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Abstract: Serotonin is a very important monoamine neurotransmitter, which takes part in biolog-
ical and psychological processes. In the present scenario, design and fabrication of a serotonin
electrochemical sensor is of great significance. In this study, we have synthesized α-MnO2 via a
hydrothermal synthesis method using potassium permanganate as a precursor. The physiochemical
properties, such as structural and phase-purity of the prepared α-MnO2, were investigated by various
characterization techniques and methods (powder X-ray diffraction, scanning electron microscopy,
and energy-dispersive X-ray spectroscopy). Furthermore, the serotonin sensor was fabricated using
α-MnO2 as an electrode modifier or electro-catalyst. The bare glassy carbon electrode (GCE) was
adopted as a working substrate, and its active carbon surface was modified with the synthesized
α-MnO2. This modified GCE (α-MnO2/GCE = MGCE) was explored as a serotonin sensor. The elec-
trochemical investigations showed that the MGCE has excellent electro-catalytic properties towards
determination of serotonin. The MGCE exhibits an excellent detection limit (DL) of 0.14 µM, along
with good sensitivity of 2.41 µAµM−1 cm−2. The MGCE also demonstrated excellent selectivity
for determination of serotonin in the presence of various electro-active/interfering molecules. The
MGCE also exhibits good cyclic repeatability, stability, and storage stability.

Keywords: α-MnO2/GCE; serotonin; sensor; electrochemistry

1. Introduction

Serotonin, which is a monoamine neurotransmitter, plays a significant role in biologi-
cal, physical, and psychological processes, such as appetite control, sleep pattern, sexual
activity, and aggression [1,2]. The amount of serotonin in the human body should be con-
trolled, and the normal range of serotonin in serum lies between 0.57 and 2.0 µM, whereas
its normal amount in urine is considered in the range of 0.295–0.687 µM [3]. Serotonin
has the potential to control and maintain all vital activities [4]. Presence of a low level of
serotonin may cause various diseases, such as sexual dysfunction, Alzheimer’s disease,
depression, and Parkinson’s disease [5,6]. Thus, it is of great significance to design and
develop a highly precise, rapid, and sensitive technique or method for detection of sero-
tonin level in human bio-fluids [7]. This can be helpful to diagnose diseases linked to
serotonin. In previous years, various methods and techniques, such as high-performance
liquid chromatography, capillary electrophoresis, enzyme immunoassay, fluorescence spec-
trophotometry, and mass spectrometry, were used as sensing platforms for determination
of serotonin [8–12]. Although the above conventional methods were widely used for
determination of serotonin, including other analytes, there are some limitations, such
as complicated pretreatment processes, being time-consuming, and requiring expensive
instruments, including well-trained operators [13]. These factors restrict rapid detection of
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serotonin with frequent testing, and it will be of great importance to discover or develop
other alternative methods for rapid determination of serotonin [14]. Electrochemistry-
based analytical or electrochemical methods have gained enormous attention because of
their simple process, fast response/detection, ease of operation, and selectivity [15–19]. In
addition, electrochemical techniques offer highly sensitive analysis with a cost-effective
miniaturized platform [20]. Previously, a number of electrochemistry-based sensors were
developed for sensing of serotonin. Indeed, various electrode materials, such as zinc oxide,
nickel hydroxide (NiOH)2, carbon nanotubes, reduced graphene oxide, tungsten trioxide,
gold nanoparticles, polymers, zirconium oxide (ZrO2), copper oxide, cobalt oxide, iron
oxide, carbon nitride, and their hybrid composites, have been explored as serotonin sensing
material [13,21–28]. However, there is still a need to develop a cost-effective and highly
sensitive selective serotonin sensor.

Manganese oxide (α-MnO2) has gained enormous interest in the scientific community
because of its excellent electro-catalytic properties, better inherent molecular adsorption
ability, cost-effectiveness, excellent ion-exchange capability, natural abundance, and non-
toxicity [29]. Further, α-MnO2 has been widely explored in a variety of applications,
such as sensors, dye-sensitized solar cells, energy storage, batteries, catalysis, and dye
degradation [30–35]. Previous reports showed that α-MnO2 is a potential candidate for
fabrication of electrochemical sensors [30]. Herein, we have developed a serotonin sensor
using α-MnO2 as electrode material. The α-MnO2-based serotonin sensor exhibits excellent
performance.

2. Materials and Methods
2.1. Chemicals

Potassium permanganate (KMnO4), serotonin, and hydrochloric acid (HCl, 37%) were
purchased from Merck. Ascorbic acid and glucose were purchased from Sigma. Nafion
was purchased from Sigma. Phosphate buffer saline solutions (PBS) were purchased from
Loba. Uric acid was purchased from Alfa Aesar. Dopamine was purchased from TCI. Urea
was purchased from Fischer Scientific.

2.2. Synthesis of α-MnO2

The α-MnO2 was synthesized according to procedures reported elsewhere with some
minor modifications [31]. In brief, 3 mmol of KMnO4 was dissolved in 25 mL of deionized
(D.I.) water and 7.5 mmol of HCl was added.

This solution was stirred for 20 min at room temperature (RT), and transparent purple
colored solution was obtained. This purple-colored solution was poured in to the Teflon-
lined (capacity 50 mL) stainless steel autoclave reactor, which was heated at 140 ◦C for
12 h (Scheme 1). The precipitate was collected by centrifugation and washed with distilled
water several times and dried at 70 ◦C overnight in vacuum oven.
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2.3. Instrumental Characterization

The phase-purity and confirmation of successful formation of α-MnO2 were authenti-
cated by various characterization techniques. In this connection, powder X-ray diffraction
(PXRD) pattern of the hydrothermally synthesized α-MnO2 was collected on Rigaku, Japan
(RINT 2500 V XRD Instrument) with Cu Ka irradiation at two-Theta range of 10–80◦. The
structural phase of the prepared α-MnO2 was identified using PXRD investigations. The
morphological characteristic of the prepared α-MnO2 was examined by utilizing scan-
ning electron microscopy (SEM). The SEM images of the prepared α-MnO2 were collected
on S-4800 (Hitachi) instrument. The elemental composition of the hydrothermally pre-
pared α-MnO2 was investigated by utilizing energy-dispersive X-ray spectroscopy (EDS).
The EDS spectrum of the hydrothermally prepared α-MnO2 was collected on Horiba
EDS instrument. Electrochemical investigations were carried out using CH Instrument
(silver/silver electrode was used as reference electrode, while platinum wire used as
counter electrode). The bare glassy carbon electrode (BGCE) and α-MnO2-modified GCE
(α-MnO2/GCE = MGCE) was used as working electrode.

2.4. Fabrication of Working Electrode

The α-MnO2 ink was prepared by dispersing 2.5 mg of α-MnO2 in 2 mL of distilled
water (having 0.1% nafion) using ultrasonication for 30 min. Nafion was used as binder to
increase the adhesiveness of the α-MnO2 on GCE surface. Further, 8.5 µL of the prepared
ink was drop-casted on to the carbon surface of the GCE and dried in air for 4 h (Scheme 2).
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3. Results
3.1. Physiochemical Properties of α-MnO2

The collected PXRD data of the prepared α-MnO2 are presented in Figure 1. The PXRD
pattern revealed the presence of several diffraction peaks at ~12.72, 18.13, 28.75, 37.70, 42.01,
49.96, 56.26, 60.12, 65.44, 69.41, and 72.96◦. These diffraction peaks of 12.72, 18.13, 28.75,
37.70, 42.01, 49.96, 56.26, 60.12, 65.44, 69.41, and 72.96◦ can be assigned to the well-defined
(110), (200), (310), (211), (301), (411), (600), (521), (002), (541), and (312) diffraction planes
of α-MnO2. The obtained PXRD pattern of the hydrothermally synthesized α-MnO2 was
found to be in good agreement with previous JCPDS card number 044-0141. The PXRD
pattern of the prepared α-MnO2 does not show any other diffraction peak for impurity,
which suggests successful formation of α-MnO2 with decent phase-purity. The crystallite
size of the prepared α-MnO2 was determined by employing the Scherrer equation, as
provided below:

D =
K λ

βCos θ
(1)
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(In the above equation 1, K = Scherrer constant, which is equal to 0.9, D is the average
crystallite-size (Å), whereas λ is the X-ray wavelength (0.154 nm), and θ is the diffraction-
angle; β represents full width at half-maximum (FWHM) of the observed peak). The
crystallite size of the α-MnO2 was found to be ~31.4 nm using the Scherrer equation. Our
obtained PXRD results for the prepared α-MnO2 are in good agreement with previously
published literature and suggest successful formation of α-MnO2 with good phase-purity.

Biosensors 2022, 12, x FOR PEER REVIEW 4 of 15 
 

phase-purity. The crystallite size of the prepared α-MnO2 was determined by employing 
the Scherrer equation, as provided below: D = K λβCos θ (1)

(In the above equation 1, K = Scherrer constant, which is equal to 0.9, D is the aver-
age crystallite-size (Å), whereas λ is the X-ray wavelength (0.154 nm), and θ is the dif-
fraction-angle; β represents full width at half-maximum (FWHM) of the observed peak). 
The crystallite size of the α-MnO2 was found to be ~31.4 nm using the Scherrer equation. 
Our obtained PXRD results for the prepared α-MnO2 are in good agreement with pre-
viously published literature and suggest successful formation of α-MnO2 with good 
phase-purity.  

 
Figure 1. PXRD pattern of the hydrothermally prepared α-MnO2. 

It has been determined from the reported studies that surface morphology of elec-
trode materials plays a significant role and influences the electrochemical performance of 
the developed sensors. In this regard, it is necessary to investigate the morphological 
characteristics of the prepared α-MnO2 material. The obtained SEM pictures of the syn-
thesized α-MnO2 at different magnifications have been displayed in Figure 2a–d. The 
SEM results indicate that hydrothermally prepared α-MnO2 comprised a rod-like surface. 
Therefore, it is clear that α-MnO2 has been successfully obtained with a rod-like surface 
morphology of a nanometer in size. To further verify the phase-purity of the hydro-
thermally prepared α-MnO2, it is necessary to examine the elemental composition of the 
hydrothermally prepared α-MnO2. Hence, we have examined the elemental composition 
of the hydrothermally prepared α-MnO2. The EDS results of the α-MnO2 are presented in 
Figure 3a–d. The EDS electron image of the hydrothermally prepared α-MnO2 is pre-
sented in Figure 3a, while the EDS spectrum of the α-MnO2 is depicted in Figure 3b. The 
EDS spectrum of the α-MnO2 exhibits the presence of Mn and O elements, which indi-
cates that α-MnO2 has been successfully prepared.  

Figure 1. PXRD pattern of the hydrothermally prepared α-MnO2.

It has been determined from the reported studies that surface morphology of electrode
materials plays a significant role and influences the electrochemical performance of the
developed sensors. In this regard, it is necessary to investigate the morphological charac-
teristics of the prepared α-MnO2 material. The obtained SEM pictures of the synthesized
α-MnO2 at different magnifications have been displayed in Figure 2a–d. The SEM results
indicate that hydrothermally prepared α-MnO2 comprised a rod-like surface. Therefore, it
is clear that α-MnO2 has been successfully obtained with a rod-like surface morphology
of a nanometer in size. To further verify the phase-purity of the hydrothermally prepared
α-MnO2, it is necessary to examine the elemental composition of the hydrothermally pre-
pared α-MnO2. Hence, we have examined the elemental composition of the hydrothermally
prepared α-MnO2. The EDS results of the α-MnO2 are presented in Figure 3a–d. The EDS
electron image of the hydrothermally prepared α-MnO2 is presented in Figure 3a, while
the EDS spectrum of the α-MnO2 is depicted in Figure 3b. The EDS spectrum of the α-
MnO2 exhibits the presence of Mn and O elements, which indicates that α-MnO2 has been
successfully prepared.

The EDS mapping image of the Mn and O elements has been displayed in Figures 3c
and 3d, respectively. The atomic percentage of the Mn and O elements was found to be
33.46 and 66.54%, whereas the weight percentage of the Mn and O elements was found to
be 64.13 and 35.87%, respectively.
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Figure 3. EDX electron image (a), EDX spectrum (b), and mapping images (c,d) of the prepared
α-MnO2.

No other element was observed in the EDS spectrum of the hydrothermally prepared
α-MnO2. This suggests that α-MnO2 has good phase-purity. The above overall PXRD,
SEM, and EDX results are consistent with previous reports and authenticated the formation
of α-MnO2 with a nanorods-like surface morphology. According to the previous litera-
ture [31], electrode materials with rod-like surface morphology are the desirable materials
for construction of electrochemical sensors. The rod-like surface of the electrode materials
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provides better bath and fast electron transportation. Thus, we have fabricated a serotonin
electrochemical sensor using GCE as a working substrate and α-MnO2 as electrode material.

3.2. Electrochemical Properties of MGCE

The electrochemical activity of the BGCE and MGCE were determined using cyclic
voltammetry (CV). The CVs of the BGCE and MGCE were taken in presence and absence
of 2 µM serotonin in 0.1 M PBS of pH 7.0 at an applied scan rate of 50 mV/s. The collected
CVs of the BGCE and MGCE in absence and presence of 2 µM serotonin in 0.1 M PBS of pH
7.0 at an applied scan rate of 50 mV/s are displayed in Figure 4. The BGCE showed poor
electro-catalytic activity, whereas MGCE showed slightly enhanced electro-catalytic activity
in absence of serotonin (Figure 4). The BGCE exhibited a current response of 0.77 µA for
oxidation of 2 µM serotonin in 0.1 M PBS of pH 7.0 at an applied scan rate of 50 mV/s.
Conversely, MGCE showed an improved current response of 1.41 µA for the oxidation of
2 µM serotonin in 0.1 M PBS of pH 7.0 at an applied scan rate of 50 mV/s (Figure 4). The
CVs observations revealed that MGCE has higher current response compared to BGCE
(Figure 4). This improved current response indicates successful deposition of α-MnO2
on GCE surface. In addition, the improved electro-catalytic activity of the MGCE can be
attributed to the presence of good electrochemical features of α-MnO2. We selected MGCE
as the serotonin sensor for further electrochemical investigations.
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The concentration of the analyte has the potential to affect the electrochemical per-
formance of the fabricated electrochemical sensors. It has also been observed from the
previous reports that the concentration of serotonin largely influences the electrochemical
sensing performance of the constructed sensors. Thus, it is important to study the effect of
concentration of serotonin on the electrochemical performance of the fabricated MGCE.
Hence, we collected CVs of the MGCE in various concentrations of serotonin (2 µM, 9 µM,
16 µM, 23 µM, 30 µM, 37 µM, 45 µM, 55 µM, 70 µM, and 80 µM) in 0.1 M PBS (pH = 7.0) at
an applied scan rate of 50 mV/s. The obtained CVs of the MGCE in various concentrations
of serotonin (2 µM, 9 µM, 16 µM, 23 µM, 30 µM, 37 µM, 45 µM, 55 µM, 70 µM, and 80 µM)
in 0.1 M PBS (pH = 7.0) at an applied scan rate of 50 mV/s are displayed in Figure 5a.
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The observations showed that current response of the MGCE increases with increas-
ing the concentration of serotonin from 2 µM to 80 µM (Figure 5a). This indicated that
concentration of serotonin has a significant role on electrochemical activity of MGCE.
The calibration curve between the peak current response of MGCE and serotonin con-
centration were plotted to ascertain the linear relation. The calibration curve of the peak
current response of the MGCE versus concentration of serotonin is presented in Figure 5b.
This calibration curve suggests that current response increases linearly with increasing
concentration of serotonin (Figure 5b), with R2 = 0.99.

The applied scan rate also plays an important role in electrochemical sensing inves-
tigations. We also studied the effect of various applied scan rates on the electrochemical
performance of the MGCE at a fixed concentration. The CVs of the MGCE were taken
in the presence of 2 µM serotonin in 0.1 M PBS (pH = 7.0) at various applied scan rates
(50, 75, 100, 125, 150, 175, 200, 225, 250, and 275 mV/s). The CVs results showed that
the current response of the MGCE increases when the applied scan rate changes from
50 mV/s to 75 mV/s. Further investigations showed that current response increases while
increasing the applied scan rate from 50 mV/s to 225 mV/s (Figure 6a). The calibration
curve of the peak current response and square root of the applied scan rate is presented in
Figure 6b, with an R2 value of 0.92. Further, we also plotted the calibration curve between
the peak current response of the MGCE and applied scan rates. Figure 6c shows that the
current response of the MGCE increases linearly while increasing the applied scan rate
with R2 = 0.973. This suggests that detection of serotonin on an MGCE surface involves the
adsorption process compared to the diffusions process. The cyclic stability and repeatability
of the electrochemical sensors are the most important and desirable features for practical
purposes. It is important to check the cyclic repeatability and stability of the fabricated
MGCE for detection of serotonin. Thus, we collected 50 consecutive CVs of the MGCE in
80 µM serotonin in 0.1 M PBS (pH = 7.0) at a scan rate of 50 mV/s. The obtained CVs of the
MGCE for serotonin detection are displayed in Figure 7.

The CVs results showed insignificant variation in the current response of the MGCE
after 50 consecutive cycles. The 1st, 10th, 25th, and 50th CV cycles of MGCE in 80 µM
serotonin in 0.1 M PBS (pH = 7.0) at a scan rate of 50 mV/s have been displayed in Figure 7,
which suggests excellent repeatability and cyclic stability of the MGCE up to 50 cycles, and
it retained more than 91% of its initial performance in terms of current response. According
to previous reports [13], it has been observed that the differential pulse voltammetry (DPV)
method is a more effective and sensitive technique compared to CV. Thus, we have also
obtained DPVs of BGCE and MGCE in the presence of 2 µM serotonin at an applied scan
rate of 50 mV/s in 0.1 M PBS of pH 7.0. The obtained DPVs of the BGCE and MGCE are
presented in Figure 8.
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The BGCE shows a poor current response of 0.24 µA for detection of 2 µM serotonin
in 0.1 M PBS (pH = 7.0) at a scan rate of 50 mV/s. The MGCE demonstrated an enhanced
current response of 2.75 µA for detection of 2 µM serotonin in 0.1 M PBS (pH = 7.0) at a
scan rate of 50 mV/s. Thus, MGCE has excellent electro-catalytic properties compared to
BGCE, which may be due to the presence of α-MnO2 in the fabricated MGCE. The DPVs
investigations showed better electrochemical performance for MGCE compared to the CVs.
The DPV current response of the MGCE was also recorded in absence of serotonin, and the
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obtained results did not show any significant response (Figure 8). Thus, we have selected
MGCE as the working electrode and DPV as an efficient detection technique for further
electrochemical sensing studies. The above CVs showed that concentration of serotonin
influences the electrochemical performance of MGCE. Thus, we have studied the effect of
various concentrations (2 µM, 6 µM, 10 µM, 14 µM, 18 µM, 22 µM, 26 µM, 30 µM, 35 µM,
40 µM, 45 µM, 50 µM, 55 µM, 60 µM, 65 µM, and 70 µM) of serotonin on the electrochemical
activity of MGCE (0.1 M PBS of pH 7.0 (applied scan rate = 50 mV/s).
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Figure 8. DPVs of BGCE and MGCE in absence and presence of 2 µM serotonin in 0.1 M PBS
(pH = 7.0) at scan rate of 50 mV/s.

The obtained DPVs of the MGCE in different concentrations of serotonin (2 µM, 6 µM,
10 µM, 14 µM, 18 µM, 22 µM, 26 µM, 30 µM, 35 µM, 40 µM, 45 µM, 50 µM, 55 µM, 60 µM,
65 µM, and 70 µM) at a fixed scan rate of 50 mV/s (0.1 M PBS; PBS = 7.0) are summarized
in Figure 9a. The DPVs show that current response increases with respect to concentration
of serotonin. The calibration curve between current response versus concentration of
serotonin is shown in Figure 9b. The polynomial fitted calibration curve between peak
current response versus concentration of serotonin is presented in Figure S1.
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M PBS (pH = 7.0) at scan rate of 50 mV/s. Calibration plot (b) between current response versus
concentration of serotonin.
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Selectivity of the electrochemical sensors is one of the most important desirable features
for practical purposes. Thus, it is of great importance to examine the selectivity of the
fabricated MGCE. The DPV graph of the MGCE was obtained in the presence of 20 µM
serotonin, and 20 µM serotonin + interfering species (such as urea, hydroquinone, glucose,
dopamine, ascorbic acid, etc.) were collected at a fixed scan rate of 50 mV/s (Figure 10). The
concentration of interfering species was five times higher than that of the serotonin. All the
interfering species were mixed with the 20 µM serotonin solution. The observations suggest
that the presence of interfering species could not significantly influence the electrochemical
performance of MGCE. This indicates that MGCE has excellent selectivity for serotonin
(Figure 10). The concentration of interfering species was higher than that of serotonin.
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Figure 10. DPVs of MGCE in 20 µM of serotonin and serotonin + interfering species (urea, glucose,
dopamine, hydroquinone, ascorbic acid) in 0.1 M PBS (pH = 7.0) at scan rate of 50 mV/s.

Repeatability of the electrochemical sensor is another significant desirable characteris-
tic. The repeatability of the MGCE was also investigated using DPV. The 50 consecutive
DPV graphs of the MGCE were obtained in the presence of 20 µM serotonin at a scan
rate of 50 mV/s. The 1st, 10th, 25th, and 50th DPV graphs of the MGCE in the presence
of 20 µM serotonin in 0.1 M PBS (pH = 7.0) at a scan rate of 50 mV/s are presented in
Figure 11.

There was insignificant variation/change observed, which suggests good repeatability
and stability up to 50 cycles and revealed that MGCE retained ~89.7% of its initial perfor-
mance in terms of current response. Reproducibility of the MGCE was also examined by
fabricating four different MGCEs. The DPVs of the four freshly prepared MGCEs were
obtained in 20 µM of serotonin in 0.1 M PBS (pH = 7.0) at a scan rate of 50 mV/s. The
obtained results are depicted in Figure S2 and showed good reproducibility.

The storage stability of the MGCE was also checked using DPV. The MGCE was
stored for 10 days in a vacuum desiccator, and the DPV curve of the MGCE was recorded
in the presence of 20 µM serotonin in 0.1 M PBS of pH 7.0 at a scan rate of 50 mV/s, and
the obtained results are compiled in Figure 12.



Biosensors 2022, 12, 849 11 of 15

Biosensors 2022, 12, x FOR PEER REVIEW 11 of 15 
 

scan rate of 50 mV/s. The 1st, 10th, 25th, and 50th DPV graphs of the MGCE in the pres-
ence of 20 µM serotonin in 0.1 M PBS (pH = 7.0) at a scan rate of 50 mV/s are presented in 
Figure 11.  

 
Figure 11. 1st, 10th, 25th, and 50th DPVs of MGCE in 20 µM of serotonin in 0.1 M PBS (pH = 7.0) at 
scan rate of 50 mV/s. 

There was insignificant variation/change observed, which suggests good repeata-
bility and stability up to 50 cycles and revealed that MGCE retained ~89.7% of its initial 
performance in terms of current response. Reproducibility of the MGCE was also ex-
amined by fabricating four different MGCEs. The DPVs of the four freshly prepared 
MGCEs were obtained in 20 µM of serotonin in 0.1 M PBS (pH = 7.0) at a scan rate of 50 
mV/s. The obtained results are depicted in Figure S2 and showed good reproducibility.  

The storage stability of the MGCE was also checked using DPV. The MGCE was 
stored for 10 days in a vacuum desiccator, and the DPV curve of the MGCE was recorded 
in the presence of 20 µM serotonin in 0.1 M PBS of pH 7.0 at a scan rate of 50 mV/s, and 
the obtained results are compiled in Figure 12.  

 
Figure 12. DPVs of MGCE (1st day and after 10th day) in 20 µM of serotonin in 0.1 M PBS (pH = 
7.0) at scan rate of 50 mV/s. 

Figure 11. 1st, 10th, 25th, and 50th DPVs of MGCE in 20 µM of serotonin in 0.1 M PBS (pH = 7.0) at
scan rate of 50 mV/s.

Biosensors 2022, 12, x FOR PEER REVIEW 11 of 15 
 

scan rate of 50 mV/s. The 1st, 10th, 25th, and 50th DPV graphs of the MGCE in the pres-
ence of 20 µM serotonin in 0.1 M PBS (pH = 7.0) at a scan rate of 50 mV/s are presented in 
Figure 11.  

 
Figure 11. 1st, 10th, 25th, and 50th DPVs of MGCE in 20 µM of serotonin in 0.1 M PBS (pH = 7.0) at 
scan rate of 50 mV/s. 

There was insignificant variation/change observed, which suggests good repeata-
bility and stability up to 50 cycles and revealed that MGCE retained ~89.7% of its initial 
performance in terms of current response. Reproducibility of the MGCE was also ex-
amined by fabricating four different MGCEs. The DPVs of the four freshly prepared 
MGCEs were obtained in 20 µM of serotonin in 0.1 M PBS (pH = 7.0) at a scan rate of 50 
mV/s. The obtained results are depicted in Figure S2 and showed good reproducibility.  

The storage stability of the MGCE was also checked using DPV. The MGCE was 
stored for 10 days in a vacuum desiccator, and the DPV curve of the MGCE was recorded 
in the presence of 20 µM serotonin in 0.1 M PBS of pH 7.0 at a scan rate of 50 mV/s, and 
the obtained results are compiled in Figure 12.  

 
Figure 12. DPVs of MGCE (1st day and after 10th day) in 20 µM of serotonin in 0.1 M PBS (pH = 
7.0) at scan rate of 50 mV/s. 
Figure 12. DPVs of MGCE (1st day and after 10th day) in 20 µM of serotonin in 0.1 M PBS (pH = 7.0)
at scan rate of 50 mV/s.

The obtained results suggest good storage stability after 10 days and retained more
than 84% of the initial performance in terms of current response.

Real sample analysis was also conducted using the standard addition method. The
20 µM of serotonin was added to the urine sample (collected from healthy person, male,
age 29 years old), and the DPV curve was recorded as shown in Figure S3. The observations
showed a good recovery of 98.4% using the standard addition method. Furthermore,
we also investigated the selectivity of the MGCE in a urine sample. The DPV of the
MGCE was recorded in the presence of 20 µM serotonin + glucose, 20 µM serotonin + urea,
20 µM serotonin + ascorbic acid, 20 µM serotonin + hydroquinone, and 20 µM serotonin +
dopamine at a scan rate of 50 mV/s (Figure S4). The concentration of interfering species
was five times higher than that of serotonin. There was no significant change observed,
which indicated good selective nature of MGCE for serotonin determination.

The probable mechanism for detection of serotonin has been illustrated in Scheme 2.
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The electrochemical performance of the MGCE was evaluated by calculating detection
limit (LoD) and sensitivity. The LoD and sensitivity of the MGCE were calculated using
the following equations provided below:

LoD =
3.3 ∗ σb

S
(2)

(Herein, σb = standard deviation or error of the blank, and S = slope of the calibration
curve).

Sensitivity =
S
A

(3)

(where A = area of the electrode)
The MGCE exhibited an excellent LoD and sensitivity of 0.14 µM and

2.41 µA µM−1cm−2, respectively.
Over the past few years, various serotonin sensors were reported using nanostructured

electrode materials. In this regard, Matt et al. [13] fabricated a ZrO2-based serotonin sensor
that showed a good LoD of 0.585 µM. In other work, Babaei et al. [25] demonstrated the
sensing behavior of Nafion/(Ni(OH)2/multi-walled carbon nanotubes (MWNTs)/GCE
towards detection of serotonin and obtained an LoD of 0.083 µM. Rand et al. [26] employed
carbon nanofibers (CNFs) as a serotonin sensor and the authors reported an LoD of 0.25 µM.
In another report, Matuschek et al. [36] used a 3D mesoporous ITO electrode as a working
electrode for detection of serotonin. This applied sensor exhibited an LoD of 7.5 µM
using the DPV method. Reddaiah et al. [37] designed and fabricated poly-Alizarin Red
S/MWCNTs as electrode material for construction of a serotonin sensor. This prepared
material (poly-Alizarin Red S/MWCNTs) was deposited on GCE, which demonstrated
an excellent LoD of 0.18 µM. Gupta et al. [38] also developed a serotonin sensor using
novel strategies. The authors prepared polymelamine/pyrolytic graphite using a benign
approach, and the working surface of GCE was modified with polymelamine/pyrolytic
graphite as an electrode modifier. This fabricated electrode (polymelamine/pyrolytic
graphite/GCE) exhibited a good LoD of 0.49 µM for sensing of serotonin [38]. Citicoline-
sodium-modified carbon paste electrode (CDP-Choline/MCPE) was also constructed by
Deepa et al. [39] and employed as a serotonin sensor. This sensor showed an LoD of 5.81 µM.
In other work, Cernat et al. [40] fabricated a serotonin sensor using AuNPs@PPy/GSPE as
a working electrode. This working electrode (AuNPs@PPy/GSPE)-based serotonin sensor
exhibits an LoD of 32.22 µM [40]. Mahanthesh et al. [41] also utilized a graphite pencil
as a working electrode and employed a serotonin sensor that showed a decent LoD of
4 µM [41]. Li et al. [42] prepared poly (basic red 9)-doped functionalized multi-walled
carbon nanotubes and constructed a serotonin sensor. This serotonin sensor showed a
good LoD of 9 µM using poly (basic red 9)-doped functionalized multi-walled carbon
nanotubes as an electrode modifier [42]. In 2019, Shahid et al. [43] also fabricated a
serotonin sensor using reduced graphene oxide/cobalt oxide (rGO/Co3O4) as an electrode-
modifier. The authors fabricated GCE/rGO/Co3O4 as a serotonin sensor, which displayed
an LoD of 1.1 µM. Another report based on nickel oxide/barium titanate (NiO/BaTiO3)
also showed good performance for detection of serotonin [44]. Our obtained results for
MGCE are comparable with previously reported sensors in terms of LoD, as listed in
Table 1 [13,25,26,36–44].
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Table 1. Comparison of LoD and linear range of MGCE with previous reports [13,25,26,36–44].

Material LoD (µM) Linear Range (µM) References

MGCE 0.14 2–80 Present study

ZrO2 0.585 10–50 13

Nafion/Ni(OH)2/MWNTs/GCE 0.083 0.15–14.2 25

Carbon nanofibers 0.25 1–10 26

3D mesoporous ITO electrode 7.5 50–1000 36

Poly-Alizarin Red S/MWCNTs/GCE 0.18 0.5–10 37

Polymelamine/pyrolytic graphite/GCE 0.49 1–100 38

Citicoline-sodium-modified carbon paste electrode 5.81 10–30 39

AuNPs@PPy/GSPE 32.22 0.1–30 40

GPE 4 40–750 41

F-MWCNTs/BR9 9 10–83 42

rGO/Co3O4 1.1 1–10 43

NiO/BaTiO3 0.03 0.05–5 44

4. Conclusions

In summary, we can conclude that nanorods of α-MnO2 have been obtained using
a hydrothermal method, which was characterized by various advanced characterization
methods. Further, a glassy-carbon-electrode-based cost-effective serotonin sensor was
developed. The developed serotonin sensor (α-MnO2/GCE) showed excellent electrochem-
ical performance for determination of serotonin in terms of sensitivity and detection limit
using differential pulse voltammetry. In further investigations, α-MnO2/GCE also showed
good repeatability, stability, and selectivity towards detection of serotonin.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12100849/s1, Figure S1. Calibration curve between current
response versus concentration of serotonin, Figure S2. DPVs of four freshly fabricated MGCE in
20 µM of serotonin in 0.1 M PBS (pH=7.0) at scan rate of 50 mV/s, Figure S3. DPV of MGCE in 20 µM
of serotonin in urine at scan rate of 50 mV/s. Inset shows urine sample, Figure S4. DPVs of MGCE in
20 µM of serotonin with different interfering species in urine at scan rate of 50 mV/s.
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