mimics also have great
application potential in colorimetric biosensing. However, designing a peroxidase mimic
with bifunctional effects that can be used for both broad-spectrum antibacterial applications
and AA detection still remains a huge challenge.

Transition-metal sulfides, such as copper sulfide, cobalt sulfide, iron sulfide, etc., are
potential peroxidase mimics owing to their adjustable structure/component and diverse
morphologies. Especially, copper sulfides can convert H2O2 to •OH by Fenton-like reac-
tions over a wide pH range. More importantly, the catalytic efficiency of Cu-containing
nanomaterials involved in Fenton-like reactions is almost 160-fold higher than that of
Fe-based nanozymes in neutral and weakly acidic conditions [2]. Hence, researchers have
explored many Cu-containing peroxidase mimics and applied them to the study of colori-
metric detection and antibacterial applications. For example, Qiang Bai et al. [28] prepared
graphdiyne nanowalls wrapped around a hollow copper sulfide nanocube (CuS@GDY)
as a peroxidase mimic, which possessed rapid, efficient, broad-spectrum antibacterial
activity against methicillin-resistant Staphylococcus aureus and Escherichia coli. Addition-
ally, Yuanxiang Xie [29] and his colleagues fabricated the LS-CuS@PVA composite with
excellent peroxidase-like performance by incorporating lignin-CuS into poly(vinyl alcohol)
(PVP). The antibacterial measurements of the LS-CuS@PVA nanocomposite displayed a
high antibacterial rate against Escherichia coli and Staphylococcus aureus in the presence
of H2O2 under near-infrared light irradiation for 10 min. Therefore, the development of
Cu-containing antimicrobials is considered a promising approach to the growing global
crisis of antibiotic resistance [30]. In addition, Jing Gao’s group [27] developed a simple
method to synthesize the polyacrylonitrile–copper oxide (PAN–CuO) nanoflower with
excellent peroxidase-mimicking activity; therefore, they established a colorimetric platform
for AA detection.

Although some progress has been made in the research of copper sulfide as a per-
oxide mimic, few copper-based nanozymes can simultaneously possess broad-spectrum
antibacterial properties and colorimetric AA biosensing. Moreover, the current research
on peroxidase mimics is mainly focused on single-metal nanozymes because of their rela-
tively clear and simple catalytic mechanism [31]. However, most single-metal nanozymes
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have low catalytic activity, which lowers their application value. Hence, it is urgent for
Cu-based sulfides to further optimize and improve the peroxidase-like activity. Since
the catalytic activity of nanozymes is directly related to their composition and structure,
designing a unique morphology to increase the exposure of active sites is beneficial to
improving their catalytic activity. Additionally, element doping is also an effective method
to adjust the composition and electronic structure of nanomaterials. It is reported that
bimetallic nanozymes can be synthesized through doping with another metal atom, and
the synergistic effect of two metal active centers is expected to improve the catalytic perfor-
mance [32]. For instance, Chunqiao Jin et al. [3] doped Si into CoO nanorods to improve
their peroxidase-mimicking properties, which was much higher than that of pure CoO.
They revealed that the enhanced peroxidase-like activity is attributed to the increase in
oxygen vacancy. In addition, Le Deng’s group [16] synthesized gold-doped platinum nan-
odots (AuPtNDs), which exhibited improved peroxidase-like activity that was even higher
than horseradish peroxidase. Therefore, the antibacterial performance of the AuPtNDs
against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) was
significantly enhanced.

Inspired by the above-mentioned research progress, herein we developed a versatile
strategy to synthesize a Ni0.1Cu0.9S nanoflower through element doping and morphology
design. The obtained Ni0.1Cu0.9S nanoflower was composed of many ultrathin nanosheets,
which endowed it with a large surface area in order to expose more active sites and assist the
rapid diffusion/penetration of the reaction solution. Additionally, Ni doping brings about a
large number of lattice defects, releasing more active sites containing unsaturated dangling
bonds. Meanwhile, Ni doping induces the increase in electric dipole and electron transfer,
causing Cu and S sites to have partial positive charges, which is beneficial to capturing
bacteria and damaging the bacterial cell membrane. As a consequence, the Ni0.1Cu0.9S
nanoflower exhibits prominent peroxidase-like activity, which can efficiently catalyze the
decomposition of H2O2 into more toxic ROS against bacteria and oxidize TMB to generate
an obvious blue color. Consequently, the Ni0.1Cu0.9S nanoflower was used as a broad-
spectrum antibacterial agent, which displayed a promising antibacterial property toward
Gram-negative E. coli and Gram-positive S. aureus in the presence of low levels of H2O2
(0.1 mM). Meanwhile, on the basis of the inhibitory effect induced by AA on the color-
rendering process of TMB oxidation, a novel, sensitive and effective Ni0.1Cu0.9S-based
naked-eye biosensor for AA detection was established. In a word, the Ni0.1Cu0.9S nanoflower
as a peroxidase mimic could offer a bifunctional platform for biological assay and antibac-
terial applications. This work is likely to expand the research value of Cu-containing
nanozymes in other biologically related fields.

2. Materials and Methods
2.1. Chemicals and Materials

Nickel chloride hexahydrate (NiCl2·6H2O,≥98.0%), ascorbic acid (AA, AR), and thiourea
(CH4N2S, AR) were purchased from Shanghai Macklin Biochemical Co., Ltd., Shanghai,
China. 3,3′,5,5′-tetramethylbenzidine (TMB, ≥98%) and p-benzoquinone (C6H4O2, 99%)
were purchased from Shanghai Aladdin Biochemical Technologh Co., Ltd., Shanghai, China.
Sulfur sublimed (S, AR), sodium acetate trihydrate (CH3COONa·3H2O, AR), copper nitrate
trihydrate (Cu(NO3)2·3H2O, AR), ethanol (CH3CH2OH, AR), hydrogen peroxide (30 wt%,
H2O2, AR), and glacial acetic acid (CH3COOH, AR) were purchased from Chengdu Cologne
Chemicals Co., Ltd., Chengdu, China. L-arginine, L-valine, L-methionine, L-histidine, L-
glutamate, glycine, DL-aspartic acid, L-threonine, L-cysteine and other amino acids were
purchased from Sinopharm Chemical Reagents Co., Ltd. (BR), Shanghai, China. Gram-
negative E. coli (ATCC25922) and Gram-positive S. aureus (ATCC29213) were obtained
from Shanghai Jiachu Bioengineering Co., Ltd., Shanghai, China. Propidium iodide (PI)
and SYTO 9 were obtained from Invitrogen Life Technology Co., Ltd., California, America.
Ultra-pure water (18.2 M Ω cm) was used in all solutions and experiments. All chemicals
were not further purified. Caution: These reagents are toxic, please use as required.
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2.2. Synthesis of Ni0.1Cu0.9S Nanoflower

Ni0.1Cu0.9S nanoflower was prepared by a one-step hydrothermal method. First,
16 mL anhydrous ethanol were accurately added to the beaker, followed by 0.125 mmol
Cu(NO3)2·3H2O, 0.125 mmol NiCl2·6H2O and 0.5 mmol sulfur powder (Caution: These
reagents are toxic, please use as required). Stirring them evenly, afterward, the solution was
quickly transferred into a 25 mL Teflon-lined stainless-steel autoclave and maintained at 140 ◦C
for 6 h. Then, the black solid products were collected by centrifuging at 10,000× g rpm/min
several times. Finally, the Ni0.1Cu0.9S nanoflower was washed with distilled water and absolute
ethanol three times each. After drying overnight in an oven at 60 ◦C, the Ni0.1Cu0.9S nanoflower
was obtained. The synthesis of pure CuS was similar to the aforementioned method, and the
only difference is that no NiCl2·6H2O was added in the preparation process.

2.3. Peroxidase-Like Property of Ni0.1Cu0.9S Nanoflower

In this study, the peroxidase-like activity of the Ni0.1Cu0.9S nanoflower was determined
by measuring the absorbance of TMB solution in the presence of H2O2. Briefly, 500 µL
Ni0.1Cu0.9S (10 µg/mL), 500 µL H2O2 (25 mM) and 500 µL TMB (1.6 mM) were poured
into 500 µL HAc-NaAc buffer solution (pH = 5.2) at room temperature. Later, UV–vis
spectrophotometry was carried out to monitor the absorbance of the reaction solution at
652 nm. To optimize the reaction conditions, the influences of the pH value, concentration
and reaction time on the catalytic activity of the Ni0.1Cu0.9S nanoflower were also studied.

The steady-state kinetics of the Ni0.1Cu0.9S nanoflower were studied at room temper-
ature. Firstly, TMB was used as the substrate to detect the affinity between the catalyst
and TMB. Then, 500 µL 40 µg/mL Ni0.1Cu0.9S dispersion, 500 µL 10 mM H2O2 and 500 µL
of different concentrations of TMB (0.25~3.0 mM) were added to the NaAc-HAc buffer
solution (0.2 M pH 5.2). Following that, the kinetic spectrum of the reaction system was
immediately monitored for the first 600 s and the absorbance of the reaction system at
652 nm was recorded every 1 s. Similarly, H2O2 was used as the substrate to detect the
affinity between the catalyst and H2O2. More specifically, 500 µL 40 µg/mL Ni0.1Cu0.9S
dispersion, 500 µL 2 mM TMB and 500 µL of different concentrations of H2O2 (1~30
mM) were added to NaAc-HAc buffer solution (0.2 M pH 5.2). The remaining steps
were the same as above. The Michaelis–Menten constant (Km) was calculated from the
following equation:

V0 = Vm[S]/(Km + [S])

where Vm is the maximum reaction rate, V0 is the initial rate, [S] refers to the substrate
(H2O2 or TMB) concentration, and Km is the substrate concentration when the reaction rate
reaches half of the maximum reaction rate.

For the free-radical-capture experiments, 500 µL 40 µg/mL Ni0.1Cu0.9S dispersion,
250 µL HAc-NaAc buffer solution (0.2 M pH 5.2), 250 µL 1 mM free-radical-trapping agent
(p-benzoquinone or thioureas), 500 µL 10 mM H2O2 and 500 µL 2 mM TMB were mixed
and shaken adequately at room temperature. Then, the absorbance of the reaction solution
at 652 nm was immediately detected by a UV–vis spectrophotometer. Each group was
tested in parallel three times.

2.4. Antibacterial Experiments In Vitro

The antibacterial ability of the Ni0.1Cu0.9S nanoflower was determined by the plate-
counting method. Firstly, the bacterial suspension (2× 108 CFU/mL, 100 µL) was incubated
with buffered solution (control), H2O2 (0.1 mM), Ni0.1Cu0.9S nanozyme (40 µg/mL), and
Ni0.1Cu0.9S nanozyme (40 µg/mL) + H2O2 (0.1mM) in a 96-well plate, respectively. After
incubation at 37 ◦C for 18 h, the bacterial suspension was diluted by 1~104 fold, and then
100 µL of the diluted bacterial suspension was spread on the TSA plates. The number
of bacterial colonies was counted and recorded after incubation for 16 h at 37 ◦C. Each
group was performed in parallel three times. The antibacterial rate was calculated based on
the equation:

Antibacterial rate (%) = 100 − (Nt/N0) × 100
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where Nt represents the bacterial number of experimental plates, and N0 represents the
bacterial number of blank plates.

To investigate the possibility of sterilization, the solutions prepared in the blank group,
the control group and the experimental group were incubated with 10 µL of Dead/Live
dye for 15 min, respectively. Propidium iodide (PI) was used to stain dead bacteria with red
fluorescence and SYTO 9 was used to stain live bacteria with green fluorescence (Caution:
These reagents are toxic, please use as required). Afterwards, the OLYMPUS BX53M
fluorescence microscopy (Japan) was used to observe the results.

The minimal inhibitory concentrations (MICs) of Ni0.1Cu0.9S nanozyme towards E. coli
and S. aureus were determined. For Gram-negative E. coli, Ni0.1Cu0.9S nanozyme solution
with different concentrations (0, 0.01, 0.02, 0.04, 0.08, 0.1, 0.2, 0.4, 0.8, 1.6 mg/mL) were
added to the bacterial suspensions containing the same number of bacteria. Afterwards,
the suspensions were incubated at 37 ◦C for 24 h. Then, we determined the optical density
of bacterial suspensions at 600 nm, and the bacterial suspensions were further diluted and
cultured on agar plates for 16 h to count the bacterial colonies. Each group was tested in
parallel three times. For Gram-positive S. aureus, the same method was carried out.

2.5. Detection and Analysis of Ascorbic Acid

Firstly, 500 µL 40 µg/mL Ni0.1Cu0.9S dispersion, 500 µL 10 mM H2O2 and 500 µL
2 mM TMB were sequentially poured into 250 µL HAc-NaAc buffer solution (0.2 M pH 5.2).
After incubation for 30 min, 250 µL ascorbic acid at different concentrations (0~1.5 mM)
was added to the above reaction solution, and then shaken to react for 10 min at room
temperature. The absorbance at 652 nm was recorded by a UV–vis spectrophotometer.
Each group was tested in parallel three times.

To explore the anti-interference ability of the Ni0.1Cu0.9S nanozyme, 500 µL 40 µg/mL
Ni0.1Cu0.9S dispersion, 250 µL HAc-NaAc buffer solution (0.2 M pH 5.2), 250 µL 10 mM
H2O2, 250 µL 1500 µM ascorbic acid and 250 µL 30 mM interference ions (Zn2+, Mg2+, Ba2+,
Ca2+, K+, Al3+, Cd2+, Na+) were mixed with 500 µL 2 mM TMB, and the total volume of
the final system was 2 mL. Following that, the mixture was shaken and placed at room
temperature to react for 10 min. Immediately, a UV–vis spectrophotometer was used for
spectral detection, and the absorbance value at 652 nm was recorded. For the selectivity
measurements of the Ni0.1Cu0.9S nanoflower, AA was substituted by 250 µL 9 mM amino
acids (for instance, L-arginine, L-valine, L-methionine, L-histidine, L-glutamate, glycine,
DL-aspartic acid, L-threonine, L-cysteine, L-tryptophan). Each group was tested in parallel
three times.

For the AA detection in real samples, orange juice was diluted 1000-fold and measured
without further pretreatment. Firstly, 500 µL 40 µg/mL Ni0.1Cu0.9S nanozyme, 500 µL
10 mM H2O2, 500 µL 2 mM TMB and 250 µL diluted orange juice were added to 250 µL
HAc-NaAc buffer solution (pH = 5.2). Then, a series of different concentrations of AA
solution were also added to the reaction solution according to the standard addition
method. Following that, the reaction was conducted at room temperature for 10 min.
Finally, the recoveries of AA were calculated on the basis of the linear standard curve. All
determinations were performed in triplicate.

In order to test the stability of the Ni0.1Cu0.9S nanoflower, the above reaction solu-
tion was shaken and placed at room temperature for reaction. The absorbance values at
652 nm were recorded by a UV–visible spectrophotometer for 30 consecutive days. In
addition, recyclability of the Ni0.1Cu0.9S nanoflower was evaluated by repeatedly testing
the peroxidase-like property of the catalyst cycle by cycle. Considering the mass loss during
centrifugation, this measurement was repeated five times to observe the changes.

3. Results
3.1. Component and Structure Characterization of Ni0.1Cu0.9S Nanoflower

The crystal structure and chemical composition of the as-synthesized material are
firstly examined. In Figure 1a, the XRD diffraction peaks can be indexed to the hexagonal
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CuS phase (06-0464) [33]. No diffraction peaks of Ni species appear, implying that Ni atoms
might be doped into the crystal lattice of CuS to form a solid solution. A closer observation
reveals there is a slight shift toward high angles in the diffraction peaks, probably caused by
the smaller atomic radius of Ni. More-detailed structural information can be collected from
the Raman spectrum. According to the above XRD data suggesting that the sample has a
hexagonal crystal structure, only S atoms can vibrate in the Raman-active mode [34]. Thus,
the Raman spectrum can reflect the polarizability change of S atoms after Ni atoms occupy
the Cu sites. As depicted in Figure S1 of Supplementary Materials, the Raman bond at
475 cm−1 is indexed to the characteristic stretching vibration of the Cu-S bond in CuS [35].
It is worth noting that the vibration mode of Cu-S in NixCu1−xS is red-shifted relative to pure
CuS. Moreover, the half-peak width increases and the intensity obviously reduces, which
indicates there is a smaller polarizability of S atoms after doping with Ni atoms, considering
the strong covalent nature of the S atom π-donation to the metal center. This might rationalize
that Ni replaces the Cu atom in the Cu-S-Ni configuration, inducing the electron delocalization
of S atoms to the neighboring Ni2+ sites, and then decreasing the polarizability of S atoms in
NixCu1−xS. The EDS analysis (Figure 1b) confirms that the material is composed of Ni, Cu
and S elements with the molar ratio of Ni:Cu:S = 0.13:0.93:1.00, which is in accordance with
the ICP-OES result (Table S1). To be clear, there is a large error in the content of the S element
measured by ICP-OES, which may be because a large amount of S element is lost in the form
of H2S during the digestion process. However, this method does not affect the determination
of the Ni:Cu atomic ratio (0.1:0.86). These results confirm that the as-prepared sample is the
Ni0.1Cu0.9S nanoflower.
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Figure 1. (a) The XRD pattern, (b) EDS spectrum (the inset shows the atomic percentage), (c) low-
magnification SEM image, (d) low-magnification TEM image and (e) high-magnification SEM image
of Ni0.1Cu0.9S nanoflower.

Later, SEM and TEM were carried out to characterize the microstructure and morphol-
ogy of the Ni0.1Cu0.9S nanoflower. Figure 1c,d display the Ni0.1Cu0.9S nanoflower with
a diameter of ~4 µm as a loose flower-like ball composed of some uniform nanosheets
stacked together. The nanosheet possesses a smooth surface and its thickness is less than
10 nm (Figure 1e). This morphology is able to facilitate the rapid diffusion/penetration of
the reaction solution. Meanwhile, it may provide a large surface area in order to expose
more active sites. The BET measurement (Figure S2) confirms that the specific surface area
is as high as 28.87 m2 g−1 with the pore size distribution of ~3.84 nm, which is conducive
to the improvement of its enzyme-like performance.
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Following that, the structure of the Ni0.1Cu0.9S nanoflower was further studied by
HRTEM and selected area electron diffraction (SAED). In Figure 2a, the nanosheet presents
many wrinkles, implying the ultrathin feature, and the HRTEM image (Figure 2b) shows a
set of distinct lattice fringes. The lattice spacing is determined to be 0.28 nm, corresponding
to the (103) facets of hexagonal CuS, which is in agreement with the previously reported lit-
erature [36,37]. The zoomed-in image (Figure 2c) shows some defects and lattice distortion,
presumably caused by the Ni doping. The typical SAED pattern of the hexagonal structure
reveals the single-crystalline feature and can be indexed as the (101) zone axis of CuS,
which is in accordance with the HRTEM results. Subsequently, the energy-dispersive X-ray
spectroscopy (EDX) coupled with high-angel annular dark-field scanning transmission
electron microscopy (HAADF–STEM) was also applied to analyze the element distribution.
As shown in Figure 2e–h, it stands to reason that Ni, Cu and S elements are uniformly
distributed on the surface of the Ni0.1Cu0.9S nanoflower, indicating that Ni was homoge-
neously doped into the CuS nanoflower. Moreover, the EDX analysis further confirms
the atomic composition of Ni:Cu:S in the material, which is approximate to the EDS and
ICP results.
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Ni0.1Cu0.9S nanoflower.

In order to gain in-depth insight into the chemical composition and elemental valence
state, X-ray photoelectron spectroscopy (XPS) was further conducted with the as-prepared
Ni0.1Cu0.9S nanoflower. The XPS full-survey spectrum in Figure S3a exhibits the charac-
teristic peaks for the Cu, Ni, S, C and O elements, wherein C and O elements might be
derived from the surface contaminants and oxidation. This indicates the existence of Cu,
Ni and S on the surface of the Ni0.1Cu0.9S nanoflower without detectable impurities, in
good accordance with the EDS results. Afterwards, the binding energies of all spectra were
normatively calibrated by the standard C 1s peak (284.8 eV), as shown in Figure S3b. The
high-resolution XPS spectrum of the Cu 2p region (Figure 3a) can be deconvoluted into
two spin-orbit doublets with two adjacent shake-up satellite peaks. The XPS fitted peaks at
ca. 952.6 eV and 932.5 eV with a splitting of 19.9 eV are ascribed to Cu 2p1/2 and Cu 2p3/2
of Cu2+ [35]. Additionally, two deconvoluted shoulder peaks at 955.0 eV (Cu 2p1/2) and
934.8 eV (Cu 2p3/2) can be assigned to the Cu-O bond, which might come from a small
quantity of CuSO4 [38]. Impressively, the shake-up satellite peaks situated at 944.7 eV and
963.5 eV manifest the typical feature of Cu2+ in CuS materials [39]. For the S 2p spectrum
in Figure 3b, the XPS peaks at 163.7 eV (S 2p1/2) and 162.6 eV (S 2p3/2) with the spin-orbit
coupling separation of binding energy (1.1 eV) demonstrate that the S element existed in
the form of sulfides [5,33]. As for the shoulder peaks at ca. 169.5 eV and 164.7 eV, they can
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be indexed to the sulfate species (e.g., CuSO4) caused by the oxidation of sulfides in the
air [35]. In Figure 3c, the narrow-scan spectrum of Ni 2p exhibits two main peaks at binding
energies of 855.6 eV and 873.3 eV. The corresponding satellite peaks at a higher BE location
signify the the spin-orbit doublet of 2p orbital for Ni2+, due to the formation of strong Ni-S
hybridization with charge donation from the Ni 3d to the S 3p orbital [40]. This result
implies the successful doping of Ni into CuS nanoflower. More importantly, the binding
energy of Cu 2p in the Ni0.1Cu0.9S nanoflower positively shifts about 0.4 eV compared to
pure CuS in the literature, indicating the lower electron density of Cu 2p along with the
doping of Ni. Owing to the higher electronegativity of Ni (χ = 1.91), Ni doping results in the
increase in the electric dipole and the transfer of more electrons from Cu (χ = 1.90) to other
atoms [41]. Interestingly, the electrons do not transfer to S atoms, because the XPS peaks of
S 2p also shift towards a higher binding energy, which is consistent with the Raman results.
These observations illustrate that there may be many cation vacancies. Additionally, the
higher binding energy results in the lower electron density, endowing the Cu and S sites
with partial positive charges and excellent electron-receiving ability, which is beneficial to
exerting its peroxidase-like activity [42]. In terms of antibacterial effect, the Cu and S sites
with partial positive charges will cause damage to the bacterial cell membrane [43], which
is expected to improve its antibacterial efficiency. Additionally, the surface compositional
analysis confirms that the surficial atomic ratio of Ni:Cu:S is determined to be 0.11:0.92:1.00,
which is in excellent accord with the ICP-OES result. Taken together, we can conclude the
successful formation of the Ni-doped CuS nanoflower (Ni0.1Cu0.9S nanoflower).
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3.2. Peroxidase-Like Property of Ni0.1Cu0.9S Nanoflower

Considering that copper ions are the catalytic active centers of many natural enzymes,
some copper-containing compounds can produce ROS through Fenton-like reactions similar
to peroxidase, which endows them with potential for bio-applications, such as antibacte-
rial effects, biomolecular assays, and so on. Therefore, once the Ni0.1Cu0.9S nanoflower
was synthesized, we evaluated its peroxidase-like properties by monitoring the catalytic
oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) through a colorimetric method
and UV–vis measurement. As depicted in Figure 4a, the Ni0.1Cu0.9S nanozyme could
efficiently catalyze the decomposition of H2O2 into ROS and oxidize TMB to generate
an obvious blue color with a maximum absorbance at 652 nm. The peak was deemed
to be a charge-transfer complex with a radical cation (TMB+), implying the formation of
ox-TMB [44]. However, the Ni0.1Cu0.9S nanozyme or H2O2 alone could not produce a
similar phenomenon, indicating the peroxidase-like activity of the Ni0.1Cu0.9S nanoflower.
Additionally, the time-course profile in Figure 4b reveals that as the reaction continues,
the intensity of the absorbance increases rapidly, accompanied by a darker color in the
reaction solution, which proves a fast reaction rate. To distinguish the specificity of the
Ni0.1Cu0.9S nanoflower towards chromogenic substrates, the o-phenylenediamine (OPD)
and 2-Azinobis-(3-ethylbenzthiazoline- 6-sulphonate) (ABTS) were also selected as sub-
strates for comparison. By visual inspection and spectral measurements (Figure 4c), neither
OPD nor ABTs could be catalyzed by the Ni0.1Cu0.9S nanozyme to produce the characteris-
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tic color and absorbance. This may be due to the locally unbalanced Coulomb interaction
resulting from the replacement of Cu atoms by the more electronegative Ni atoms, which
makes the catalyst more inclined to bind to the positively charged TMB substrate, rather
than the negative ABTs and electrically neutral OPD. Therefore, the Ni0.1Cu0.9S nanoflower
possesses a certain degree of specificity towards chromogenic substrates. In order to de-
termine the possible ROS, radical-quenching experiments were conducted to explicate
the predominant species generated during H2O2 decomposition. In Figure 4d, thiourea
and p-benzoquinone (PBQ) as the free-radical quenchers of hydroxyl radical (•OH) and
superoxide anion (O2

•−) [45], respectively, were added to the reaction system of Ni0.1Cu0.9S
+ TMB + H2O2. Evidently, the intensity of absorbance drops dramatically when the thiourea
is added to the reaction system. Additionally, PBQ also exhibits a slight inhibition of the
catalytic activity of the Ni0.1Cu0.9S nanoflower. The above results confirm that the hy-
droxyl radical (•OH) is the predominant ROS, accompanied by a small dose of superoxide
anion (O2

•−) in the peroxide-mimicking catalytic process of the Ni0.1Cu0.9S nanoflower.
Therefore, it can be described that the excellent peroxidase-like activity of the Ni0.1Cu0.9S
nanoflower stems from the ROS (•OH and O2

•−) generated with the assistance of H2O2,
laying the foundation for further biomedical applications in the fields of antibacterial action
and colorimetric detection.
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Figure 4. (a) The UV–vis absorption spectra of various reaction systems in acetate buffer solution
(pH = 5.2) recorded at 10 min. (b) The UV–vis absorption spectra over time in the reaction system
of Ni0.1Cu0.9S + H2O2 + TMB. (c) The UV–vis absorption spectra of Ni0.1Cu0.9S + H2O2 + different
substrate (TMB, OPD or ABTS). (d) The UV–vis absorption spectra of Ni0.1Cu0.9S + H2O2 + TMB
system in the absence or presence of PBQ or thiourea. The insets are their corresponding photographs.

To improve the catalytic activity of the Ni0.1Cu0.9S nanoflower, multiple conditions,
such as pH value, reaction time, TMB, H2O2 and catalyst concentrations, were thoroughly
explored. Similar to a natural enzyme, the catalytic activity of a nanozyme is also affected
by pH value. Consequently, we firstly researched the dependence of the peroxidase-like
property on pH value. As displayed in Figure S4a,b, it can be seen that the Ni0.1Cu0.9S
nanoflower shows an outstanding peroxidase-like activity over a wide pH range (3.2~7.2)
and reaches optimal conditions at pH = 5.2. As is well known, the catalytic activity at
physiological pH values is a distinctly important indicator for evaluating the capabilities
for biomedical research of enzyme mimics. The Ni0.1Cu0.9S nanoflower, here, revealed
prominent peroxidase-like activity over the physiologically important pH range of 4.0–7.4,
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especially close to the weak acid pH (~6.2) of wounds, which satisfies a prerequisite for its
bio-application at physiological conditions. Additionally, in Figure S4c,d, the absorbance
at 652 nm increases gradually over time and eventually stabilizes after 10 min, that is to
say that the Ni0.1Cu0.9S nanoflower as a peroxidase mimicase can complete the catalytic
oxidation of TMB within 10 min. Accordingly, the optimal response time was set as
10 min. Following that, the influences of TMB, H2O2 and catalyst concentrations on
peroxidase-like activity were subsequently explored. In Figure S4e–j, with the increase in
concentration, the absorbance increases until saturation. To guarantee the accuracy, the
optimized concentration of TMB, H2O2 and the catalyst was set as 2 mM, 10 mM and 40
µg/mL, respectively.

For an ideal nanozyme, the stability and reusability are important references to mea-
sure its practical value. Figure S5 shows that the peroxidase-like activity remains at 88.8%
within a 30-day storage period in aqueous solution and the absorbance keeps basically
steady for five cycles, except for the attenuation due to the mass loss during centrifu-
gal operation after each cycle. In addition, the SEM image (Figure S6) after the stability
test demonstrates an almost unchanged morphology. All the evidence concludes that
the Ni0.1Cu0.9S nanoflower possesses remarkable stability and reusability, indicating the
prospect of practical applications in the field of catalysis.

To gain a better understanding of the peroxidase-like catalytic process of the Ni0.1Cu0.9S
nanoflower, a steady-state kinetics analysis was carried out. Typical Michaelis–Menten
curves (Figure S7) were plotted over a certain range of TMB and H2O2 concentrations.
Obviously, the initial velocity rapidly increases with the increase in TMB or H2O2 concen-
tration. The Michaelis–Menten constant (Km) and maximal reaction velocity (Vmax) were
calculated from the Lineweaver–Burk double-reciprocal plots and the results are listed in
Table S2. Km has been identified as an indicator of a catalyst’s affinity to a substrate. A
lower Km value reflects a stronger affinity and vice versa [27]. As listed in Table S2, the
Km value of the Ni0.1Cu0.9S nanoflower with H2O2 as a substrate was determined to be
3.698 mM, close to that of HRP (3.7 mM) reported in the previous literature [46], implying a
high affinity between the Ni0.1Cu0.9S catalyst and H2O2. Likewise, the Km value (0.359 mM)
of the Ni0.1Cu0.9S nanoflower with TMB as a substrate is even lower than that of HRP
(0.43 mM) [47]. Additionally, Vmax represents the catalytic ability [11]. Table S2 displays
the Vmax values with TMB and H2O2 as 5.60 × 10−8 and 5.604 × 10−8 M/s, respectively,
which are markedly higher than those of other peroxidase mimicases reported in the previ-
ous literature, demonstrating a higher catalytic efficiency. The lower Km and higher Vmax
values make the Ni0.1Cu0.9S nanoflower a desirable peroxidase mimicase with satisfying
catalytic performances.

3.3. Antibacterial Activity Evaluation

For antibacterial application, the •OH species (2.8 V) has higher antibacterial ability
than H2O2 (1.8 V) in view of the higher oxidation potential [30,47]. Additionally, the
excellent peroxidase-like property of the Ni0.1Cu0.9S nanoflower can convert H2O2 into
•OH; therefore, the antibacterial system with the Ni0.1Cu0.9S nanozyme was designed.
Two strains associated with medical infections, including Gram-negative E. coli and Gram-
positive S. aureus, were applied for the antibacterial measurements (Figure 5), and the
results of the antibacterial evaluation of the Ni0.1Cu0.9S nanozyme were collected by the
plate-counting method in terms of colony formation. Prior to this, we studied the trapping
ability of the Ni0.1Cu0.9S nanozyme for bacteria. As displayed in Figure S8, the Ni0.1Cu0.9S
nanozyme is able to capture about 59.2% E. coli and 90.4% S. aureus through the electrostatic
interaction between positively charged sites and negatively charged bacterial cells. This
excellent capture ability is beneficial to limiting the damage of bacteria to ROS within a
certain range, and effectively enhances the bacteriostatic efficiency of •OH. Figure 5a,b
depict the antibacterial performance of the Ni0.1Cu0.9S nanozyme for Gram-negative
E. coli and Gram-positive S. aureus, respectively. The antibacterial photos (Figure 5d,e) of
the culture plates vividly visualize the survival of bacteria, in which the small white dots
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reflect the survival colonies. Evidently, the control plates in blank groups display dense
colonies of two bacteria, implying their robust growth in the test system. Additionally, in
order to avoid the toxicity from high-concentration H2O2 (0.5–3 wt%) for clinical use, the
test systems with biologically relevant levels of H2O2 concentration were fixed at 0.1 mM,
which is very weak against E. coli and S. aureus. However, both bacteria can hardly survive
once40 µg/mL of the Ni0.1Cu0.9S nanozyme is added to the measurement system for 16 h,
initially confirming that the Ni0.1Cu0.9S peroxidase mimic possesses an antimicrobial effect
on the selected bacteria with the assistance of low-dose H2O2.
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Figure 5. The bactericidal rate of Ni0.1Cu0.9S nanozyme against (a) Gram-negative E. coli and
(b) Gram-positive S. aureus. Data are presented as the mean ± SD (n = 3). * means p < 0.05, *** means
p < 0.001. (c) EPR spectra of superoxide anion and hydroxyl radical in the reaction system. The colony
plating images of different systems against (d) E. coli and (e) S. aureus.

It is worth mentioning that the Ni0.1Cu0.9S nanozyme cannot produce ROS to oxidize
TMB without the assistance of H2O2 as depicted in Figure 4a. However, Figure 5a,b display
that the Ni0.1Cu0.9S nanozyme alone has a certain degree of bactericidal ability. This may be
due to the dissociation of trace Cu2+ ions, which can penetrate the membrane and denature
the DNA/RNA by chelating. This is a very common antibacterial mechanism in metal-
based nanozymes [30,48,49]. Therefore, we speculate that the antibacterial mechanism of
the Ni0.1Cu0.9S nanozyme is due to its dual action, that is to say, the ROS storm stemmed
from POD-like activity and the chelation derived from dissociated Cu2+ ions. In order to
confirm the mechanism, the electron paramagnetic resonance (EPR) spectrum was used
to provide more direct evidence. 5,5-dimethyl-1-pyridine N-oxide (DMPO) as a spin-
capture reagent could bond with oxygen-centered free radicals, such as •OH and O2

•−, to
generate the more-stable free-radical adducts [50]. Consequently, the production of •OH
and O2

•− could be monitored by EPR by incorporating DMPO. As shown in Figure 5c,
an intense four-line characteristic signal (1:2:2:1) manifests the presence of the DMPO-
•OH adduct [51], and a weak signal of six characteristic peaks indicates the DMPO-O2

•−

adduct [52]. These results disclose the production of •OH and O2
•− in the catalytic reaction

solution. Additionally, we further measured the concentration of released Cu2+ ions in
the reaction system by ICP-OES technology. As shown in Table S3 and Figure S9, the
degradation rate is rapid during the first 10 h and then slows. Finally, the concentration
of Cu2+ ions in the reaction solution gradually remains constant after 25 h. Afterwards,
we further evaluated the antibacterial effect of the Cu2+-containing supernatant solution
towards E. coli and S. aureus without the assistance of H2O2. As depicted in Figure S10,
the antibacterial efficiency of the supernatant solution slightly enhances with the increase
in the concentration of Cu2+ ions, illustrating the slight contribution of Cu2+ ions to the
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antibacterial effect. In view of the above-mentioned facts, these results verify our hypothesis
that both ROS and degraded Cu2+ ions play roles in the antibacterial mechanism of the
Ni0.1Cu0.9S nanozyme.

In addition, fluorescence-based Live/Dead bacterial cell staining assays were further
conducted to confirm the antibacterial property of the Ni0.1Cu0.9S nanozyme. SYTO 9
and propidium iodide (PI) were used as the probes of live bacteria and dead bacteria,
respectively, because membrane-permeable SYTO 9 can only be marked by green fluo-
rescence in live bacteria and membrane-impermeant PI can only be labeled with dead
bacteria with red fluorescence through damaged bacteria membranes [16]. As evidenced in
Figure 6, the lack of a red fluorescent signal of the control groups with buffer solution alone,
H2O2 alone and nanozyme alone indicates no obvious antibacterial property. Whereas, an
obvious decrease in green fluorescence signal and the dominant red fluorescence signal
were observed during simultaneous treatment with both the Ni0.1Cu0.9S nanozyme and
H2O2 in the buffer solution, manifesting a dramatic increase in dead bacteria. The above
results disclose that the Ni0.1Cu0.9S nanozyme possesses prominent antibacterial activity
toward Gram-negative E. coli and Gram-positive S. aureus when assisted with a low dose
of H2O2.
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Figure 6. Live-dead fluorescence images of (a–h) E. coli and (i–p) S. aureus colonies, where viable cells
were stained green with SYTO 9 and dead cells were stained red with propidium iodide. ((a,e,i,m):
blank; (b,f,j,n): H2O2-only; (c,g,k,o): Ni0.1Cu0.9S-only; (d,h,l,p): Ni0.1Cu0.9S + H2O2).

Afterwards, the antibacterial effectiveness was also tested by the relationship between
the number of E. coli and S. aureus colonies and the concentration of the Ni0.1Cu0.9S nanozyme
when about 108 CFU of bacteria are applied to the LB plates. Then, we further tested the MIC,
which is defined as the lowest concentration of antibacterial agents in solution that completely
prevents the growth of bacteria in standard incubation conditions. Clearly, the antibacterial
rates of the Ni0.1Cu0.9S nanozyme towards the two bacteria show a strong dependence on
the concentration. As expected, with other conditions being equal, the antibacterial rate
raises with the increase in Ni0.1Cu0.9S concentration (in Figure 7). More importantly, when
the concentration of the Ni0.1Cu0.9S nanozyme reaches 0.4 mg/mL, the antibacterial rate
toward E. coli is almost 100% and remains fixed when continuing to add more antibacterial
materials. As for the antibacterial rates toward S. aureus, the Ni0.1Cu0.9S nanozyme exhibits
a maximum killing efficacy almost of 98.2% at the concentration of 0.08 mg/mL. Compared
with the blank group, no sight of bacteria on the dishes is found when treated with the
Ni0.1Cu0.9S nanozyme in the presence of H2O2 (0.1 mM). The observation suggests that
the Ni0.1Cu0.9S nanoflower possesses an excellent broad-spectrum antibacterial property,
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as well as dose-dependent antibacterial efficacy, which has potential applications in the
biomedical field.
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Figure 7. Bactericidal rate of reaction systems against (a) Gram-negative E. coli and (b) Gram-positive
S. aureus, respectively, treated with different concentrations of Ni0.1Cu0.9S nanoflower.

The above excellent antibacterial performance is attributed to the following structural
advantages: (1) the nanosheet-assembled nanoflower-like morphology provides a large
surface area and porous structure, which is conducive to enhancing the contact between
substrate and nanozyme, while accelerating the diffusion and infiltration of the reaction
solution; (2) Ni doping brings about a large number of lattice defects (e.g., cation vacancies
and distortions), releasing more active sites with unsaturated dangling bonds; (3) After
doping Ni atoms, the electrons of S atoms are delocalized to the adjacent Ni site to some
extent, reducing the polarization of S atoms. Moreover, the Ni doping induces the increase
in electric dipole and the transfer of more electrons from Cu to Ni sites. These endow
Cu and S sites with partial positive charges, which are beneficial to capturing bacteria
and damage the bacterial cell membrane. All the above merits endow the Ni0.1Cu0.9S
nanoflower with satisfying antibacterial activity.

3.4. Determination and Colorimetric Assay of Ascorbic Acid

Ascorbic acid (AA) is an important nutrient needed in the metabolic process of human.
Although it is well known as an antioxidant that can eliminate free radicals, excessive and
inadequate amounts of AA will inevitably lead to various diseases, such as scurvy, cancer,
Alzheimer’s disease and kinds of infections [53]. Therefore, it is of great physiological and
pathological significance to develop a rapid and effective method to detect AA. Based on
the peroxidase-like activity of the Ni0.1Cu0.9S nanoflower and the inoxidizability of AA,
a colorimetric technique for the detection of AA by the unaided eye was designed by the
specific inhibition effect toward the catalytic oxidation of colorless TMB into blue ox-TMB.
The UV–vis spectrum and color response of the Ni0.1Cu0.9S + H2O2 + TMB system were
recorded with the addition of different concentrations of AA. As demonstrated in Figure 8a,
the absorbance at 652 nm gradually decreases with the increase in AA concentrations
from 0 to 1500 µM, along with the fading of the solution color from blue to colorless.
Noteworthily, there is a highly linear relationship between AA concentration and the
absorbance difference (∆A) (∆A = A0 − A, A0 represents the absorbance intensity in the
absence of AA, A stands for the absorbance intensity in the presence of AA at 652 nm),
as exhibited in Figure 8b. In the range of 10 µM–800 µM for AA concentration, the linear
regression equation is as follows: ∆A = 0.00076CAA + 0.1099 (R2 = 0.997). It can be seen that
the absorption intensity of the Ni0.1Cu0.9S-based colorimetric biosensor is very sensitive
to AA concentration. Using a signal-to-noise ratio of 3 (3σ/k), wherein σ and k are the
standard deviation of blank sample and the slope of the linear fitting curve, respectively, the
limit of detection (LOD) for AA is calculated to be as low as 0.84 µM. Table S4 summarizes
the detection performance of other materials reported in the previous literature. Obviously,
the colorimetric sensor based on the Ni0.1Cu0.9S nanozyme is more sensitive and reliable
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compared with the other peroxidase-mimic-based detection platforms for AA listed in
Table S4. Therefore, the peroxidase-like property of the Ni0.1Cu0.9S nanoflower can be
successfully developed as a naked-eye colorimetric method for the detection of AA with a
good linear relationship and a low detection limit.
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Figure 8. (a) The UV–vis absorption spectra of the reaction system of Ni0.1Cu0.9S + H2O2 + TMB
in the presence of AA with varied concentrations. (The inset displays the color changes of reaction
solution with the increasing AA concentration). (b) Plots of the absorbance difference (∆A) at
652 nm versus the AA concentration. Inset is the linear calibration plot corresponding to ab-
sorbance against the concentration of AA. The error bars represent the standard deviation values of
three measurements.

There is no doubt that selectivity and anti-interference performance are the significant
indicators of the biosensor toward AA detection. Hence, the selectivity and anti-interference
performance were investigated by replacing AA with other amino acids, such as L-arginine,
L-valine, L-methionine, L-histidine, L-glutamate, glycine, DL-aspartic acid, L-threonine,
L-cysteine and L-tryptophan, or by adding interfering ions to measurement systems, for
instance, Zn2+, Mg2+, Ba2+, Ca2+, K+, Al3+, Cd2+ and Na+. The concentrations of the biolog-
ical molecules were 6-fold greater than AA, and the concentrations of the interfering ions
were more than 20 times that of AA. By monitoring the absorbance difference (∆A) of the
test systems containing AA and other interfering ions (Figure 9a), it can be concluded there
is a negligible effect on the detection of AA, manifesting the outstanding anti-interference
ability of this bioassay. What is more, a careful analysis of Figure 9b reveals that the ab-
sorbance dramatically drops with the blue fading from the reaction solution only in the
presence of AA, while this phenomenon disappears by replacing AA with other amino
acids. This result discloses the excellent specificity toward AA detection. In a word, none
of the biological substances or interfering ions in this test can cause interference with
AA detection at physiological levels, ensuring the selectivity of this colorimetric method.
Obviously, the sensing platform possesses prominent anti-interference ability, sensitivity
and a quick response to directly detect AA. In order to prove the application prospect of
this biosensing platform in real samples, we conducted this method to measure AA con-
centration in orange juice. The recovery experiments were executed by using the standard
addition method, where different concentrations of AA were added to dilute orange juice
samples for analysis. The results are listed Table S5. It can be seen that the recovery values
are 96.87~105.11% with relative standard deviations (RSD) of 0.62~3.92%. The satisfactory
recovery and accuracy illustrate that the biosensing platform possesses a great potential for
AA detection in real samples.
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Figure 9. (a) Anti-interference ability of the detection platform for AA assay towards coexisting
interference substances including Zn2+, Mg2+, Ba2+, Ca2+, K+, Al3+, Cd2+ and Na+. (b) Selectivity
of the detection platform for AA assay. From left to right: Blank, L-arginine, L-valine, L-methionine,
L-histidine, L-glutamate, glycine, DL-aspartic acid, L-threonine, L-cysteine, L-tryptophan and ascorbic
acid. The error bars represent the standard deviation values of three measurements. The insets are
corresponding photographs of color changes.

4. Discussion

In general, we have designed a simple yet versatile method to synthesize the Ni0.1Cu0.9S
nanoflower, which is composed of a large number of ultrathin nanosheets. The nanosheet-
assembled nanoflower-like morphology offers a large specific surface area in order to expose
more active sites and facilitates the rapid diffusion/penetration of the reaction solution. Addi-
tionally, Ni doping brings about a large number of lattice defects, releasing more active sites
containing unsaturated dangling bonds. Meanwhile, Ni doping induces the increase in electric
dipole and electron transfer, endowing Cu and S sites with partial positive charges, which are
beneficial to capturing bacteria and damaging the bacterial cell membrane. By the regulating
strategies of Ni doping and morphology design, the prepared Ni0.1Cu0.9S nanoflower
possesses excellent peroxidase-mimic catalytic performance. Combined with the low pos-
sibility of bacterial drug resistance to copper-based antibacterial agents, the Ni0.1Cu0.9S
nanoflower exhibits improved broad-spectrum antibacterial activity against Gram-negative
E. coli and Gram-positive S. aureus through the rapid denaturation of bacterial colonies
induced by ROS and degraded Cu2+ ions at relatively low concentrations of H2O2. Addi-
tionally, the Ni0.1Cu0.9S nanoflower as an excellent peroxidase mimic could covert colorless
TMB to blue ox-TMB with the assistance of H2O2. Considering the inhibition effect of the
antioxidant AA on the peroxidase-like activity of the Ni0.1Cu0.9S nanoflower, a facile and
sensitive colorimetric biosensing method for AA is established. As expected, this analysis
assay reveals an excellent response to AA detection with good linearity and an LOD as low
as 0.84 µM. In brief, the Ni0.1Cu0.9S nanoflower as a peroxidase-like catalyst can not only
provide a reliable sensing platform for AA detection, but can also kill infection-associated
bacteria and avoid the toxicity of H2O2 as a broad-spectrum antibacterial agent. Conse-
quently, this work is meaningful for exploring the multi-applications of copper-containing
nanomaterials in the fields of biomedicine, biosensing and biocatalysis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bios12100874/s1. Figure S1. The Raman spectra of Ni0.1Cu0.9S nanoflower
and pure CuS; Figure S2. N2 adsorption–desorption isotherm of the Ni0.1Cu0.9S nanoflower. The inset is
the corresponding pore size distribution curve; Figure S3. (a) The XPS survey scan of the Ni0.1Cu0.9S
nanoflower. (b) High-resolution XPS spectrum of C 1s for Ni0.1Cu0.9S nanoflower; Figure S4. The
influences of (a–b) pH value, (c–d) reaction time, (e–f) TMB concentration, (g–h) H2O2 concentration
and (i–j) catalyst concentration on the peroxidase-like activity of the Ni0.1Cu0.9S nanozyme. The error
bars represent the standard deviation values of three measurements; Figure S5. (a) Long-term stability
of Ni0.1Cu0.9S nanozyme for peroxidase-like activity. (b) The UV–vis absorption value of relative
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catalytic activity for five cyclic experiments; Figure S6. The SEM image of Ni0.1Cu0.9S nanozyme after
the stability test; Figure S7. (a) and (b) the Michaelis–Menten curve for H2O2 and TMB, respectively.
(c) and (d) the Lineweaver–Burk plot for determination of kinetic constant of Ni0.1Cu0.9S nanoflower
for H2O2 and TMB, respectively; Figure S8. Relative OD600 values of Ni0.1Cu0.9S nanozyme towards
E. coli and S. aureus; Figure S9. The release curve of time-dependent Cu2+ of Ni0.1Cu0.9S nanozyme in
test system plotted with data obtained by ICP; Figure S10. Survival rates of E. coli and S. aureus treated
with Cu2+ supernatant samples. Table S1. Summary of ICP-OES results for Ni0.1Cu0.9S nanoflower;
Table S2. Comparison of the Km and Vmax values for Ni0.1Cu0.9S nanoflower with those of other
peroxidase mimicase; Table S3. The ICP-OES results of cumulative Cu2+ release from Ni0.1Cu0.9S
nanozyme in test system; Table S4. Comparison of different sensors for AA detection; Table S5.
Determination of the amounts of AA in real samples (n=3) [54–71].
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