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Abstract: Lipid droplets (LDs) are simple intracellular storage sites for neutral lipids and exhibit
important impact on many physiological processes. For example, the changes in the polar microen-
vironment inside LDs could affect physiological processes, such as lipid metabolism and storage,
protein degradation, signal transduction, and enzyme catalysis. Herein, a new fluorescent chemo-
sensor (Couoxo-LD) was formulated by our molecular design strategy. The probe could be applied
to effectively label intracellular lipid droplets. Intriguingly, Couoxo-LD demonstrated positive sen-
sitivity to both polarity and viscosity, which might be attributed to its D-π-A structure and the
twisted rotational behavior of the carbon–carbon double bond (TICT). Additionally, Couoxo-LD was
successfully implemented in cellular imaging due to its excellent selectivity, pH stability, and low
biotoxicity. In HeLa cells, the co-localization curve between Couoxo-LD and commercial lipid droplet
dyes overlapped at 0.93. The results indicated that the probe could selectively sense LDs in HeLa
cells. Meanwhile, Couoxo-LD can be applied for in vivo imaging of zebrafish.

Keywords: lipid droplets; viscosity-sensitive; polarity-sensitive; solvatochromism

1. Introduction

Lipid droplets (LDs) serve as simple intracellular storage sites for neutral lipids and
consist of a non-polar neutral lipid core [1]. Studies have shown that LDs are not only
simple energy stores but also complex and dynamic multifunctional organelles [2]. For
example, alterations in the polar microenvironment surrounding LDs affect physiological
processes, such as lipid metabolism and storage, protein degradation, signal transduction,
and enzyme catalysis [3]. Furthermore, previous studies reported that homeostasis of
the LDs microenvironment was associated with diseases, such as obesity, cardiovascular
disease, and diabetes mellitus [4–6]. Cancer cells exhibit a strong affinity for fatty acids and
cholesterol, which are over-stored in lipid droplets. [7]. The high levels of LDs in tumors
provide a potential means of monitoring and treating cancer [8]. Therefore, the tracking
and monitoring of LDs are essential. In addition, LDs consist a unique structure (a single
phospholipid membrane with a hydrophilic “head (group)” facing the cytoplasm and an
internal storage of lipid cores, such as triglycerides and cholesterol esters [9,10]), i.e., a
hydrophobic and viscous environment inside the lipid droplets. Theoretically, if the probe
exhibits different fluorescence properties in these two microenvironments, they could be
used as a tool for labeling LDs [11,12].

Fluorescence imaging has established itself as a beneficial tool for studying biological
systems because of its high sensitivity, accessibility, non-invasiveness, and real-time and in
situ detection of target molecules [13–19]. So far, several fluorescent probes for specifically
imaging LDs have been reported [20–27]. For example, Yu et al., designed two heteroindole-
based two-photon fluorescent probes and visualized the polarity of LDs at a cellular level
and in zebrafish larvae [15]. However, there were only a few probes that were reported to
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respond positively to both the polarity and viscosity of lipid droplets. Therefore, there is a
requirement to develop a strong color-changing LDs probe for sensing both polarity and
viscosity [28,29].

Since Perkin et al. first synthesized artificial coumarins by chemical synthesis in
1868 [30], coumarin derivatives have been widely used in the design of small-molecule fluo-
rescent sensors because of their good biocompatibility, controlled structure, and stable and
strong fluorescence emission intensity [31–41]. Here, a solvent–chromogenic lipid droplets
fluorescent probe, Couoxo-LD, was synthesized using benzoylglycine and coumarin flu-
orescent moiety. Couoxo-LD consisted an oxazolone and a coumarin derivative linked
by a double bond. In optical characterization tests, the emission wavelength of the probe
exhibited a significant red shift with increasing solvent polarity. The emission intensity of
the probe increased with increasing solvent viscosity, showing regular polarity-viscosity-
sensitive characteristics. The properties of good biocompatibility and pH stability were
expressed in this probe. In addition, Couoxo-LD exhibited satisfactory lipid droplets target-
ing, possessed a high degree of overlap with commercial lipid droplets dye co-localization
imaging, and had been successfully applied to cells and zebrafish imaging.

2. Synthesis of Probes
2.1. Reagents and Materials

The materials and reagents involved in the experiments were obtained commercially;
furthermore, no secondary purification was carried out. The instruments used in the
experiments were described in detail in the supporting materials.

2.2. Synthesis of Couoxo-LD

The synthesis of compound 1 was reported in detail in earlier work [42]. The synthetic
design route of Couoxo-LD was shown in Scheme 1 and the specific synthesis was referred
to in Ref. [43].
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MHz, CDCl3) δ 9.17 (s, 1H), 8.13–8.07 (m, 2H), 7.63–7.57 (m, 1H), 7.56–7.49 (m, 3H), 7.43 
(d, J = 8.9 Hz, 1H), 6.64 (dd, J = 9.0, 2.4 Hz, 1H), 6.41 (d, J = 2.4 Hz, 1H), 3.45 (q, J = 7.1 Hz, 
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Scheme 1. Synthesis of Couoxo-LD.

Compound 1 (7-(diethylaMino)-2-oxo-2H-chroMene-3-carbaldehyde) (49.1 mg,
0.2 mmol), compound 2 (benzoylglycine) (39.42 mg, 0.22 mmol), and triphenylphosphine
(5.25 mg, 0.022 mmol) were dissolved in anhydrous acetic anhydride (54.14 mg 50 µL,
0.53 mmol) and stirred for 4 h at 130 ◦C. After completion of the reaction (thin-layer
chromatography monitoring), reaction mixture was cooled to room temperature. Ethyl
alcohol (95%, 5.0 mL) was added to produce a large amount of precipitation. The product
was obtained by filtration and recrystallization from ethanol (66.81 mg, 86 %). 1H NMR
(400 MHz, CDCl3) δ 9.17 (s, 1H), 8.13–8.07 (m, 2H), 7.63–7.57 (m, 1H), 7.56–7.49 (m, 3H), 7.43
(d, J = 8.9 Hz, 1H), 6.64 (dd, J = 9.0, 2.4 Hz, 1H), 6.41 (d, J = 2.4 Hz, 1H), 3.45 (q, J = 7.1 Hz,
4H), 1.25 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 166.74, 162.76, 161.37, 157.09,
152.31, 146.86, 133.16, 131.94, 131.40, 128.94, 128.14, 125.67, 125.27, 113.79, 110.03, 109.86,
97.34, 45.30, 12.52.

3. Result and Discussion
3.1. Probe Design and Discussion

As mentioned above, LDs are distinguished from the surrounding viscous environ-
ment due to their unique internal structure, namely a phospholipid monolayer and a lipid
core composed of fatty acids. The large amount of water and inorganic ions as components
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of the cytoplasmic solute provides a polar environment around LDs. Meanwhile, the char-
acteristic environments such as viscosity and non-polarity exhibited inside LDs serve as a
reliable theory to support our development of efficient lipid droplets fluorescent probes.

Based on the above principles, we designed and constructed a fluorescent probe
Couoxo-LD with a structure sensitive to both viscosity and polarity. Couoxo-LD, consisting
of coumarin derivatives and benzoylglycine, possessed strong electronic push–pull prop-
erties. In addition, the coumarin scaffold was selected as the monomeric component of
Couoxo-LD, giving the probe a certain lipophilicity and therefore a higher sensitivity to
lipid droplets. By introducing a diethylamine electron donor, Couoxo-LD was designed
as a molecule with a typical D-π-A structure. In conclusion, the solvent-altering effect of
Couoxo-LD was the main reason for illuminating intracellular lipid droplets. In an aqueous
environment, such as a cytoplasmic solute, the twisted rotational behavior (TICT) around
the carbon–carbon double bond hindered the emission behavior of Couoxo-LD [44]. In
contrast to this, in non-polar media, such as LDs, it would release a strong signal through
the locally excited (LE) state. That is, the vinyl structure in Couoxo-LD allowed the free
rotation of the probe molecule that was restricted by the environment, which affected the
emission behavior of the probe (Scheme 1). The probe Couoxo-LD was characterized by 1H
NMR and 13C NMR (Supplementary Figures S1 and S2).

3.2. Study of Photophysical Properties of Probes

The molecular probe that possessed a donor (D)-π-acceptor (A) structure exhibited
a pronounced solvatochromic effect and its photophysical properties varied with solvent
polarity. Therefore, the absorption and emission behaviors of Couoxo-LD in different polar
solvents were investigated (Figures 1 and S3), such as 1,4-dioxane, methanol (MeOH),
dichloromethane (DCM), N,N-dimethylformamide (DMF), ethanol (EtOH), tetrahydrofu-
ran (THF), toluene (Tol), dimethyl sulfoxide (DMSO), ethyl acetate (EtOAc), acetone, and
acetonitrile (CH3CN).
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Figure 1. Normalized fluorescence spectra at 510 nm excitation. (a) Normalized fluorescence spectra
in organic solvents with different polarities; a-Inner: Photographs of solvent discoloration with
insertion of Couoxo-LD (10 µM). (b) For linearity between the maximum emission wavelength of the
probe and the polarity of the solvent.

As shown in Figures 1 and S3, the spectral data of the probe in different polar solvents
were firstly explored, and Couoxo-LD showed strong absorption and emission phenomena
and exhibited red-shifted behavior. From the emission peak at 576 nm in toluene to 622 nm
in dimethylsulfoxide, the emission peak of Couoxo-LD underwent a red shift of about
50 nm. Under 365 nm-UV irradiations, it was clearly seen that this probe with an electronic
push–pull structure exhibited a clear solvent discoloration effect accompanied by a change
in fluorescence color from blue (toluene) to orange-red (dimethylsulfoxide) (Figure 1a). The
above presented results demonstrate the ICT effect of Couoxo-LD. As mentioned above, we
evaluated the environment-sensitive and alike-solvent-discoloration effect of the Couoxo-
LD by studying the emission behavior of Couoxo-LD under different solvent polarities.



Biosensors 2022, 12, 851 4 of 11

In particular, Couoxo-LD exhibited a strong positive solvent discoloration effect, which
was consistent with the closely reported fluorophore [45]. Moreover, a gradual increase in
the polarity parameter ET(30) from 33.9 kcal−1 to 55.4 kcal−1 molar concentration resulted
in a continuous red shift of the maximum emission wavelength of the probe (Figure 1a).
More significantly, we found that Couoxo-LD showed a satisfactory linear relationship
between the emission peak in different polar solvents and the ET(30) of the solvent with
their Pearson correlation coefficient of 0.991 (Figures 1b and S3) and a slope of 4.1 nm
ET(30) units. This was caused by the function of the intra-molecular charge transfer effect
(ICT) from the electron-giving N,N-diethyl unit to the electron-accepting oxazol-5(4H) one.
These results indicated that the Couoxo-LD photophysical properties were closely related
to solvent polarity.

To verify the above conjecture, we performed density general function theory (DFT)
calculations for Couoxo-LD, and based on them we further optimized the electron cloud
around Couoxo-LD using the Gaussian’09 program and DFT-derived Multiwfn and VMD
program models. The distribution of Couoxo-LD in the more polar PBS-buffered solvent
and the distribution of HOMO and LUMO in the less polar dioxane solvent were also
calculated (Figure 2). The results show that the energy band gap ∆E of Couoxo-LD in
aqueous solution is smaller than that in dioxane solvent. Obviously, the larger the energy
band gap ∆E, the smaller the wavelength of the maximum absorption peak because the
energy required for the electron leap is large. It was further verified that the wavelength of
the absorption peak of Couoxo-LD in a low-polarity solvent environment (dioxane) was
smaller than that of the absorption peak in a high-polarity solution (PBS buffer).

Since the ΦF of Couoxo-LD depended strongly on the solvent’s properties (Table 1), the
ΦF increased with increasing solvent polarity (Toluene to Acetone) and reached a maximum.
The increase in ΦF due to charge transfer (negative solvatokinetic effect) could be explained
by several mechanisms, such as proximity effects and conformational changes. The decrease
in ΦF from DMSO to DMF (positive solvatokinetic effect) could be attributed to strong
ICT interactions. As described in the literature [46], the fluorescence quantum yield of
Couoxo-LD depended on the polarity of the solvent, as well as on specific solute–solvent
interactions, such as hydrogen bonding and high photostability.
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Table 1. Photophysical properties of Couoxo-LD in different solvents.

Toluene Dioxane THF EtOAc DCM Acetone DMF DMSO MeCN

λabs (nm) 533 514 513 524 531 528 543 548 531
λem (nm) 576 581 592 591 602 609 613 622 607
ET(30) 1 33.9 36 37.4 38.1 40.7 42.2 43.2 45.1 45.6

Stokes shift (nm/cm–1) 43/1401 67/2244 61/1940 67/2163 71/2221 81/2519 70/2103 74/2071 76/2358
ΦF

2 5.2% 6.1% 3.4% 3.4% 1.3% 19.0% 11.0% 11.3% 4.3%
(Logεmax) 3 4.74 4.33 4.78 4.76 4.74 4.24 4.75 4.78 4.76

1 ET(30) is a solvent polarity parameter and means the molar transition energy in kcal·mol–1 [43]. 2 Fluorescence
quantum yield was obtained by the reference method and applying equation Φx = Φs (nx/ns)2 (As/Ax) (Fx/Fs).
3 Molar extinction coefficients are calculated in the maximum of the highest peak.

3.3. The Emission Behavior of the Probe in PBS and Dioxane

Furthermore, we investigated the spectroscopic testing of the probe in different vol-
ume ratios of PBS buffer–dioxane mixtures (Figure 3). From the above experiments, we
discovered that the emission behavior of the probe was related to the polarity of the
medium; therefore, we further explored the lipid solubility test of the probe in different
polar environments. In the binary solvent system of PBS buffer and dioxane, increasing the
proportion of PBS buffer (fw) from 40% to 100%, the fluorescence intensity of Couoxo-LD
showed a trend of increasing and then rapidly decreasing. Its emission peak underwent
a certain red shift, which we judged to be caused by the increased polarity of the solvent
mixture. The emission of the probe decreased appreciably with the decrease of the lipid-
soluble solvent. This might be due to the increasing content of the PBS buffer, in which the
increased polarity of the solvent made Couoxo-LD more sensitive, masking the solubility
of the probe to the lipid solvent. This results in a reduction in the emission intensity of
Couoxo-LD and a red shift of the maximum emission peak. All these findings suggested
that the optical properties of Couoxo-LD were closely related to the environmental polarity.

3.4. Probe Emission Behavior in Viscous Environments

We verified the viscosity-emitting behavior of Couoxo-LD in binary systems with
different ratios of PBS buffer and glycerol. As shown in Figure 4a, the emission intensity
gradually increased with the increase of glycerol content. We further explored the relation-
ship between the probe in a medium with different volume ratios of PBS buffer–Glycerol
and the maximum emission intensity. The emission intensity of Couoxo-LD increased expo-
nentially with the viscosity of the system (Figure 4b), which was consistent with the D-π-A
structure of the probe molecule we mentioned earlier. In a low-viscosity environment, the
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free intra-molecular rotation leads to a slackening of the excitation energy, which greatly
attenuated the emission phenomenon. In high-viscosity environments, free rotation within
the probe molecule was inhibited by the environment and the molecule released energy
primarily by radiation, resulting in a significant enhancement of fluorescence emission
from Couoxo-LD. Furthermore, the color change of Couoxo-LD in the mixed system was
found to be affected by polarity in the study (Figure 4c,d). This could be due to the higher
polarity of the solution in the pure-PBS-buffer environment. With the addition of glycerol,
the polarity in the mixed system decreased. A shift from red to yellowish green occurred,
while the spectrum underwent a blue shift. Finally, when the glycerol ration was increased
to 100%, the polarity of the system was greater than the mixed polarity of both and a red
shift in the spectrum occurred and the color changed back to red. These results showed
that Couoxo-LD could successfully monitor changes in viscosity and respond to polarity.
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3.5. Probe Stability Study

To verify whether the Couoxo-LD was adapted to the sophisticated environment
inside living cells, we investigated the emission behavior of Couoxo-LD in phosphate
buffer solutions over a wide range of pH values. The results showed that the fluorescence
intensity of Couoxo-LD decreased slightly when decreasing the solution pH (Figure 5a).
Overall, the fluorescence intensity of Couoxo-LD was observed to be almost identical
in different pH environments, demonstrating that the probe was unaffected by pH. We
then investigated the response of the probe Couoxo-LD under different interfering ion
environments (Figure 5b). The ions and different small biomolecules were added to PBS
buffer and dioxane solutions, respectively, and the results showed that the fluorescence
intensity of the probe did not change significantly in the organic solvent dioxane and PBS
buffer, indicating that the emission behavior of Couoxo-LD was almost unaffected by the
other chemicals. Furthermore, the emission intensity of Couoxo-LD in PBS buffer remained
almost unchanged after continuous irradiation with a 365 nm-UV lamp for 1000 s, while
it remained at a high level in dioxane, although it decreased slightly (Figure 5c). The
excellent photostability indicated that the probe Couoxo-LD possessed a strong resistance
to photobleaching and photo bursts.
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Figure 5. (a) The emission intensity of probe Couoxo-LD (10 µM, λex = 510 nm) in PBS buffer at
various pH (1–12). (b) In PBS buffer, the fluorescent intensity of Couoxo-LD in (10 µM, λex = 510 nm,
at 645 nm) and in Dioxane, Couoxo-LD (10 µM, λex = 510 nm, at 580 nm) upon addition of various
species (10 µM) including: 1, Blank; 2, HS−; 3, NO2

−; 4, CO3
2−; 5, HCO3

−; 6, TBHP; 7, SO4
2−;

8, CI−; 9, Ca2+; 10, H2O2; 11, SO3
2−; 12, HSO3

−; 13, GSH; 14, Mg2+; 15, Na+. (c) Couoxo-LD (10 µM,
λex = 510 nm) emission pattern of continuous irradiation in PBS buffer and Dioxane solvent.

3.6. Probe Couoxo-LD for Bioimaging Applications

The cytotoxicity of the probe was tested by the standard MTT method (Supplementary
Figure S5). Cells survival remained above 90% under incubation with a concentration of
20 µM Couoxo-LD, indicating that the cytotoxicity of Couoxo-LD was low and exhibited
no significant impact on the cells testing. Encouraged by the excellent optical testing of
the Couoxo-LD, we then estimated its cells imaging capabilities by laser scanning confocal
(LSC) imaging techniques (Figure 6). BODIPY 493/503, a commercially available probe,
was used for monitoring LDs as a control. We evaluated the absorption and emission
spectra of Couoxo-LD and BODIPY (Supplementary Figure S6). Living HeLa cells were
stimulated with oleic acid in order to generate more LDs. Figure 6d demonstrates the co-
localization images of both dyes on intracellular lipid droplets. As anticipated, Couoxo-LD
labeled intracellular lipid droplets well (Figure 6e,f). Furthermore, the Pearson’s correlation
coefficient between Couoxo-LD and the commercial dye BODIPY was as high as 0.93.
These results suggested that Couoxo-LD possessed a good ability to sense LDs in living
HeLa cells.
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Figure 6. Fluorescence images of live HeLa cells incubated with Couoxo-LD (10 µM) and BODIPY
(5 µM) for 30 min at 37 ◦C. (a) Bright-field image. (b) Emission of BODIPY (λex = 405 nm, 480–510 nm).
(c) Emission of Couoxo-LD (λex = 405 nm, 600–650 nm). (d) Merged images. (e) The intensity scatter
plot of (b) and (c). (f) Fluorescence intensity distribution within the rectangle.

Meanwhile, to investigate the response of the probe to intracellular polarity, we
performed imaging tests on the probe. In the control group, HeLa cells were imaged after
incubation with culture medium for 30 min. In the experimental group, the cells were
further treated with a preconfigured H2O2 (500 µM, 20 µL) solution for 20 min on the basis
of control cells. The H2O2 solution would kill the cells, leading to a decrease in the number
of intracellular lipid droplets and resulting in a change in intracellular polarity. At this
point, the fluorescence of the green channel diminished from bright green (Figure 7b,f),
the fluorescence of the red channel was lighted up (Figure 7c,g), and the images of the
combined channels also showed a change from green to orange fluorescence (Figure 7d,h).
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Zebrafish have similar digestive systems to humans, such as the liver and intestines.
Additionally, their methods of digestion and nutrient absorption transport are highly
similar to humans. Therefore, using live zebrafish to model intestinal lesions could help to
further study human-related diseases. Approximately 70% of the zebrafish yolk sac fraction
is neutral lipid, and by utilizing the lipid-specific fluorescent staining of the zebrafish yolk
sac (Figures 8b and S8b), it was clearly observed that both dyes stained the zebrafish yolk
sac. This indicates that Couoxo-LD can successfully label lipid droplets. Therefore, Couoxo-
LD was informative for further studies on human physiology and pathology caused by
abnormal expression of lipid droplets.
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4. Conclusions

In this work, we designed a polar viscosity-sensitive fluorescent probe for targeting
LDs. The probe Couoxo-LD was extremely sensitive to the polarity and viscosity of
different media and showed intense fluorescence in LDs. In addition, the probe possessed
splendid selectivity, low biotoxicity, and photostability. By artificially altering the external
environment, Couoxo-LD could be competently used for discriminating changes in LDs
polarity between living and post-mortem HeLa cells. Couoxo-LD was successfully applied
for zebrafish imaging. Furthermore, lipid droplets co-localization imaging illustrated the
accurate targeting of intracellular lipid droplets by Couoxo-LD. We believe that Couoxo-LD
could be a powerful tool to study the processes associated with LDs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12100851/s1, Figure S1: 1H NMR (CDCl3) spectrum of Couoxo-
LD; Figure S2: 13C NMR (CDCl3) spectrum of Couoxo-LD; Figure S3: normalized (a) absorption
and (b) fluorescence spectra of Couxox-LD (10 µM, λex = 510 nm) in different solvents. (c,d) are
photographs of Couoxo-LD (10 µM) in different solvents, under natural light, and with 365 nm
handheld UV lamp irradiation, respectively; Figure S4: maximum emission wavelength of Couoxo-LD
(10 µM, λex = 510 nm) versus liquid viscosity (PBS buffers–Glycerol) system; Figure S5: cytotoxicity
assays of probe Couoxo-LD at different concentrations (0 µM; 2 µM; 5 µM; 10 µM; 20 µM; 30 µM)
for HeLa cells; Figure S6: absorption and emission spectra of Couoxo-LD (solid line) and BODIPY
(dashed line) in dioxane; Figure S7: fluorescence images of live HeLa cells incubated with different
concentrations of Couoxo-LD at 37 ◦C for 30 min; Figure S8: fluorescence images of live zebrafish
treated with BODIPY (5 µM). (a) Bright-field view; (b) green channel, λex = 405 nm, λem = 480–510 nm;
(c) merged images. Scale bar. 500 µm.
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