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Abstract: Photodynamic therapy (PDT) is considered a promising noninvasive therapeutic strategy
in biomedicine, especially by utilizing low-level laser therapy (LLLT) in visible and near-infrared
spectra to trigger biological responses. The major challenge of PDT in applications is the complicated
and time-consuming biological methodological measurements in identification of light formulas
for different diseases. Here, we demonstrate a rapid and label-free identification method based on
artificial intelligence (AI)-assisted terahertz imaging for efficient light formulas in LLLT of acute lung
injury (ALI). The gray histogram of terahertz images is developed as the biophysical characteristics
to identify the therapeutic effect. Label-free terahertz imaging is sequentially performed using rapid
super-resolution imaging reconstruction and automatic identification algorithm based on a voting
classifier. The results indicate that the therapeutic effect of LLLT with different light wavelengths and
irradiation times for ALI can be identified using this method with a high accuracy of 91.22% in 33 s,
which is more than 400 times faster than the biological methodology and more than 200 times faster
than the scanning terahertz imaging technology. It may serve as a new tool for the development and
application of PDT.

Keywords: terahertz imaging; photodynamic therapy; low-level laser therapy

1. Introduction

Acute lung injury (ALI) as a common lung disease with high mortality and incidence
rates [1–4] is manifested by acute hypoxemic respiratory failure, increased alveolar per-
meability, and severe alveolar edema with normal cardiac filling pressures [5]. Due to
inefficiency of traditional treatments for ALI [6], it is significant to develop a new thera-
peutic method for ALI to substantially reduce mortality and improve the quality of life of
patients. Photodynamic therapy (PDT), as a novel treatment by provision of effective local
control, is a light-activated treatment technique that harnesses a photochemical reaction
on laser irradiation [7,8]. It shows potential in biomedicine as a noninvasive therapeutic
strategy which demonstrated better spatial selectivity and invasiveness [9–11]. Low-level
laser therapy (LLLT) has been extensively applied in many diseases as PDT utilizing visible
and near-infrared spectra. It has succeeded in the effective treatment of inflammation [12],
pain [13], and bone and tooth healing [14]. Therefore, it is significant to develop LLLT for
ALI. The therapeutic effect is mainly decided by specific light formulas including light
wavelength and irradiation time. However, current identification methods of efficient
light formulas are complicated, time-consuming, and not very sensitive. Therefore, the
development of rapid, highly sensitive, and label-free identification strategies will strongly
promote the development and application of LLLT.
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Common identification methods of efficient light formulas can be divided into biologi-
cal methodology and radiological technology in biomedicine. The biological methodology
and radiological technology are compared in biomedicine, as shown in Table 1. The ther-
apeutic effect with different light formulas can be accurately evaluated using biological
methodology but with a long time [15]. For example, biological assays according to patho-
logical sections usually need more than 10 h. Thus, it is a major challenge to identify the
therapeutic effect of LLLT in real time for efficient light formulas. The radiological diagnosis
is useful in tracing the progression of the disease, which mainly includes computerized
tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography
(PET). CT has been proven as an effective clinic tool to study the pathophysiology [16]. Due
to the unavoidable radiation, CT is limited in multiple scans and in tracing the progression
and regression of disease [17], and it is not sufficiently sensitive and specific for early diag-
nosis, quantification of cellular events, and stratification of new therapies. MRI as an early
diagnosis method has the characteristics of noninvasiveness, repeatability, and dynamic
observation [18]. However, its low sensitivity remains technically challenging for accurately
identification of different light formulas. Most notably, hyperpolarized MRI has accuracy
and high sensitivity, but it has a very short signal lifetime due to technical problems [19,20].
PET as a noninvasive radiological technology has been proposed to study a wide variety
of respiratory inflammatory diseases including asthma and tuberculosis [19,21]. It may
quantify molecular and cellular events in early diagnosis due to its dependence on neu-
trophils. However, with the progress of disease, PET will be influenced by the decreases in
neutrophil activity and uptake of biomarkers. Hence, current biological methodology and
radiological technology remain challenging in the identification of efficient light formulas,
especially for the label-free and accurate identification of therapeutic effect.

Table 1. The pros and cons of biological methodology and radiological technology in biomedicine.

Methods Biological
Methodology [15] CT [16,17] Hyperpolarized

MRI [18–20] PET [19,21]

Pros Accurate Clinic tool Accuracy and
high sensitivity

Accurate and
high-sensitive

Cons Complex and
time-consuming

Unavoidable
radiation and
low sensitivity

Short sig-
nal lifetime

Influence of the
progresses
of disease

Terahertz (THz) imaging has the properties of unique physical characteristics of a
fingerprint spectrum, high diagnostic sensitivity, and safety. It has attracted great attention
in biomedical applications as a promising radiological technology. It has been proposed to
study a wide variety of diseases, including various cancers [22–27], skin burns [28], arthri-
tis [29], traumatic brain injury [30], silkworm egg development stages [31], and changes
in cell monolayers [32]. These findings suggest that THz imaging can quantify cellular
and tissue events, as well as trace the progression and regression of disease to monitor
therapeutic effect. However, THz imaging in biological diagnosis is limited by the imag-
ing system hardware. The major bottleneck is low imaging resolution, severe blurring,
and slow imaging speed. It is critical for images analysis to improve the resolution and
sharpness of THz imaging, as well as reduce the imaging time. Methods of optimizing
THz imaging can be divided into system optimization [33–35] and image reconstruction
methods [36]. Blurred images are reconstructed with a high resolution and same image
information using super-resolution (SR) algorithms. The method of optimizing the system
is limited by the low signal-to-noise ratio of photographic imaging; thus, the SR algorithm
is a better strategy. In this paper, the feasibility of the rapid THz imaging system based on
the SR algorithm is proven, and THz image information is obtained for the extension of
studies. With increasing image information sets in THz frequency, automatic identifica-
tion technology as an efficient and rapid diagnostic tool has great potential in biological
diagnoses. Recently, THz database sets were investigated for classification and recognition.
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Algorithms were used to distinguish cancer in THz images, including principal component
analysis (PCA) [25], hierarchical clustering analysis (HCA) [37], spectroscopic integration
technique [38], and support vector machine (SVM) [39]. Thus, the artificial intelligence (AI)-
assisted automatic identification technology for THz imaging can significantly improve the
diagnostic efficiency.

In this paper, a rapid and label-free identification method based on AI-assisted THz
imaging is demonstrated to identify therapeutic effect of LLLT for ALI. The LLLT is proven
as an effective therapeutic method for ALI using biological methodology. Then, a remark-
able absorption peak in the range of 0.1–0.15 THz is found in the THz spectral response
of ALI with potential in highly sensitive biological diagnosis and identification. A gray
histogram of terahertz images at 0.14 THz is developed as the biophysical characteristics
to identify the therapeutic effect. An AI-assisted identification method based on THz
imaging is developed and optimized by rapid SR imaging reconstruction and automatic
identification algorithm based on a voting classifier. The proposed method shows a high
accuracy of 91.22% and a rapid identification time of 33 s, which is more than 400 times
faster than the biological methodology and more than 200 times faster than the scanning
THz imaging technology. The results indicate that the proposed method can realize the
rapid and label-free identification of the efficient light formula of LLLT for ALI.

2. Materials and Methods
2.1. ALI Model in Rats

A reproducible measurement protocol was established by standardizing all experimen-
tal steps of sample preparations. Simultaneously, all animal experiments were performed
in accordance with the China Animal Welfare Legislation.

The adult male Sprague-Dawley (SD) rats were subjected to ALI with the weight range
of 220–240 g. The ALI model in rats was established using Lipopolysaccharide (LPS), as
shown in Figure 1a. The rats were anesthetized by the intraperitoneal injection of 10%
chloral hydrate (0.003 mL/g). The head and limbs of the rat were mounted on a frame.
With the surgical site of the rat disinfected and the fur shaved, the outer skin, muscle, and
fascia of the trachea were opened with an incision. With the injection of LPS (5 mg/kg) into
the trachea, the rats were mounted in an upright position, and the lung tissues were fully
filled to reduce the difference in modeling. As the comparison group, the same surgical
procedures were also performed on healthy rats. Human umbilical cord mesenchymal
stem cells (hUCMSCs) were cultured and passaged in vitro. Continuous-wave-mode
laser interference was performed at an energy density of 3 J/cm2 and a power density of
20 mW/cm2 at 635 nm and 808 nm twice a day for 3 days with culture for 24 h. The cell
transplantation was performed 1 week after LPS injection. The experimental data were
collected after 2 and 4 weeks of treatment.
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2.2. Super-Resolution Imaging Reconstruction Algorithms

There were four SR reconstruction algorithms used in the rapid THz imaging for
the comparison of performance, namely, super-resolution generative adversarial network
(SRGAN), enhanced super-resolution generative adversarial network (ESRGAN), residual
channel attention network (RCAN), and enhanced deep residual network (EDSR). SR-
GAN introduces the generative adversarial network (GAN) to the SR domain, providing
a powerful framework for SR reconstruction [40]. ESRGAN enhances the visual quality
by improving each of the three key components of the SRGAN, i.e., network architecture,
adversarial loss, and perceptual loss [41]. The representation capability of convolutional
neural networks is improved by the RCAN, thereby improving the image quality of recon-
struction [42]. With the development of deep convolutional neural networks, EDSR as a
residual learning technology improves the performance of image reconstruction [43].

The performance of the SR imaging reconstruction algorithms can be evaluated using
the mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity
(SSIM). The MSE and PSNR were calculated as follows [44]:

MSE =
1
M

m−1

∑
i=0

n−1

∑
j=0

[X(i, j)− Y(i, j)]2, (1)

PSNR = 10•lg
(

2552

MSE

)
, (2)

where M is the size of image X and image Y. MSE is used to evaluate the disparity of
two images, and PSNR is used to evaluate the imaging quality.

The SSIM can be calculated as follows [45]:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) , (3)

where c1 and c2 are constants, µx and µy are the mean value of x and y, respectively, σx and
σy are the standard deviation of x and y, respectively, and σxy is the covariance of x and y.
SSIM is used to evaluate the similarity of two images, which includes luminance, contrast,
and structure.

2.3. Automatic Identification Algorithms

In the identification method, PCA as the feature extraction algorithm is applied to the
gray histograms of THz images. Then, there are three algorithms used in the automatic
identification based on machine learning, namely, k-nearest neighbor (kNN), random forest
(RF), and SVM. Then, a voting classifier is developed using these classifiers. In the fea-
ture extraction of THz images, PCA is applied to map the n-dimensional features to the
k-dimension features in new orthogonal features which is known as principal compo-
nent [46]. In the kNN classification, the object is classified as a class if major of the k-nearest
neighbors in the feature space belong to that class [47,48]. kNN is suitable for automatic
classification of classes with relatively large sample sizes. RF classification is a classifier
that contains multiple decision trees, and its result belongs to the major class of all results of
individual decision trees [49,50]. It is appropriate for large samples and unmarked pattern
recognition. SVM is a class of generalized linear binary classifiers that perform classification
of data in a supervised learning manner [51,52]. It maps feature vectors to a feature space
and constructs maximally spaced hyperplanes to make separation in the space easier. It is
suitable for small sample, nonlinear, and high-dimensional pattern recognition.

Furthermore, the receiver operating characteristic curve (ROC) and area under curve
(AUC) are used to evaluate the generalization ability of the identification algorithms. The
ROC curve is correlated with the false positive rate (FPR) and true positive rate (TPR). In
order to demonstrate the performance of classifier, the identification results are evaluated
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as a function of sensitivity, specificity, and F1-score. The TPR, FPR, sensitivity, specificity,
and F1-score can be calculated as follows [53,54]:

TPR = Sensitivity = Recall =
TP

(TP + FN)
, (4)

FPR =
FP

(FP + TN)
, (5)

Specificity =
TN

(TN + FP)
, (6)

Precision =
TP

(TP + FP)
, (7)

F1 − score =
2∗Precision ∗ Recall
(Precision + Recall)

, (8)

where TP, TN, FP, and FN are the true positive, false positive, false negative, and true
negative, respectively. The AUC score is the result of the integration of the ROC curve.

3. Results and Discussion
3.1. Therapeutic Effect of LLLT for ALI

In this section, the therapeutic effect of LLLT for ALI is identified according to the
biological methodological parameters, including levels of weight, total antioxidant capacity
(TAC), superoxide dismutase (SOD), and interleukin-1β (IL-1β).

The weight changes of the rats are shown in Figure 1b. The weight was 232 ± 6 g
before LPS modeling in each group. After 21 days of modeling, there was no obvious
difference in increased weight in different groups, which was 331 ± 10 g. After 35 days of
modeling, the smallest increase in weight of 30 ± 5 g was observed in the injury group, and
the largest increase in weight of 73 ± 3 g was observed in the healthy group. It is shown
that the weight decline was caused by ALI for the rats, but it recovered to the healthy
group after LLLT especially in the 635 nm treated group. The TAC of the rats is shown in
Figure 1c, which was obviously lower in the injury group. The LLLT groups demonstrated
a decreasing trend with time. After 21 days of modeling, the TAC of rats in the LLLT
groups recovered to the level of the healthy group, i.e., 1.60 ± 0.05 mM. After 35 days of
modeling, a decreased TAC of 1.55 ± 0.04 mM was observed in the LLLT groups, but this
was higher than the injury group, i.e., 1.48 ± 0.02 mM. The TAC indicates that the overall
antioxidant capacity of the rats was improved by LLLT, because the LLLT can balance the
oxidative stress and establish a conducive microenvironment of recovery [15]. The SOD of
the rats is shown in Figure 1d. The total SOD obviously declined after LPS modeling. Af-
ter 21 days of modeling, the SOD was 0.92 ± 0.07 U/mg in the LLLT groups. After
35 days of modeling, the SOD was 0.98 ± 0.08 U/mg in the LLLT groups but only
0.70 ± 0.17 U/mg in the injury group. The result of SOD indicates that the LLLT can
increase the activity of antioxidant enzymes in tissues and further balance the oxidative
stress state. The IL-1β level of rats is shown in Figure 1e. After 21 days of modeling, there
was an obvious increase in IL-1β from 36.5 to 51.6 pg/mL in the injury group, but it recov-
ered to 38.9 ± 4.8 pg/mL in the LLLT groups. After 35 days of modeling, the IL-1β of rats of
the LLLT groups demonstrated a decreasing trend, i.e., 32.6 ± 1.5 pg/mL. The IL-1β result
indicates that the LLLT was effective in slowing down the burst of proinflammatory factors
during treatment. Furthermore, the secretion of proinflammatory factors was reduced in
the long term, and the secondary injury due to inflammatory response was slowed down
by LLLT [15].

In this section, the biological methodology proved that the LLLT is an effective thera-
peutic method for ALI. It took more than 4 h for the identification of efficient light formulas
with different light wavelengths and irradiation times using biological methodological
parameters, including weight, TAC, SOD, and IL-1β.
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3.2. Label-Free THz Imaging of ALI under LLLT

THz spectral diagnosis has been proven to be a powerful tool for many diseases with
unique physical characteristics in terms of the fingerprint spectrum, high sensitivity, and
safety. Here, the diagnostic and identification capacity of the THz spectra for ALI was
demonstrated using a reflective terahertz-time domain spectroscopy (THz-TDS) system
(Advantest, TAS7500TS).

Two THz pulses were registered by the THz-TDS system. One passed through the
healthy lung tissue as the reference and the other passed through the injury lung tissue
for diagnosis. As shown in Figure 2a, the average amplitude of the healthy tissues was
smaller than that of the injury tissues. The frequency-domain spectra were obtained using
a fast Fourier transformation of the time-domain signals, as shown in Figure 2b. Within the
frequency range of 0.05–0.5 THz, the reflectivity of the healthy tissues was distinctly lower
than that of the injury tissues. Furthermore, the spectral measurement of the THz-TDS
demonstrated a remarkable absorption peak in the range of 0.1–0.15 THz with the potential
in highly sensitive diagnosis and identification of ALI.
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Figure 2. Experimental measurement of THz (a) time-domain waveforms and (b) reflective spectra
of ALI samples. (c) Optical design of reflective THz imaging system for ALI.

With consideration of the highly sensitive THz spectral response of ALI, a vertical
reflective THz imaging system was designed for label-free imaging at 0.14 THz. As shown
in Figure 2c, the THz radiation source (Terasense, IMPATT diodes, 20 mW) was used
with an ultrafast THz detector (Terasense, 50 GHz–0.7 THz) to enable the highly sensitive
imaging of ALI in the system. The front view of the imaging system is shown in the
subgraph. The emitted THz waves were delivered by the resin lens (f = 100 mm) to the
beam splitter and vertically focused on the animal (yellow arrow). The reflected THz waves
were delivered from the beam splitter to the resin lens (f = 100 mm) and focused on the
THz detector (blue arrow). The animal was fixed on a computer-controlled linear motor
stages for the two-dimensional raster scan imaging. The resin lenses were made using
3D printing, and the size of the focal spot was 3 mm, measured using the knife-edge
method. The imaging speed was about 10 pixels/second.

The highly sensitive THz images and their gray histogram characteristics for ALI under
LLLT were further analyzed in comparison with the visual images and histopathologic
staining images. Six paraffin-embedded ALI samples were assayed, and all the experiments
were performed in temperature- and humidity-equilibrated laboratories. The image table of
the six samples in Figure 3 shows the visual images, MASSON staining images, HE staining
images, THz images, and corresponding gray histograms of THz images, respectively.
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Figure 3. Images of the ALI samples at different stages of LLLT including visual images, MASSON
staining images, HE staining images, THz images, and corresponding gray histograms of THz images.

The visual images show the paraffin-embedded ALI tissues under LLLT with different
light wavelength and irradiation time. The injury degree and therapeutic effect of LLLT
for ALI could not be identified through the visual images. The histopathologic analyses
of MASSON and HE staining images were further established to visually analyze the
cell density. The results of histopathologic analyses indicated that injury tissues had
a higher cell density compared with the healthy tissues. The LLLT could improve the
microenvironment of cell and reduce the cell density, especially at the wavelength of
635 nm. The increase in cell density in ALI tissues mainly resulted from multiple biological
events including the alveolar interstitial inflammatory cell infiltration and bleeding [5].

The cell density has been proven as a high-sensitive diagnostic indicator of the injury
area in THz biomedical imaging in several studies [55]. In this paper, the THz images of
ALI were assembled with the reflectivity of the acquired THz signal and compared with
the cell density. An imaging area of 3 × 3 cm was obtained with scanning steps of 100 µm.
In order to analyze the healthy and injury tissue quantitatively, the reflectivity was used in
the THz images normalized by the intensity of THz signal reflected from the paraffin. The
THz images indicated that the intensity of reflective THz signal from the injury area was
distinctly greater than that from the healthy area, corresponding to the cell density in the
histopathologic staining images.

Then, the gray histograms of the THz images were developed to reflect the biophysical
characteristics in the analysis of injury degree. The gray histograms demonstrated that
the distribution range of injury samples (about 40–205) was distinctly wider than that of
healthy samples (about 40–170), which can be explained by the gray distribution of injury
tissues in THz images being mostly focused in the range from 170 to 205 due to its higher
cell density. Further comparing the LLLT for ALI with different light wavelengths and
irradiation times, the gray histograms indicated that the gray distribution of injury samples
presented a remarkable trend of recovery to the healthy samples. Moreover, the longer
modeling time brought about a better recovery effect. When the modeling time was within
21 days, there was a similar recovery effect using the 635 nm and 808 nm laser. With the
modeling time reaching 35 days, the recovery effect using the 635 nm laser was better than
that using the 808 nm laser and almost recovered to the healthy samples.

In this section, THz imaging was proven as a highly sensitive and label-free method in
the identification of efficient light formulas for ALI. The scanning THz imaging technology
needed about 2 h for each ALI sample in the imaging, which was about half time of the
biological methodological measurements. The gray histogram of THz images demonstrated
its potential as a universal biophysical characteristic in biomedical identification.
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3.3. Rapid Identification of Light Formulas Using AI-Assisted THz Imaging

The scanning THz imaging technology had a high imaging resolution and only took
half the time of the biological methodological measurements in identification of light
formulas; however, it is still difficult to meet the demand of identification in real time.
The THz camera imaging technology has a high imaging speed, but its low imaging
resolution usually limits its biomedical applications. By increasing the scanning step of the
scanning THz imaging system, the imaging time can be significantly reduced but with a
decline in imaging resolution. Here, a rapid THz imaging technology-based SR imaging
reconstruction was developed to further reduce the imaging time without compromising
imaging resolution.

The method involves first obtaining low-resolution THz images with a large scanning
step in a short time, and then reconstructing high-resolution THz images from the low-
resolution images using rapid SR imaging reconstruction algorithms. In order to analyze
its performance, some reconstruction methods are demonstrated for the THz images with
different scanning steps.

The original scanning images and corresponding SR reconstructed images obtained
using different algorithms are shown in Figure 4a. The scanning time of the THz image was
decreased from 2 h to 10 s as the scanning step increased from 100 µm to 3000 µm. With
a scanning step of 3000 µm, the phenomenon of structural destruction and color chroma
degradation was observed in the reconstructed images with lattices and blurring artefacts.
In contrast, the image quality was improved distinctly in the reconstructed images with
other scanning steps. As the scanning step decreased from 3000 µm to 1000 µm, the scaling
factor of reconstruction decreased, and the image quality improved with the scanning time
increasing from 10 s to about 90 s. The result shows that these SR imaging reconstruction
algorithms succeeded in restoring the structure and color chroma of THz images when
the scanning step was less than 2000 µm. In order to further analyze the reconstruction
algorithms quantitatively, the indicators of SSIM, PSNR, and MSE were calculated, as
shown in Figure 4b–d. It is worth mentioning that these indicators can provide a significant
reference for algorithm selection. With the scaling factor of reconstruction decreasing, the
indicators of the reconstruction algorithms can be improved. The SSIM <0.80 suggests that
the structure of RCAN did not reconstruct the original structure. The EDSR outperformed
other algorithms with a PSNR >25 and SSIM >0.82.
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In consideration of imaging time and reconstructed quality, the EDSR algorithm with
a scanning step of 2000 µm was used in the rapid THz imaging system, which reduced
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the scanning time to 25 s. The reconstruction time of the algorithm was less than 5 s.
Using this rapid reconstruction method, each THz image could be obtained in 30 s without
compromising imaging resolution, which is more than 200 times faster than the scanning
THz imaging system.

Although the THz images can be acquired in 30 s using the proposed rapid THz
imaging system, the biological identification of THz radiography is still limited by highly
professional experience. With assisted by automatic identification method based on ma-
chine learning, the requirement of identification for professional experience is reduced
significantly. Currently, the recognition rate of the common algorithms struggles to satisfy
requirements. Thus, it is necessary to develop an appropriate learning algorithm for the
biological THz images.

A voting classifier based on multiple classifiers is proposed with the flowchart shown
in Figure 5a. The THz dataset constituted the 728 THz images obtained from the animal
ALI model under LLLT with different light formulas, which included 104 images from
the healthy group, 208 images from the injury group, 208 images from the 635 nm-treated
group, and 208 images from the 808 nm-treated group. The gray histograms were extracted
from the THz images as the feature parameters with the dimensionality reduction by
PCA, and then identified using the classifiers of kNN, SVM and RF, respectively. Lastly,
the final identification result was obtained according to the voting result of these three
classifiers. In order to improve the performance of the voting classifier, the identification
indicators of these three classifiers were optimized by automatic ergodic combination [30].
The identification accuracy obtained from individual classifiers with different numbers
of selected features is shown in Figure 5b. The highest accuracy of individual classifiers
was 85.12%, 84.23%, and 79.76%, respectively. Using the voting classifier, the identification
accuracy was improved significantly to 91.22%, as shown in Figure 5c. As shown in
Figure 5d, when different classifiers reached the highest accuracy, the ROC curve and AUC
scores were analyzed to further demonstrate the performance of generalization ability. It is
worth mentioning that the voting classifier showed a better generalization ability with the
AUC score reaching 0.8605. Then, the sensitivity, specificity, and F1-score were calculated to
demonstrate the performance of voting classifier, as shown in Table 2. Compared with other
individual classifiers, the result indicates that the voting classifier had outstanding ability
in terms of sensitivity, specificity, accuracy, and generalization ability. The identification
time of the voting classifier was less than 3 s.

Biosensors 2022, 12, 826 10 of 13 
 

shown in Figure 5d, when different classifiers reached the highest accuracy, the ROC 
curve and AUC scores were analyzed to further demonstrate the performance of general-
ization ability. It is worth mentioning that the voting classifier showed a better generali-
zation ability with the AUC score reaching 0.8605. Then, the sensitivity, specificity, and 
F1-score were calculated to demonstrate the performance of voting classifier, as shown in 
Table 2. Compared with other individual classifiers, the result indicates that the voting 
classifier had outstanding ability in terms of sensitivity, specificity, accuracy, and gener-
alization ability. The identification time of the voting classifier was less than 3 s. 

 
Figure 5. (a) Flowchart of the proposed voting classifier for the biological THz images. (b) The clas-
sification accuracy of kNN, SVM, and RF with the different numbers of features. (c) The highest 
classification accuracy of different classifiers. (d) The ROC curve and AUC scores of different clas-
sifiers when they reach the highest accuracy. 

Table 2. The identification metrics of AI-assisted THz imaging. 

 Voting  
Classifier 

SVM RF kNN 

Sensitivity 0.8872 0.8125 0.7483 0.8038 
Specificity 0.9403 0.8765 0.8910 0.8959 
F1-score 0.9060 0.7919 0.7912 0.8239 

In this section, the AI-assisted THz imaging was sequentially performed using rapid 
SR imaging reconstruction and an automatic identification algorithm based on a voting 
classifier. It took 30 s for the imaging of each ALI sample and 3 s for the identification 
algorithm of therapeutic effect. Therefore, the identification time of the proposed method 
was 33 s for each biological sample, which is more than 400 times faster than the biological 
methodological measurements and more than 200 times faster than the scanning THz im-
aging system. 

4. Conclusions 
In summary, a rapid and label-free identification method based on THz imaging was 

performed to identify the therapeutic effect of ALI under LLLT with different light wave-
lengths and irradiation times. The LLLT was proven as an effective therapeutic method 
for ALI using biological methodology. Then, a remarkable absorption peak in the range 
of 0.1–0.15 THz was found in the THz spectral response of ALI with potential in highly 
sensitive biological diagnosis and identification. The gray histogram of THz images at 0.14 
THz was developed to reflect the biophysical characteristics and identify the therapeutic 
effect. An AI-assisted identification method based on THz imaging was developed and 

Figure 5. (a) Flowchart of the proposed voting classifier for the biological THz images. (b) The
classification accuracy of kNN, SVM, and RF with the different numbers of features. (c) The highest
classification accuracy of different classifiers. (d) The ROC curve and AUC scores of different
classifiers when they reach the highest accuracy.



Biosensors 2022, 12, 826 10 of 12

Table 2. The identification metrics of AI-assisted THz imaging.

Voting
Classifier SVM RF kNN

Sensitivity 0.8872 0.8125 0.7483 0.8038
Specificity 0.9403 0.8765 0.8910 0.8959
F1-score 0.9060 0.7919 0.7912 0.8239

In this section, the AI-assisted THz imaging was sequentially performed using rapid
SR imaging reconstruction and an automatic identification algorithm based on a voting
classifier. It took 30 s for the imaging of each ALI sample and 3 s for the identification
algorithm of therapeutic effect. Therefore, the identification time of the proposed method
was 33 s for each biological sample, which is more than 400 times faster than the biological
methodological measurements and more than 200 times faster than the scanning THz
imaging system.

4. Conclusions

In summary, a rapid and label-free identification method based on THz imaging was
performed to identify the therapeutic effect of ALI under LLLT with different light wave-
lengths and irradiation times. The LLLT was proven as an effective therapeutic method
for ALI using biological methodology. Then, a remarkable absorption peak in the range
of 0.1–0.15 THz was found in the THz spectral response of ALI with potential in highly
sensitive biological diagnosis and identification. The gray histogram of THz images at
0.14 THz was developed to reflect the biophysical characteristics and identify the therapeu-
tic effect. An AI-assisted identification method based on THz imaging was developed and
optimized using rapid SR imaging reconstruction and an automatic identification algorithm
based on a voting classifier. The proposed method showed a high accuracy of 91.22% and
a rapid identification time of 33 s, which is more than 400 times faster than the biological
methodology and more than 200 times faster than the scanning THz imaging technology.
In the future, the compressed sensing and super-resolution algorithm can be combined
to optimize the AI-assisted THz imaging. The AI-assisted THz imaging in this paper was
only used for the identification of paraffin-embedded samples of biological tissues. Further
studies can be performed using in vivo imaging of fresh biological samples. AI-assisted
THz imaging represents a powerful tool for the development and application of PDT, and
it can be extended to other biological applications.
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