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Abstract: Detection of foodborne pathogens at an early stage is very important to control food
quality and improve medical response. Rapid detection of foodborne pathogens with high sen-
sitivity and specificity is becoming an urgent requirement in health safety, medical diagnostics,
environmental safety, and controlling food quality. Despite the existing bacterial detection methods
being reliable and widely used, these methods are time-consuming, expensive, and cumbersome.
Therefore, researchers are trying to find new methods by integrating spectroscopy techniques with
artificial intelligence and advanced materials. Within this progress report, advances in the detection of
foodborne pathogens using spectroscopy techniques are discussed. This paper presents an overview
of the progress and application of spectroscopy techniques for the detection of foodborne pathogens,
particularly new trends in the past few years, including surface-enhanced Raman spectroscopy,
surface plasmon resonance, fluorescence spectroscopy, multiangle laser light scattering, and imaging
analysis. In addition, the applications of artificial intelligence, microfluidics, smartphone-based
techniques, and advanced materials related to spectroscopy for the detection of bacterial pathogens
are discussed. Finally, we conclude and discuss possible research prospects in aspects of spectroscopy
techniques for the identification and classification of pathogens.
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1. Introduction

Foodborne pathogens cause diseases that affect both human health and the economy.
Food and water are an essential part of life, and their contamination by bacteria poses a
serious threat to human health and lifestyles [1,2]. Food-industry operators require rapid
testing devices to monitor the quality of food for the presence of pathogenic bacteria [3].
Every year, millions of people worldwide get infected by contaminated food and water
by microorganisms that cause various diseases. It is estimated that around 600 million
foodborne diseases occur annually, with a mortality rate of 420,000 [4]. The Centers for
Disease Control and Prevention estimated that approximately 2.5 billion people lack access
to healthy and safe water in developing nations. Every year, more than 2.2 million mortality
rates are reported due to waterborne diseases [5]. In China, a summary of studies estimated
that the prevalence of pathogens in the food was 8.5% [6]. Controlling food safety is a
persistent and challenging task in China due to the diversity of foods and food-production
industries. Microbes such as Escherichia coli, Staphylococcus aureus, Salmonella enterica,
and Listeria monocytogenes are usually highly infectious, and the presence of few colony-
forming units (CFUs) can cause disease [7]. Therefore, it is crucial to identify pathogens at
an initial stage with highly sensitive techniques to avoid diseases and outbreaks [8,9].
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Conventional bacteria detection methods include cultivation, Gram staining, and bio-
chemical analysis. These methods are reliable and have made great contributions to
pathogen detection, but they are time-consuming and often take 2 to 3 days or more,
which is not convenient for the rapid identification of microbes. The current techniques that
are being used as clinical methods include polymerase chain reaction (PCR), enzyme-linked
immunosorbent assay (ELISA), and matrix-assisted laser desorption ionization–time of
flight (MALDI-TOF) mass spectrometry [10–14]. The latest techniques have revolution-
ized the field of diagnosis due to high sensitivity and specificity. However, some of the
drawbacks associated with current clinical diagnostic techniques include high cost, con-
trolled sampling conditions, being laborious and time-consuming, and the requirement
for a skilled operator. Therefore, further research progress is required to develop a user-
friendly, portable, and economic diagnostic development system. The development of
simple techniques and systems for the rapid, economical, and on-site analytical approaches
are essential in public health safety, medical diagnostics, and food safety [15–19].

This review is based on emerging detection approaches and methods based on spec-
troscopy for foodborne pathogens. Spectroscopy techniques have been used widely for the
development of biomedical devices and prototypes. A large number of spectroscopy meth-
ods are emerging; however, this review focuses on recent progress in spectroscopic methods
for pathogen detection, including surface-enhanced Raman spectroscopy, surface plasmon
resonance, fluorescence spectroscopy, multiangle laser light scattering, and imaging anal-
ysis. Various bacteria show different spectroscopy characteristics, based on which the
identification and classification of pathogens have been made. In the last few years, some
trends in the area of spectrometry have emerged, including the use of nanoparticles, mi-
crofluidic platforms, specific biorecognition elements, and artificial intelligence [20,21].
Miniature devices related to spectroscopy microfluidic platforms in the field of biosensing
have emerged in the last decade, and have been applied widely in biomedical devices [22–24].
Smartphones are ubiquitous, and user-friendly applications can be built for making point-
of-care systems. The capability of smartphones for collecting and processing signals,
images, data storage, and transmitting is suitable for creating miniature devices in re-
mote and resource-limited areas. Recently, the integration of smartphones with other
detection techniques has been emerging. The health-care applications of smartphones in
biomedical devices and spectroscopy techniques provide portability and data-analysis
feasibility, as well as economical and user-friendly systems. Instead of developing separate
instruments and devices, smartphones are accessible to be utilized in many biomedical ap-
plications [25,26]. This review is organized to describe several spectroscopy techniques and
approaches developed for the detection of pathogens to clinical diagnostics and food safety.

2. Surface-Enhanced Raman Spectroscopy (SERS)

Surface-enhanced Raman spectroscopy is a real-time detection method that depends
on the inelastic scattering of excitation light and molecular resonance. SERS inherits the sig-
nificant chemical fingerprint information on Raman spectroscopy and enhances sensitivity
using plasmon-enhanced excitation and scattering. In SERS, the inelastic scattering from
the molecules is greatly enhanced by a factor of up to 108 when the molecules are adsorbed
onto corrugated metal surfaces. The method can rapidly and efficiently detect a range
of chemical structures and material compositions with high accuracy and reproducibility.
These advantages make SERS a very promising tool for developing microbial detection
techniques. SERS has been applied to different applications for detecting and classifying
various pathogens [27–31].

Wang et al. developed a surface-enhanced Raman scattering (SERS)-based LFA strip for
the detection of such pathogens as Yersinia pestis, Francisella tularensis, and Bacillus anthracis.
Target-specific SERS nanotags (Raman reporter-labeled gold nanoparticles) were utilized
instead of gold nanoparticles. The method detected the pathogens in a short duration
of 15 min using a minimum sample volume of 40 µL. The obtained detection limits for
Y. pestis, F. tularensis, and B. anthracis were 43.4 CFU/mL, 45.8 CFU/mL, and 357 CFU/mL,
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respectively [32]. A high-quality silver nanorod (AgNR)-based SERS substrate was pre-
pared to acquire the chemical fingerprint information of 22 strains of common pathogens.
The method was able to identify and discriminate 20 strains of pathogens (diluted to
107 CFU/mL) with high sensitivity within 30 min [33]. Another SERS-based biosensor
was fabricated using gold nanorods (GNRs) complexed with oligonucleotide aptamers.
The SERS tags were combined with antibody-modified magnetic nanoparticles for the
simultaneous detection of Escherichia coli and Salmonella typhimurium. The developed SERS
biosensor showed a good linear response of 101 to 106 CFU/mL, high detection sensitivity
(<8 CFU/mL) and a recovery rate of 95.26–107.88%. That study on combining aptamers
and Raman reporters in SERS tags makes it possible to simultaneously detect different
pathogens using a single biosensor [34].

Artificial intelligence has been applied widely in different diagnostics applications.
Machine learning and neural networks are emerging techniques for data analysis and
classification [35]. Spectroscopy data acquired from the SERS biosensors and techniques
have been applied in machine learning and neural network algorithms. Ding et al. devel-
oped a method by combining SERS with a multiscale convolutional neural network (CNN).
The label-free Raman substrate was prepared using gold nanoparticles. Different 1854
SERS spectra of three Salmonella serovars were measured and a multiscale CNN model
was applied to extract SERS spectral features. The prepared gold nanoparticles and the
developed CNN model showed detection accuracy higher than 97%. The given outcomes
showed that the combination of SERS spectroscopy with multiscale CNN is feasible for
Salmonella serotyping (S. enteritidis, S. typhimurium, and S. Paratyphi) with bacterial concen-
tration of 108 CFU/mL [36]. A stacked autoencoder-based deep neural networks algorithm
was applied using SERS for the detection of methicillin-resistant Staphylococcus aureus
and methicillin-sensitive S. aureus. The developed algorithm can evaluate features from
the acquired signals and classify the data with an accuracy of 97.99%. The developed
deep learning model classifies the pathogens with an area under the curve of 0.99 [37].
Ciloglu et al. combined SERS with machine learning techniques to classify Staphylococcus aureus
and Legionella pneumophila. The technique gives higher classification accuracy of 97.8% by applying
the k-nearest neighbors classifier [38].

Raman spectroscopy has been utilized extensively for microbiological diagnostics.
A point-of-care testing technique has been developed using adhesive tape as a single
platform for fast sampling, photocontrolled release, and SERS detection of pathogens
from infected wounds. Pathogenic infections of P. aeruginosa and S. aureus were detected
using gold nanostars on the adhesive tape as SERS substrate. The detection limit of the
technique is 1.8 nM [39]. Duan et al. developed a SERS aptasensor for simultaneous
detection of various pathogens using gold-decorated PDMS substrate. The fabricated film
bound with the SERS probe to detect Vibrio parahaemolyticus and Salmonella typhimurium
with a selectively detection limit of 18 CFU/mL and 27 CFU/mL, respectively [40]. The
advancement of materials in SERS technology has increased accuracy and sensitivity for
the detection of pathogens. The binding of SERS probes with fabricated chips and PDMS
materials has enabled continuously miniaturization of detection prototypes [41,42].

Nakar et al. obtained spectra from pathogens E. coli, Klebsiella pneumoniae, and Klebsiella oxytoca
isolates using UV-resonance Raman spectroscopy and single-cell Raman microspectroscopy.
The obtained spectra were analyzed by machine learning algorithms for the classification
of bacteria at the genus and species levels. The technique provides higher classification
with 92% accuracy [43]. The method was further applied for the detection of clinical strains
of E. coli [44]. Shen et al. created a fiber-probe-based method of Raman spectroscopy for the
identification of six pathogens (S. epidermidis, S. aureus, E. faecalis, E. faecium, P. aeruginosa,
and the yeast C. albicans). The collected signals from the fiber probe were analyzed using
principal component analysis and linear discrimination models. The classification model
acquired results with an accuracy of 93.8% [45]. The given studies were further extended
and applied on agar plates to classify pathogenic infections [46].
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SERS scattering has been incorporated with a microfluidic chip for the identification
and discrimination of pathogens using tagged gold nanostars. The testing sample flowed
continuously through the microfluidic channel, and the SERS signal was acquired corre-
sponding to the SERS-tagged nanostars coated with antibody-binding protein. The system
is capable of discriminating between L. monocytogenes and Listeria innocua with a concen-
tration of 105 CFU/mL. Analyzing the data for the detection of pathogens requires less
than 2 min. However, overall sample preparation and system operation time requires 30
min. Figure 1 is a schematic illustration of the on-chip detection of L. monocytogenes using
SERS [47]. Bai et al. developed a sandwich immunoassay platform using functionalized
SERS probes and magnetic beads for the simultaneous detection of E. coli and S. aureus.
The technique uses two SERS probes for acquiring the signal following the immunomag-
netic separation of the sample. The method identifies the pathogen with a detection limit of
10 and 25 CFU/mL for the simultaneous detection of E. coli and S. aureus, respectively [48].
Overall, SERS has emerged as a powerful analytical tool for rapidly detecting pathogens.
Recent progress in the field of micro- to nanofabrication methodologies has enabled SERS
applicable to various applications, such as rapid detection, point-of-care detection, and in
situ detection. Currently, commercially available pathogen-detection techniques using
SERS do not yet exist, but the improvement in SERS techniques has made it possible to
develop handheld and portable prototypes to detect pathogens rapidly.

Biosensors 2022, 12, x FOR PEER REVIEW 4 of 19 
 

fiber probe were analyzed using principal component analysis and linear discrimination 
models. The classification model acquired results with an accuracy of 93.8% [45]. The 
given studies were further extended and applied on agar plates to classify pathogenic in-
fections [46]. 

SERS scattering has been incorporated with a microfluidic chip for the identification 
and discrimination of pathogens using tagged gold nanostars. The testing sample flowed 
continuously through the microfluidic channel, and the SERS signal was acquired corre-
sponding to the SERS-tagged nanostars coated with antibody-binding protein. The system 
is capable of discriminating between L. monocytogenes and Listeria innocua with a concen-
tration of 105 CFU/mL. Analyzing the data for the detection of pathogens requires less 
than 2 min. However, overall sample preparation and system operation time requires 30 
min. Figure 1 is a schematic illustration of the on-chip detection of L. monocytogenes using 
SERS [47]. Bai et al. developed a sandwich immunoassay platform using functionalized 
SERS probes and magnetic beads for the simultaneous detection of E. coli and S. aureus. 
The technique uses two SERS probes for acquiring the signal following the immunomag-
netic separation of the sample. The method identifies the pathogen with a detection limit 
of 10 and 25 CFU/mL for the simultaneous detection of E. coli and S. aureus, respectively 
[48]. Overall, SERS has emerged as a powerful analytical tool for rapidly detecting patho-
gens. Recent progress in the field of micro- to nanofabrication methodologies has enabled 
SERS applicable to various applications, such as rapid detection, point-of-care detection, 
and in situ detection. Currently, commercially available pathogen-detection techniques 
using SERS do not yet exist, but the improvement in SERS techniques has made it possible 
to develop handheld and portable prototypes to detect pathogens rapidly. 

 
Figure 1. Schematic representation of the on-chip SERS technique for the detection of L. monocyto-
genes. (i) SERS-encoded gold nanostars. (ii) An antibody-binding protein. (iii) Test sample contain-
ing bacteria. (iv) Incubating bacterial testing sample with SERS tag. (v) Microfluidic channel for 
flowing the sample and SERS detection. Reprinted with permission from Ref. [47]. 

3. Surface Plasmon Resonance (SPR) 
SPR is the fluctuation of the charge density at the interface between two media with 

dielectric constants of opposite signs, and the interaction between the media produces 
energetic plasmonic electrons. In SPR-based biosensors, the biological substance to be de-
tected is immobilized on the sensor surface and the analyte typically passes through the 
sensor–analyte interface. The biorecognition event between the analyte and the biorecog-
nition substance results in a change in the refractive index near the sensor surface, which 
is determined as a change in the plasmon resonance angle at the surface. SPR biosensors 
are used in many application areas because they are specific, sensitive, quantitative, and 
label-free analytical techniques [49–53]. 

Figure 1. Schematic representation of the on-chip SERS technique for the detection of L. monocytogenes.
(i) SERS-encoded gold nanostars. (ii) An antibody-binding protein. (iii) Test sample containing
bacteria. (iv) Incubating bacterial testing sample with SERS tag. (v) Microfluidic channel for flowing
the sample and SERS detection. Reprinted with permission from Ref. [47].

3. Surface Plasmon Resonance (SPR)

SPR is the fluctuation of the charge density at the interface between two media with
dielectric constants of opposite signs, and the interaction between the media produces ener-
getic plasmonic electrons. In SPR-based biosensors, the biological substance to be detected
is immobilized on the sensor surface and the analyte typically passes through the sensor–
analyte interface. The biorecognition event between the analyte and the biorecognition
substance results in a change in the refractive index near the sensor surface, which is deter-
mined as a change in the plasmon resonance angle at the surface. SPR biosensors are used
in many application areas because they are specific, sensitive, quantitative, and label-free
analytical techniques [49–53].

Zhou et al. designed a fiberoptic surface plasmon resonance sensor based on antimi-
crobial peptides for the identification of E. coli O157:H7 in liquid medium. AgNP-rGO
were coated on the optical surface and covered by gold film. The developed sensor
had good specificity with a detection limit of 5 × 102 CFU/mL [54]. Another biosensor
based on optical fiber using SPR was designed for the detection of E. coli. The surface
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of U-shaped plastic optical fiber was immobilized with bacterial antibodies and coated
with gold. The developed biosensor is economical, rapid, and showed a detection limit of
1.5 × 103 CFU/mL [55].

A highly sensitive SPR biosensor consists of the prism, gold coating, graphene, affinity
layer, and sensing medium for the detection of waterborne pathogens. The structural param-
eters of the biosensor were optimized to attain a higher sensitivity of 221.63◦/RIU for E. coli
and 178.12◦/RIU for Vibrio cholera pathogen with an average value of 199.87◦/RIU [56].
An optical sensor based on thin liquid film was designed by combining the SPR, light ex-
tinction, and near-critical angle reflection. The calculated sensitivity of SPR to the surface
refractive index was 168.35◦/RIU. The experiments were performed to evaluate the reflec-
tivity curve from the sample containing E. coli at a concentration of 4.7 × 108 CFU/mL [57].
Another SPR biosensor was designed using flexible photonic crystal fibers. A metallic gold
strip and titanium oxide film were coated on the outer surface of the biosensor. The sim-
ulation results showed higher amplitude sensitivity of 7420.69 RIU−1 and wavelength
sensitivity of 87,000 nm/RIU. The given technique requires real-time implementation for
the detection of different biological materials [58]. The surface plasmon resonance imaging
enabled crossed surface relief gratings utilized for the rapid and label-free detection of
E. coli. The prototype was connected with optics and electronics systems. The testing
was performed using clinical samples within the concentration range of 103–109 CFU/mL.
The acquired detection limit of the system was approximately 100 CFU/mL, which is below
the threshold value for clinical urinary tract infection diagnosis [59].

Wen et al. presented a smartphone-based SPR sensing platform for the fast identifica-
tion of E. coli. The SPR phenomena of gold nanoparticles were used for pathogen sensing.
The smartphone was used for sensing the signal dependent on AuNP color variations.
The image-processing technique was applied to evaluate the spectral color intensity of
the bacterial sample in response to SPR. The proposed technique requires less detection
time without using complicated laboratory instrumentation. The detection limit of the
developed method is 8.81 × 104 CFU/mL [60]. A schematic illustration of the developed
system is presented in Figure 2. Hence, recent research shows the synthesis of different
nanomaterials, and applications in SPR exhibit excellent efficiency for pathogen detection.
Each nanomaterial with different 3D structure has its own merits with distinctive optical
characteristics and several reaction patterns to analytes.Biosensors 2022, 12, x FOR PEER REVIEW 6 of 19 
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permission from Ref. [60].
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4. Fluorescence Spectroscopy

There are various fluorescence spectroscopy techniques for direct and indirect identifi-
cation of foodborne pathogens. Conventional fluorescence spectroscopy relies on organic
dye-labeled recognition probes. Recently, advances in the development of various materials,
such as quantum dots, metal–organic frameworks, polymers, and carbon dots, have been
used as fluorescence tags in assays for the detection of pathogens [61–65]. Optical trans-
ducers based on advanced development of materials are particularly attractive for the
rapid and direct detection of pathogens. Direct fluorescence techniques are based on utiliz-
ing naturally fluorescent components that have been utilized for bacterial identification.
Different reactions of certain enzymes with the cells emit photons as a byproduct. The emission
of photons during the reaction creates fluorescence that is utilized in the detection process
of various pathogens [66–70].

Zhao et al. developed a highly sensitive immunosensor for the rapid identification
of E. coli using microspheres labeled with carbon dots. Fluorescence spectroscopy was
applied to analyze the emission of excitation wavelength. The developed immunosensor
has a detection limit of 2.4 × 102 CFU/mL in milk and can be tested within 30 min [71].
A highly sensitive biosensor was developed using a terbium-based metal–organic frame-
work interfaced with anti-E. coli antibodies. The biosensor is capable of detecting E. coli
in analytes within the range of 1.3 × 102 to 1.3 × 108 CFU/mL with a detection limit of
3 CFU/mL. The total time to perform the detection experiment is about 20–25 min, with
a response time of 5 min [72]. Kim et al. developed a microfluidic nanobiosensor for the
detection of Salmonella using quantum dot nanoparticles. A miniature fluorometer was
designed to detect the fluorescence signal from the quantum dot nanoparticles linked with
Salmonella. The fluorescence detection module was coupled with fibers for the transmission
of the optical signal. The sensor is capable of detecting microbes with a limit of detection
of 103 CFU/mL in both buffer solution and food samples [73]. Rauf et al. designed a
digital counter to isolate and detect E. coli from the water using a microfluidic platform
and computer vision. The droplets were generated using sample in water and DNAzyme.
The DNAzyme creates fluorescence in the presence of E. coli, and the generated fluores-
cence was used for the detection of pathogens. The generated droplets were incubated in
a heating tube and then passed to the microfluidic detection chip. The droplets contain-
ing E. coli exhibit fluorescence that was analyzed using computer-vision based algorithm.
The detection process can be performed using a minimum volume of 50 µL. The system can
detect pathogens with 100 cells in a volume of 50 µL. The overall scheme of the developed
prototype is presented in Figure 3 [74].
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Droplet incubation is emerging for the development of rapid diagnostic methods.
Kaushik et al. presented a DropFast technique using a rapid resazurin-based fluorescence
to cultivate E. coli inside a picoliter droplet. The pathogens encapsulated inside the 20 pL
droplets were incubated for an hour, and the fluorescence detection method analyzed
the antimicrobial sensitivity. The detection experiments were performed with a sample
concentration of 107 CFU/mL [75]. Another proof-of-concept study was performed to
detect pathogenic DNA using multiple loop-mediated isothermal amplification (LAMP).
The microfluidic chip detected three pathogens: E. coli, methicillin-resistant S. aureus, and
methicillin-sensitive S. aureus. The testing procedure was performed within 2 h, and the
detection limit of the specific genes was less than 102 CFU/100 mL [76]. A gel-based
loop-mediated isothermal amplification (gLAMP) integrated with a microfluidic chip for
the detection of different pathogens has been tested. Microchannels allow DNA samples
to flow to the reaction chamber in the chip. The fluorescence imaging system was used to
analyze the sample. The system detected pathogens with high selectivity and sensitivity of
fewer than 1.6 cells. The pathogen mixture was detected simultaneously with 96 copies of
P. hauseri and 36 copies of Salmonella. E. coli was detected using 35 copies [77]. Huang et al.
developed a portable microfluidic chip-based nucleic acid analyzer for the detection of
Mycoplasma pneumoniae, Staphylococcus aureus, and methicillin-resistant S. aureus. A portable
nucleic acid analyzer was developed for analyzing the fluorescence data of nucleic acid
amplification in real time. The device detected extremely low DNA concentration with a
detection limit of 101 copies/µL with high sensitivity and accuracy. The overall required
time duration from sample preparation to detection results requires less than 90 min [78].
Chen et al. developed a portable multichannel turbidity system for the rapid identification
of pathogens using LAMP. The developed system consists of a temperature controller,
photoelectric detection system, and calibration system. The designed system is capable of
detecting Legionella bacteria and H7 subtype virus (H7) within 1 hour. The system is more
specific for Legionella bacteria, with sensitivity for H7 of 10 copies/mL [79].

Wang et al. developed a smartphone-integrated paper sensing system using fluores-
cent and colorimetric dual readout for the detection of E. coli. The presence of pathogen
changes the fluorescence and the UV-vis absorbance signals. The variation in the fluores-
cence is detected by the developed smartphone application for color scanning. The designed
technique showed good sensitivity with a detection limit of 100 CFU/mL and 44 CFU/mL
by fluorescence and colorimetric assay, respectively [80]. Smartphone-based microscopes
have been developed for various applications in medical diagnosis and pathogen detec-
tion. An optimized peptide nucleic acid (PNA)-based fluorescence in situ hybridization
(FISH) assay was used with a smart-phone based fluorescence microscope. The designed
system is capable of detecting pathogenic Cronobacter spp. with a limit of detection of
104 CFU/mL [81]. Overall, fluorescence-based biosensors are highly sensitive and with a
wide dynamic range that enables the rapid detection of pathogens. The development of
nanoparticles as fluorescence probes to enhance fluorescence intensity in the presence of
biological samples have shown advantages in the rapid detection of pathogens.

5. Multiangle Laser Light Scattering

Lasers are widely used for the detection of microorganisms because of high-intensity
and monochromatic features. Various light-scattering theories, including Rayleigh theory,
Mie scattering, and Rayleigh–Gans theory, have been applied to predict homogeneous
particles [82–86]. Modern devices based on light-scattering techniques are designed based
on mathematical and physics-related models. Dynamic light scattering (DLS) is based
on the principle of Brownian movement and analyzes the temporal fluctuations of the
scattered light intensity. DLS has been applied widely to estimate the size of particles
from the scattered light in an aqueous medium and for the detection of biological samples.
Pathogen detection has been carried out using DLS, in which the pathogens are considered
microparticles. Different pathogens exhibit unique scattering of light based on different
sizes, shapes, and characteristics of the microbes [87–91].
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Hussain et al. built a prototype for sensing the scattered laser light from microbes.
The prototype was designed based on the MIE scattering theorem, which gives useful infor-
mation about the scattering of light from particles. The prototype consists of an assembly of
32 photosensors, laser light, and a data-acquisition system. The optimum concentration of
the sample was used, and the laser light passed by the prepared sample. The surrounding
photodetectors captured the scattering of light, and the data were analyzed using statistical
analysis for the classification of pathogens. E. faecalis, S. aureus and E. coli microbes were
tested with 50–70 cells in 10 mL DI water. The mean classification accuracy for E. faecalis,
S. aureus, and E. coli was 81.8%, 70.9%, and 71.4%, respectively [92]. The prototype consists
of an assembly of 32 photosensors, placed at different positions surrounding the sample
flask. The higher number of sensors requires greater computing power, which reduces the
efficiency of the system and takes more time for processing data [93]. Therefore, the pro-
totype was further modified by reducing the number of surrounding sensors using MIE
scattering. MIE scattering theory states that higher intensity of scattering occurs in the for-
ward direction compared to back- and side scattering. Therefore, the photosensors placed
in the back direction were removed and the number of sensors reduce to 12 [84]. A machine
learning algorithm was applied to the acquired data. The device classified the pathogens
E. faecalis, E. coli, and S. aureus with an accuracy of 99%, 87%, and 94%, respectively. The overall
classification accuracy of the machine learning model was 93.6% [94]. The technique can detect
and identify pathogens with 50–60 microbes in a volume of 10 mL. The designed prototype was
further extended and applied for the detection of hepatitis B surface antigen (HBsAg) based on
immunomagnetic separation. The results showed classification accuracy for the identification
of HBsAg was 87.7%, with a dynamic range of 98.86 IU/mL to 3163.5 IU/mL [95].

The microfluidic platform was designed for the identification of pathogens using
the scattering of light from microbial particles. Microfluidic devices are desirable due to
miniaturization, portability, and requiring less sample volume. The controlled continu-
ous flow of microbes from the microfluidic channel helps in detecting the scattered light.
Microfluidic chips are playing an essential role in the advancement of POCT devices [96,97].
An embedded microfluidic chip platform has been linked with optical fibers for connecting
photosensors and laser light. The pathogenic sample was separated using immunomag-
netic separation, and separated magnetic beads flowed through the microfluidic channel.
The laser light passed through the microfluidic channel and the photosensors collected the
scattered light from the flowing magnetic beads. Figure 4 describes the developed microflu-
idic chip platform and prototype for detecting scattered light from the magnetic beads.
The scattered light was classified using machine learning algorithms. Higher classification
accuracy of 97.9% was acquired for the detection of P. aeruginosa with a detection limit of
102 CFU/mL. The device can perform the detection procedure within 25 min [98].
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6. Imaging Analysis

Image processing and analysis are extensively applied for the classification of biologi-
cal substances. Extensive research has been carried out in developing fluorescence tags to
be utilized in imaging techniques for microbial classification [99–102]. Microscopy tech-
niques and miniature smartphone-based detection devices are developed for collecting and
classifying the images for the detection of pathogens. Classification algorithms are applied
widely in many applications of biomedical imaging analysis and classification [103–106].
Deep diagnostic agent forest is a deep-learning pathogen-recognition system proposed for
the detection of pneumonia using CT images. The deep-learning algorithm shows higher
classification accuracy for pneumonia pathogen recognition using CTs [107]. A combi-
nation of fluorescence imaging and deep-learning automated identification of the fecal
contamination on meat has been applied. The developed efficient deep-learning model
achieved 97.32% accuracy and specificity of 97.35% for discriminating between clean and
contaminated areas on meat [108].

A miniature system was developed using smartphone-based lateral-flow imaging and
machine learning for detecting Salmonella spp., with a detection limit of 5 × 104 CFU/mL.
An optical imaging system was optimized with an angled slot to enhance the optical
intensity. The device gives classification accuracy of 95.56% using the combination of RGB
color space and machine learning classifiers [109]. Qi et al. developed an automated and
portable system for detecting pathogens using rotated Halbach magnetic separation and
Raspberry Pi imaging. The prepared magnetic nanobeads captured the targeted pathogens,
and the captured images were analyzed to quantitively determine the concentration of
pathogens. The developed system was able to detect Salmonella with a detection limit of
8 CFU/50 µL in 60 min. Figure 5 shows representative images of the developed prototype
and methodology [110].
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Imaging analysis for droplets encapsulated with pathogens has been applied in vari-
ous research areas for detecting biological materials. Specifically, droplet-based bioreactors
are widely applied for incubating pathogens and detection. Zhu et al. developed a microflu-
idic technology to analyze the quantitative growth of Bacillus coagulans. The generated
droplets were encapsulated with microbes and then incubated to grow the cells in the
droplets. The incubated droplets were analyzed using microscopic fluorescence images.
The growth of the B. coagulans cells was estimated by bright-field images and fluorescence
intensity in the droplets. The microbial growth in the droplets showed good consistency,
with a correlation coefficient of 0.98 [111]. Another droplet incubation-based system was
designed for accurate diagnosis of antibiotic-resistant gut microbes. The incubated droplets
were reinjected into the microfluidic chip, and images were collected through a high-
frame-rate camera on the microscope. The growth of microbes was analyzed by imaging
analysis, represented by wavelet optical density value [112]. A portable microfluidic chip
has been designed for the detection of Salmonella based on single-cell droplets. The gener-
ated droplets were cultivated with resazurin that produced fluorescence of the cultivated
droplets. The fluorescence from the cultivated droplets was used to distinguish the sample
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within 5 h. The system can detect pathogens with a detection limit of 50 CFU/mL [113].
Kim et al. proposed a microscopy-based framework for the rapid identification of pathogens
from single to a few cells. The technique obtains and utilizes the morphology of testing
samples by incorporating 3D quantitative phase imaging and an artificial neural network.
The system identified 19 bacterial species with a classification accuracy of 82.5% from a
specific bacterial cell or cluster [114].

Imaging analysis and classification using artificial intelligence have significantly en-
hanced classification accuracy. Data deep learning and neural networks have made classifi-
cation more rapid compared to machine learning techniques that use feature acquisition.
AI coupled with spectroscopy techniques could bring significant advances in the field of
biological detection techniques, but there are more challenges in selecting an appropriate
technique to be applied for a specific problem. In addition, the extensive quantity of clinical
data is demanding in terms of validating the results and applying methods at commer-
cial level. Analysis of SERS, SPR, fluorescence spectroscopy, and multiangle laser light
scattering for the detection of pathogens has been summarized in Table 1.

Table 1. Different spectroscopy techniques for the detection of foodborne pathogens. The information
about the available literature of the given methods is included in the main text.

Detection
Technique Detecting Pathogens Performance Detection Limit Ref.

Surface-Enhanced Raman Spectroscopy (SERS)

LFA strip-based SERS Y. pestis, F. tularensis, and
B. anthracis

40 µL testing sample, assay time
15 min

Y. pestis 43.4 CFU/mL, F.
tularensis 45.8 CFU/mL, and B.

anthracis 357 CFU/mL.
[32]

AgNR based SERS 20 strains of pathogens Discriminate 20 strains of
pathogens, detection time 30 min 107 CFU/mL [33]

GNRs based SERS E. coli and S. typhimurium
Simultaneous detection, linear

response, recovery rate
95.26–107.88%

<8 CFU/mL [34]

SERS using CNN S. enteritidis, S. typhimurium, and
S. Paratyphi

Label-free Raman substrate,
Classification accuracy 97% 108 CFU/mL [36]

SERS using DNN
methicillin-resistant S. aureus

and methicillin-sensitive
S. aureus

Label-free SERS, classification
accuracy 97.99% - [37]

SERS using ML S. aureus and L. pneumophila
Discriminate antibiotic-resistant
bacteria, classification accuracy

97.8%
- [38]

SERS Adhesive Tape P. aeruginosa and S. aureus POC testing, Rapid detection,
detection process 8 h 1.8 nM [39]

SERS aptasensor using
gold decorated PDMS

substrate

V. parahaemolyticus and
S. typhimurium

non-overlapping Raman peaks,
low cost, simultaneous detection

V. parahaemolyticus 18 CFU/mL
and S. typhimurium 27 CFU/mL [40]

Machine learning spectra
analysis

E. coli, K. pneumoniae and
K. oxytoca isolates

Label free, classification accuracy
92% - [43]

Fiber-probe-based Raman
Spectroscopy

S. epidermidis, S. aureus, E. faecalis,
E. faecium, P. aeruginosa, and the

yeast C. albicans

Rapid, portable strategy,
accuracy 93.8% - [45]

SERS tags with
microfluidic L. monocytogenes and L. innocua Real-time detection, total

analysis time 30 min. 105 CFU/mL [47]

Immunoassay platform E. coli and S. aureus Simultaneous detection, highly
sensitive and selective technique

E. coli 10 CFU/mL and S. aureus
25 CFU/mL [48]
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Table 1. Cont.

Detection
Technique Detecting Pathogens Performance Detection Limit Ref.

Surface-Enhanced Raman Spectroscopy (SERS)

Surface plasmon resonance (SPR)

Fiber optic-based SPR E. coli Recovery rate of 88%~110%,
high specificity 5.0 × 102 CFU/mL [54]

Fiber optic-based SPR E. coli Selective, portable system,
economical and rapid 1.5 × 103 CFU/mL [55]

SPR (prism, gold coating,
graphene, affinity layer) E. coli and V. cholera

Higher sensitivity: 221.63◦/RIU
for E. coli and 178.12◦/RIU for

Vibrio cholera
- [56]

SPR based on the thin
liquid film E. coli

Economical, label free, rapid,
Higher sensitivity: 168.35◦/RIU,
minimum sample volume ≈10

µL

4.7 × 108 CFU/mL [57]

SPR imaging E. coli

Rapid, label-free detection,
economical system design

(∼US$100) and detection time
(35 min)

~100 CFU/mL [59]

Smartphone-based SPR E. coli
Real-time detection,

equipment-free assay, and POC
detection

8.81 × 104 CFU/mL [60]

Fluorescence Spectroscopy

Microspheres labeled with
carbon dots E. coli Higher sensitivity, detection time

30 min 2.4 × 102 CFU/mL [71]

Terbium-based metal
organic framework E. coli Experiment time 20–25 min,

response time 5 min 3 CFU/mL [72]

Fluorometer using
quantum dot
nano-particles

Salmonella Microfluidic platform, miniature
device 103 CFU/mL [73]

Digital counter using a
microfluidic platform E. coli Microfluidic platform, 50 µL

testing sample 100 cells in a volume of 50 µL [74]

Rapid resazurin-based
fluorescence E. coli

20 pL droplets incubation,
antimicrobial sensitive method,

detection time 1 h
107 CFU/mL [75]

LAMP
E. coli, methicillin-resistant

S. aureus and methicillin-sensitive
S. aureus

Detection within 2 h 102 CFU/100 ml [76]

gLAMP integrated with a
microfluidic chip P. hauseri, Salmonella, and E. coli

Simultaneous detection, high
selectivity and sensitivity of

fewer than 1.6 cells

P. hauseri 96 copies, Salmonella 36
copies, and E. coli 35 copies [77]

Microfluidic chip-based
nucleic acid analyzer

M. pneumoniae, S. aureus, and
methicillin-resistant S. aureus

Portable system, Detect low
DNA concentration, detection

less than 90 min
101 copies/µL [78]

multichannel turbidity
system using LAMP

Legionella bacteria and H7
subtype virus Rapid detection within one hour 10 copies/mL [79]

Smartphone-integrated
paper sensing system

using fluorescence
E. coli Smartphone application,

user-friendly system 100 CFU/mL [80]

Smartphone-integrated
paper sensing system

using colorimetric dual
readout

E. coli Smartphone application,
user-friendly system 44 CFU/mL [80]

Smartphone-based
microscope Cronobacter spp. Miniature device, optimized

PNA-based FISH assay 104 CFU/mL [81]
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Table 1. Cont.

Detection
Technique Detecting Pathogens Performance Detection Limit Ref.

Surface-Enhanced Raman Spectroscopy (SERS)

Imaging Analysis

Fluorescence imaging and
deep learning E. coli and Salmonella Classification accuracy

97.32%,specificity 97.35% - [108]

smartphone-based
lateral-flow imaging and

machine learning
Salmonella spp. Classification accuracy 95.56% 5 × 104 CFU/mL [109]

Halbach magnetic
separation and Raspberry

Pi imaging
Salmonella

Automated detection device,
operation time 1 h, recovery rate

from 88.96% to 99.74%
8 CFU/50 µL [110]

Incubated droplets
imaging B. coagulans Correlation coefficient 0.98 Droplet seeding density approx.

9 × 107 cells/mL [111]

Droplets imaging using
resazurin Salmonella Single-cell detection, testing

within 5 h 50 CFU/mL [113]

Microscopy-based
framework 19 bacterial species Classification accuracy of 82.5% Single to several cells and over

105 CFU [114]

7. Conclusions and Future Perspectives

This paper provides an overview of the application of spectroscopy techniques for
developing foodborne pathogen-detection methods over recent years. The consumption
of pathogen-contaminated food and water poses a serious threat to human life. The rapid
and accurate identification of pathogens can avoid epidemics of severe foodborne diseases.
The latest spectroscopy techniques incorporate miniature and POCT devices. The progress
in the material sciences and fabrication techniques has made it possible to manufacture
miniature optical instruments. The synthesis of advanced materials and fabrication of
nanoparticles on SERS substrates has improved the SERS detection of various foodborne
pathogens. Further research will be required in the characterization of materials to enhance
SERS detection and improve sensitivity and selectivity.

Artificial intelligence techniques, including machine learning and deep learning,
have been applied widely for data classification. For analyzing spectroscopy data,
classification models based on machine learning have shortened the time required for high
classification accuracy compared to using statistical analysis and mathematical models.
The advent of deep learning and neural networks has significantly increased the classifi-
cation accuracies in data classification. Deep learning, microfluidics, advanced materials,
and robotics will enable automation and high throughput in pathogenic diagnostics.

Advancements in instrumentation have enabled the creation of portable and easy-
to-assemble devices. Microfluidic chips are also capable of being integrated with laser
light, photosensors, and Raman scattering detectors. The smartphone has been utilized
widely for the classification of pathogenic microbes using microfluidics, imaging tech-
niques, and detecting fluorescence. Smartphones have built-in high-definition cameras
utilized for microscopy and fluorescence detection. The internal microprocessors of a
smartphone can acquire image and signal processing without external computers and
share real-time outcomes speedily. Smartphone application development is user-friendly
and easy to access for users, and the acquired data can be linked to servers for data
processing. Automated microfluidic platforms are capable of sample processing, separa-
tion, droplet generation, and incubation. All these capabilities can be utilized to develop
smart devices using the spectroscopy principle. Meanwhile, significant challenges, includ-
ing label-free detection, shortening sample-preparation methods, system portability, cost,
and rapid detection, still need to be addressed in developing spectroscopy techniques to be
applied at a commercial level.
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