
Citation: Cheng, Y.; Li, G.; Huang, X.;

Qian, Z.; Peng, C. Label-Free

Fluorescent Turn-On Glyphosate

Sensing Based on DNA-Templated

Silver Nanoclusters. Biosensors 2022,

12, 832. https://doi.org/10.3390/

bios12100832

Received: 26 August 2022

Accepted: 3 October 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Communication

Label-Free Fluorescent Turn-On Glyphosate Sensing Based on
DNA-Templated Silver Nanoclusters
Yuliang Cheng 1,2,†, Guowen Li 1,2,†, Xiufang Huang 1,2, Zhijuan Qian 3 and Chifang Peng 1,2,4,*

1 State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800,
Wuxi 214122, China

2 School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
3 Nanjing Customs District Light Industry 375 Productsand Children’s Products Inspection Center,

Yangzhou 225009, China
4 International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
* Correspondence: pcf@jiangnan.edu.cn; Tel.: +86-510-85329081
† These authors contributed equally to this work.

Abstract: In this work, a label-free fluorescent detection method for glyphosate, based on DNA-
templated silver nanoclusters (DNA-Ag NCs) and a Cu2+-ion-modulated strategy, was developed. In
the presence of Cu2+, the fluorescence of the DNA-Ag NCs was quenched. Glyphosate can restore
the fluorescence of DNA-Ag NCs. By analyzing the storage stability of the obtained DNA-Ag NCs
using different DNA templates, specific DNA-Ag NCs were selected for the construction of the
glyphosate sensor. The ultrasensitive detection of glyphosate was achieved by optimizing the buffer
pH and Cu2+ concentration. The sensing of glyphosate demonstrated a linear response in the range of
1.0–50 ng/mL. The limit of detection (LOD) was 0.2 ng/mL. The proposed method was successfully
applied in the detection of glyphosate in a real sample, indicating its high application potential for
glyphosate detection.
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1. Introduction

Glyphosate, a broad-spectrum organophosphorus herbicide, is the largest pesticide by
sales in the global crop protection market. It is widely used around the world and mainly
used for weed removal before crop planting. There is increasing evidence that glyphosate is
potentially toxic to non-target organisms [1]. In 2017, the International Agency for Research
on Cancer (IARC) classified glyphosate as a possible human carcinogen [2]. Glyphosate
applied in agricultural environments can enter the water environment through various
ways [3]. In recent years, glyphosate has been found in surface water worldwide. Therefore,
the determination of glyphosate in water is very important.

Some conventional analytical methods such as high-performance liquid chromatogra-
phy [4] and mass spectrometry [5] are commonly used for the determination of pesticide
residues in foods. Although these methods provide accurate and sensitive results, we have
to tolerate their disadvantages, including their complicated operation and requirement
of professional personnel. Therefore, there is a growing need to establish simple, rapid,
sensitive, and low-cost sensing methods for glyphosate, which benefit on-site detection in
resource-limited scenarios.

DNA template nanosensors exhibit excellent optical properties, including high-
fluorescence quantum yield and stability, biocompatibility, ease of synthesis, and low
toxicity. By changing the DNA sequence and structure, the DNA template nanosensors
could be used for the detection of different targets [6]. The various DNA template silver
nanoclusters (DNA-Ag NCs) with fluorescence emission from the UV to near-infrared re-
gions could also be synthesized based on changing the DNA sequence and environmental
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factors [7]. DNA-Ag NCs have been applied in the detection of a variety of targets, such
as heavy metal ions [8], proteins [9], viruses, microRNAs [10], and thiols [11]. However,
few studies have been involved in the application of DNA-Ag NCs in the enzyme-free
fluorescent detection of pesticides.

Herein, we developed a fluorescent detection glyphosate based on DNA-Ag NCs.
In the presence of Cu2+, which can bind to the DNA template through the electrostatic
interaction with the phosphate group and basic bases, the fluorescence of the DNA-Ag
NCs was quenched. However, glyphosate can trap Cu2+ and greatly restore the fluores-
cence of DNA-Ag NCs. Thus, the DNA-Ag NC-based “turn-on” fluorescent sensing of
glyphosate was realized (Figure 1). Moreover, we found specific DNA-templated Ag NCs
that demonstrated excellent storage stability and were suitable for the above glyphosate
sensing strategy.
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Figure 1. Schematic illustration of the detection of glyphosate based on DNA-Ag NCs.

2. Materials and Apparatus
2.1. Chemicals and Reagents

All chemicals were used directly without any further purification, and all chemical
reagents in this experiment were of analytical grade. Sodium borohydride (NaBH4), sil-
ver nitrate (AgNO3), zinc nitrate hexahydrate (Zn(NO3)2·6H2O), iron nitrate hexahydrate
(Fe(NO3)3·9H2O), lead nitrate (Pb(NO3)2), nickel sulfate hexahydrate (NiSO4·6H2O), man-
ganese chloride tetrahydrate (MnCl2·4H2O), aluminum nitrate hexahydrate (Al(NO3)3·9H2O),
mercury nitrate (Hg(NO3)2), cobalt nitrate (Co(NO3)2), ethylene diamine tetra-acetic acid
(EDTA), 5-morinopropanulfonic acid (MOPs), and sodium hydroxide (NaOH) were pur-
chased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). All
experimental water resistance values were higher than 18 MΩ/cm. All pesticides were pur-
chased from Shanghai Pesticide Research Institute (Shanghai, China). The template DNA
was synthesized by Sangon Bioengineering (Shanghai, China) Co. Sangon Bioengineering
Co., Ltd. (Shanghai, China)

2.2. Apparatus

The transmission electron microscope (TEM) images of DNA-Ag NCs were obtained
using a JEOL-2100 transmission electron microscope (Japan Electron Optics Laboratory Co.,
Ltd., Tokyo, Japan). The fluorescence spectra were measured using a F97Pro fluorescence
spectrophotometer (Shanghai Ling Guang Technology Co., Ltd., Shanghai, China). The
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circular dichroism (CD) spectra were recorded by Chirascan V100 (Applied Photophysics,
Surrey, UK). The weight measurements were carried out via analytical balance (MS105DU,
Mettler Toledo Instruments Shanghai Co., Ltd., Shanghai, China).

3. Experimental Method
3.1. Preparation of DNA-Ag NCs

The DNA-Ag NCs were synthesized through the one-step method. Briefly, 16 µL of
DNA (250 µmol /L) was mixed with 166 µL of phosphate buffer (PB, 20 mM, pH = 7.0) and
6 µL of AgNO3 (4 mM) under vigorous stirring, and then the mixture was incubated at
4 ◦C for 20 min. Then, 12 µL of NaBH4 (2 mmol/L) prepared with ice water was added to
the mixture under vigorous stirring and then incubated at room temperature for 3 h in the
dark. Finally, the obtained DNA-Ag NCs were stored at 4 ◦C for future use.

3.2. Protocol of the Glyphosate Detection

Different concentrations of glyphosate (5 µL) were mixed with 20 µL of Cu2+ (300 nM)
in 10 mM MOPS buffer (pH 7.5) and incubated for 2 min. Subsequently, 60 µL of DNA-Ag
NC solution and 15 µL of MOPS buffer (pH 7.5) were added. The final volume of the
mixture was 100 µL. After incubation for 25 min at the room temperature, the fluorescence
intensity of the mixture was recorded using a fluorescence spectrophotometer.

3.3. Glyphosate Detection in Real Samples

Tap water and spring water were collected from the lab and supermarket as real
samples. Different concentrations of glyphosate (5 ng/mL, 20 ng/mL, and 40 ng/mL) were
added to the samples and filtered with a 0.22 µm microporous membrane. The fluorescence
emission spectra were recorded and the recovery rates were calculated.

4. Results and Discussion
4.1. Sensing Strategies for Glyphosate Detection

The interactions of metal cations with nucleic acid have been used in the design of
DNA-based nanosensors [12]. It was reported that Cu2+ was mainly attached to the phos-
phate group of nucleic acids and also can bind to the basic groups of nucleic acid [13]. Cu2+

mainly binds to the N7 and O6 positions of guanine and the O2 position of cytosine [14].
Ag+ can specifically bind to the N3 site of cytosine [15]. Compared with adenine (A),
guanine (G), and thymine (T) bases, Ag+ towards the cytosine (C) base showed much a
higher binding affinity. The binding constants of C-Ag+-C base pairs can be compared with
T-Hg2+-T base pairs [16].

Based on the binding of Cu2+ to nucleic acid, we designed DNA-Ag NCs as a fluo-
rescent probe to achieve rapid glyphosate detection through Cu2+-mediated fluorescence
modulation.

Cu2+ can bind to phosphate and basic groups in DNA, quenching the fluorescence
of nanoclusters. In the presence of glyphosate, due to the strong binding affinity of the
phosphonyl group (-PO3H2) and carboxyl group (-COOH) with Cu2+, Cu2+ was trapped
and the fluorescence of the DNA-Ag NCs was greatly restored.

4.2. Characterization of DNA-Ag NCs

The sequence and structure of the DNA template could greatly affect the fluorescence
characteristic of DNA-Ag NCs [17]. For example, Dickson et al. obtained Ag NCs using
five kinds of single-stranded DNA with similar sequences [18]. Yang et al. obtained silver
nanoclusters with different emission wavelengths by adjusting the structural changes of the
DNA template between a stem–loop structure and dimer [19]. The C-rich DNA sequence 5′-
CCCTTAATCCCC-3′ was usually used as a template for the synthesis of DNA-Ag NCs. It was
found that the G base could enhance the fluorescence of the C-rich DNA-Ag NCs. Therefore,
we selected five typical C-rich DNA sequences reported in the literature. Two of them were
inserted with multiple G bases (Table 1). They were evaluated for subsequent experiments.
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Table 1. Sequences of five single-stranded DNA.

DNA Sequence 5′-3′

DNA 1 CCCTTAATCCCC
DNA 2 ACCCGAACCTGGGCTACCA CCCTTAATCCCC
DNA 3 ATCCTCCCACCGGGCCTCCCACCATAAAAA CCCTTAATCCCC
DNA 4 GGCAGGTTGGGGTGACTAAAAA CCCTTAATCCCC
DNA 5 CTGACACCATATTATGAAGA CCCTTAATCCCC

As shown in Table 2, the maximum excitation wavelength and the maximum emission
wavelength of the five DNA-Ag NCs showed great differences. The fluorescence intensity
of the DNA2-Ag NCs, DNA3-Ag NCs, and DNA4-Ag NCs was higher than the other two
Ag NCs (Figure 2), which was clearly observed under the 365 nm UV lamp (Figure 3).

Table 2. Excitation and emission wavelengths of different DNA-Ag NCs.

Name λex/nm λem/nm

DNA1-Ag NCs 464 550
DNA2-Ag NCs 530 620
DNA3-Ag NCs 560 621
DNA4-Ag NCs 596 671
DNA5-Ag NCs 560 627

Biosensors 2022, 12, x FOR PEER REVIEW 4 of 13 
 

 4 

five kinds of single-stranded DNA with similar sequences [18]. Yang et al. obtained silver 
nanoclusters with different emission wavelengths by adjusting the structural changes of 
the DNA template between a stem–loop structure and dimer [19]. The C-rich DNA 
sequence 5′-CCCTTAATCCCC-3′ was usually used as a template for the synthesis of 
DNA-Ag NCs. It was found that the G base could enhance the fluorescence of the C-rich 
DNA-Ag NCs. Therefore, we selected five typical C-rich DNA sequences reported in the 
literature. Two of them were inserted with multiple G bases (Table 1). They were 
evaluated for subsequent experiments. 

As shown in Table 2, the maximum excitation wavelength and the maximum 
emission wavelength of the five DNA-Ag NCs showed great differences. The fluorescence 
intensity of the DNA2-Ag NCs, DNA3-Ag NCs, and DNA4-Ag NCs was higher than the 
other two Ag NCs (Figure 2), which was clearly observed under the 365 nm UV lamp 
(Figure 3). 

Table 1. Sequences of five single-stranded DNA. 

DNA Sequence 5′-3′ 
DNA 1 CCCTTAATCCCC 
DNA 2 ACCCGAACCTGGGCTACCA CCCTTAATCCCC 
DNA 3 ATCCTCCCACCGGGCCTCCCACCATAAAAA CCCTTAATCCCC 
DNA 4 GGCAGGTTGGGGTGACTAAAAA CCCTTAATCCCC 
DNA 5 CTGACACCATATTATGAAGA CCCTTAATCCCC 

Table 2. Excitation and emission wavelengths of different DNA-Ag NCs. 

Name λex/nm λem/nm 
DNA1-Ag NCs 464 550 
DNA2-Ag NCs 530 620 
DNA3-Ag NCs 560 621 
DNA4-Ag NCs 596 671 
DNA5-Ag NCs 560 627 

 
Figure 2. Fluorescence spectra of DNA-Ag NCs. 

500 550 600 650 700 750 800 850
0

500

1000

1500

2000

2500

3000

FL
 (a

.u
.)

Wavelength (nm)

 DNA1-Ag NCs
 DNA2-Ag NCs
 DNA3-Ag NCs
 DNA4-Ag NCs
 DNA5-Ag NCs

Figure 2. Fluorescence spectra of DNA-Ag NCs.

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 13 
 

 5 

 
Figure 3. Digital images of DNA-Ag NCs illuminated with (A) white and (B) UV lights. 1-5 refer 
to the DNA1-Ag NCs to DNA5-Ag NCs. 

The stability of Ag NCs is important for their practical applications. As shown in 
Figure 4, three kinds of DNA-Ag NCs were compared in terms of their stability. It was 
found that the fluorescence intensity of the DNA2-Ag NCs remained stable after being 
stored for 16 days. However, the fluorescence intensity of the DNA3-Ag NCs and DNA4-
Ag NCs decreased by about 50% after 5 days. Therefore, we selected the DNA2-Ag NCs 
for the subsequent glyphosate detection. 

 
Figure 4. The stability of the prepared DNA-Ag NCs. 

The morphology and particle size of the DNA2-Ag NCs were characterized via TEM 
and DLS. As shown in Figure 5, the synthesized DNA2-Ag NCs had no aggregation and 
the average particle size was about 2.2 nm. 

  
Figure 5. (A) TEM image of the DNA2-Ag NCs. (B) Particle size distribution histogram of the DNA2-
Ag NCs. 

0 2 4 6 8 10 12 14 16

500

1000

1500

2000

2500

3000

FL
 (a

.u
.)

Time (d)

 DNA2-Ag NCs
 DNA3-Ag NCs
 DNA4-Ag NCs

0

10

20

30

40

N
um

be
r (

%
)

Size (nm)

 DNA2-AgNCs

2.2 ± 0.1 nm

0 1.5 3 4.5

B

Figure 3. Digital images of DNA-Ag NCs illuminated with (A) white and (B) UV lights. 1–5 refer to
the DNA1-Ag NCs to DNA5-Ag NCs.



Biosensors 2022, 12, 832 5 of 12

The stability of Ag NCs is important for their practical applications. As shown in
Figure 4, three kinds of DNA-Ag NCs were compared in terms of their stability. It was
found that the fluorescence intensity of the DNA2-Ag NCs remained stable after being
stored for 16 days. However, the fluorescence intensity of the DNA3-Ag NCs and DNA4-
Ag NCs decreased by about 50% after 5 days. Therefore, we selected the DNA2-Ag NCs
for the subsequent glyphosate detection.
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Figure 4. The stability of the prepared DNA-Ag NCs.

The morphology and particle size of the DNA2-Ag NCs were characterized via TEM
and DLS. As shown in Figure 5, the synthesized DNA2-Ag NCs had no aggregation and
the average particle size was about 2.2 nm.
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As shown in Figure 6, the maximum excitation peak (λex) of the DNA2-Ag NCs was
at 530 nm and the maximum emission peak was at 620 nm.
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4.3. Feasibility Verification of Glyphosate Detection

As shown in Figure 7, the DNA2-Ag NCs demonstrated a red fluorescence emission
under 530 nm excitation. With the addition of the Cu2+ solution (60 nM), the fluorescence
of the DNA2-Ag NCs was sharply quenched. In the presence of the glyphosate solution
(500 ng/mL), the fluorescence of the DNA2-Ag NCs was significantly restored. However,
the glyphosate alone had no significant effect on the fluorescence emission of the Ag NCs.
Therefore, it is feasible to use Cu2+ to mediate the fluorescent detection of glyphosate based
on the Ag NCs.
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4.4. Optimization of Sensing Conditions

The Cu2+ concentration towards the fluorescence quenching of the DNA2-Ag NCs
was studied. As shown in Figure 8A,B, when the Cu2+ concentration was between 5 nM
and 140 nM, the DNA2-Ag NCs quenching (F/F0) gradually increased with the increased
Cu2+ concentration (F0 and F refer to the fluorescence intensity of the DNA2-Ag NCs in
the absence and presence of Cu2+ ions, respectively). Meanwhile, the quenching efficiency
((F0 − F)/F0) reached 90% when the Cu2+ concentration was higher than 60 nM, which
indicated that the fluorescence of the DNA2-Ag NCs was sensitive to the change in Cu2+

concentration. To further investigate the mechanism of the quenching effect, the Stern–
Volmer equation was used [20]:

F0

F
= 1 + KSV[Q] = 1 + kqτ0 (1)

Here, F0 and F are the fluorescence intensity in the absence and presence of the
quencher (Cu2+), respectively; Ksv is the Stern–Volmer quenching constant, [Q] is the
quencher concentration, and kq is the quenching rate constant of the DNA-Ag NCs; τ0 is
the average excited-state lifetime of the DNA-Ag NCs, reported as 2.23 ns [18]. The linear
regression of the F0/F plot versus [Q] determines the Ksv value. As shown in Figure 8C,
the Stern–Volmer plot is linear and the value of Ksv is 0.139. The kq was calculated using
the following equation:

kq =
Ksv

τ0
(2)

and the value of kq was calculated to be 6.2 × 1016 M−1 s−1, which was much higher than
the maximum dynamic quenching constant (2.0 × 1010 M−1 s−1)[21]. Thus, the dynamic
quenching was not predominated, since a complex was formed between the Cu2+ and DNA-
Ag NCs. Therefore, static quenching was the predominant mechanism of the DNA-Ag NCs
quenching in the presence of Cu2+, which resulted in the complex formation.
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Figure 8. (A) The fluorescence quenching effect of DNA2-Ag NCs after adding Cu2+ (0 nM~140 nM).
(B) The relationships between the F/F0 and different concentrations of Cu2+. (C) The Stern–Volmer
plots of DNA2-AgNCs with Cu2+ F0 and F are the fluorescence intensities of the DNA2-Ag NCs in
the absence and presence of Cu2+. (D) Computation of the binding constant (K) of each binding site
and the number of binding sites of DNA-AgNCs (n).

In addition, the binding parameters of Cu2+ to DNA-Ag NCs were calculated using
the following equation [22]:

log[
F0 − F

F
] = log K + n log[Q] (3)

where n is the number of binding sites and K is the binding constant. As shown in Figure 8D,
based on the plot of the double log graph of [(F0 − F)/F] versus log [Q], the values of n and
K were obtained from the slope and Y-intercept, respectively. The result indicated that the
binding constant between the DNA-Ag NCs and Cu2+ was 3.2 × 107 M−1, which indicated
that Cu2+ could bind to DNA-Ag NCs effectively. Madsen et al. analyzed the stability
constants of several 1:1 metal complexes of glyphosate [23], and the stability constant
(LogKML) for the Cu2+-glyphosate complex was 11.92. Thus, the glyphosate binding to
Cu2+ is much higher than for DNA-Ag NCs binding to Cu2+. The stronger binding of the
glyphosate to Cu2+ provided feasibility for the glyphosate sensing.

To evaluate the influence of other metal ions on the glyphosate detection, Zn2+, Fe3+,
Pb2+, Ni2+, Mg2+, Mn2+, Ca2+, Al3+, Hg2+, and Co2+ at a ten times higher concentration
(600 nM) than Cu2+(60 nM) were tested under the same conditions. As shown in Figure 9,
the fluorescence of the DNa2-Ag NCs was greatly quenched by the Cu2+ and Hg2+. The
results showed that the glyphosate could selectively bind to the Cu2+, and most metal ions
would not interfere with the detection of glyphosate, except Hg2+. Since the pollution
limit of Hg2+ in water is much lower than other metal ions, there is a low possibility of
interference from Hg2+.
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Figure 9. Fluorescence spectra of DNA2-Ag NCs in the presence of different metal ions.

The effects of the pH and Cu2+ concentration on the sensitivity of the sensing system
were investigated. As shown in Figure 10A, when the pH value increased from 6 to 7.5,
the fluorescence recovery (F2 − F1)/F2 (F1 and F2 refer to the fluorescence of the DNA-
Ag NCs/Cu2+ system in the absence and presence of glyphosate, respectively) gradually
increased, and the highest fluorescence recovery rates were obtained at pH 7.5. The results
indicated that the sensing system was more stable in weak alkaline environments. Therefore,
Mops buffer (pH, 7.5) was selected for the subsequent experiments. The effect of the Cu2+

concentration was also investigated. As shown in Figure 10B, when the Cu2+ concentration
was in the range of 40–100 nM, high fluorescence recovery of DNA-Ag NCs/Cu2+ could
be obtained, and the highest recovery was obtained at 60 nM. Therefore, 60 nM Cu2+ was
selected for glyphosate detection.
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Figure 10. Effects of (A) pH and (B) different concentrations of Cu2+ on the recovery efficiency of
DNA2-Ag NCs/Cu2+/glyphosate.

4.5. Analytical Performance of the Glyphosate Detection

As shown in Figure 11, the fluorescence recovery, (F2 − F1)/F1, gradually increased
with the increased concentration of glyphosate in the range of 1.0 ng/mL~400 ng/mL, and
a linear equation, y = 0.058x + 0.081 (R2 = 0.992), was obtained in the range of 1–70 ng/mL.
The LOD was calculated to be 0.2 ng/mL based on 3σ/s (σ is the standard deviation of the
blank value and s is the slope of the equation).

Compared with some other typical fluorescence methods for the detection of glyphosate
in recent years (Table 3), our proposed fluorescence detection method of glyphosate demon-
strates much better sensitivity. Although Huang et al. constructed an ultrasensitive
glyphosate fluorescence detection method using papain-coated gold nanoclusters as flu-
orescence probes combined with a tyrosinase/dopamine system [24], this method was
relatively complex due to introducing a tyrosinase amplification system.



Biosensors 2022, 12, 832 9 of 12

Biosensors 2022, 12, x FOR PEER REVIEW 9 of 13 
 

 9 

  
Figure 10. Effects of (A) pH and (B) different concentrations of Cu2+ on the recovery efficiency of 
DNA2-Ag NCs/Cu2+/glyphosate. 

4.5. Analytical Performance of the Glyphosate Detection 
As shown in Figure 11, the fluorescence recovery, (F2−F1)/F1, gradually increased with 

the increased concentration of glyphosate in the range of 1.0 ng/mL~400 ng/mL, and a 
linear equation, y = 0.058x + 0.081 (R2 = 0.992), was obtained in the range of 1–70 ng/mL. 
The LOD was calculated to be 0.2 ng/mL based on 3σ/s (σ is the standard deviation of the 
blank value and s is the slope of the equation). 

Compared with some other typical fluorescence methods for the detection of 
glyphosate in recent years (Table 3), our proposed fluorescence detection method of 
glyphosate demonstrates much better sensitivity. Although Huang et al. constructed an 
ultrasensitive glyphosate fluorescence detection method using papain-coated gold 
nanoclusters as fluorescence probes combined with a tyrosinase/dopamine system [24], 
this method was relatively complex due to introducing a tyrosinase amplification system. 

  
Figure 11. (A) The fluorescence recovery effect of DNA2-Ag NCs after adding different 
concentrations of glyphosate. (B) The relationship between the fluorescence intensity and different 
concentrations of glyphosate. 

Table 3. Comparison of different methods used for detecting glyphosate. 

Method Linearity Range LOD Ref 
Electrochemistry  0.028~28 µg/mL 10 ng/mL [25] 

Chemiluminiscence 0.015~12 µg/mL 15 ng/mL [26] 
SERS 0.016~16 µg/mL 2.4 ng/mL [27] 

Fluorescence colorimetric / 0.69 ng/mL [28] 
LFA 0.005~50 µg/mL 2 ng/mL [29] 

Fluorescence 0.1~1 µg/mL 7.8 ng/mL [30] 
Fluorescence 0.3~3 µg/mL 100 ng/mL [31] 
Fluorescence 0.04~0.4 ng/mL 0.035 ng/mL [32] 

6.0 6.5 7.0 7.5 8.0
0

200

400

600

800

1000

1200

1400

1600

FL
 (a

.u
.)

pH

 F1

 F2

A

(F
2−

F 1
)/F

1

−4

−2

0

2

4

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

FL
 (a

.u
.)

CCu
2+ (nM)

 F1

 F2

B

(F
2−

F 1
)/F

1

−1

0

1

2

3

4

550 600 650 700
0

200

400

600

800

1000

1200

1400

1600

Wavelenght (nm)

FL
 (a

.u
.)

1000

0

Glyphosate (ng/mL)

A

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(F
2-F

1/F
1)

CGlyphosate (ng/mL)

y=0.081+0.058x
R2=0.992

FL
 (a

.u
.)

CGlyphosate (ng/mL)

B

Figure 11. (A) The fluorescence recovery effect of DNA2-Ag NCs after adding different concentrations
of glyphosate. (B) The relationship between the fluorescence intensity and different concentrations of
glyphosate.

Table 3. Comparison of different methods used for detecting glyphosate.

Method Linearity Range LOD Ref.

Electrochemistry 0.028~28 µg/mL 10 ng/mL [25]
Chemiluminiscence 0.015~12 µg/mL 15 ng/mL [26]

SERS 0.016~16 µg/mL 2.4 ng/mL [27]
Fluorescence colorimetric / 0.69 ng/mL [28]

LFA 0.005~50 µg/mL 2 ng/mL [29]
Fluorescence 0.1~1 µg/mL 7.8 ng/mL [30]
Fluorescence 0.3~3 µg/mL 100 ng/mL [31]
Fluorescence 0.04~0.4 ng/mL 0.035 ng/mL [32]
Fluorescence / 13 ng/mL [33]
Fluorescence 1~50 ng/mL 0.2 ng/mL This method

4.6. Selectivity Analysis

To evaluate the selectivity of the proposed method, eight more common pesticides
including isocarbophos, phosalone, dimethoate, chlorpyrifos, fenamiphos, imidacloprid,
acetamidine, and carbofuran at a five times higher concentration (1250 ng/mL) than
glyphosate (250 ng/mL) were tested under the optimal conditions. As shown in Figure 12,
the DNA2-Ag NCs/Cu2+ fluorescence sensing system did not respond to these high
concentrations of pesticides, which indicated the excellent selectivity of that sensing system.
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Figure 12. Selectivity of the assay for various pesticides. (A) Fluorescence; (B) pesticides.

4.7. Mechanism of Glyphosate Sensing

The quenching fluorescence of DNA-Ag NCs by Cu2+ was mainly ascribed to the
interaction of Cu2+ with the phosphate base in the DNA [34]. To confirm this, EDTA, a
strong Cu2+ chelator [35], was used to challenge the fluorescence quenching by Cu2+. As
shown in Figure 13, the addition of EDTA restored most of the fluorescence emissions,
which indicated that complexation was the main reason. The surfaces of Cu2+ and DNA2-
Ag NCs neutralized part of the negative charge of the DNA template, thereby quenching
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the fluorescence of the DNA2-Ag NCs through electron or energy transfer processes [36].
At the same time, there may be another effect in the above fluorescence quenching, which
we speculated was a metalphilic interaction between the copper and silver [37].
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Figure 13. The fluorescence ratios of (a) DNA2-Ag NCs, (b) DNA2-Ag NCs/EDTA, (c) DNA2-Ag
NCs/Cu2+, and (d) DNA2-Ag NCs/Cu2+/EDTA.

From the circular dichroism spectrum in Figure 14, the DNA2-Ag NCs have positive
and negative absorption peaks at 275 nm and 245 nm, respectively, showing a typical B-type
DNA conformation [14]. After the addition of Cu2+, the absorption peaks at 245 nm and
275 nm obviously redshifted, which was associated with the changes in the DNA template
microenvironment [38]. This result confirmed the occurrence of the interaction between the
Cu2+ and oligonucleotide chains. Therefore, we hypothesized that both the carboxyl group
(-COOH) and phosphonacyl group (-PO3H2) in the glyphosate chelated with Cu2+, which
destroyed the interaction between Cu2+ and DNA2-Ag NCs, resulting in the recovery of
the DNA2-Ag NCs’ fluorescence.
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5. Conclusions

In conclusion, a fluorescence turn-on sensor for glyphosate detection was constructed
using DNA-Ag NCs. It was based on the Cu2+-mediated strategy, in which Cu2+ can
effectively quench the fluorescence of DNA-Ag NCs, and the coordination between the
glyphosate and Cu2+ restored the fluorescence of the DNA-Ag NCs. The established
method has the advantages of high sensitivity, simple operation, and low costs. The
method was also used to detect glyphosate in tap water and spring water samples with
satisfactory recovery. Our work provided a new option for the detection of glyphosate, and
also showed that DNA-Ag NCs have high potential in pesticide detection.
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