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Abstract: Skin cancer, a common type of cancer, is generally divided into basal cell carcinoma (BCC),
squamous cell carcinoma (SCC) and malignant melanoma (MM). The incidence of skin cancer has
continued to increase worldwide in recent years. Early detection can greatly reduce its morbidity and
mortality. Hyperspectral microscopic imaging (HMI) technology can be used as a powerful tool for
skin cancer diagnosis by reflecting the changes in the physical structure and microenvironment of
the sample through the differences in the HMI data cube. Based on spectral data, this work studied
the staging identification of SCC and the influence of the selected region of interest (ROI) on the
staging results. In the SCC staging identification process, the optimal result corresponded to the
standard normal variate transformation (SNV) for spectra preprocessing, the partial least squares
(PLS) for dimensionality reduction, the hold-out method for dataset partition and the random forest
(RF) model for staging identification, with the highest staging accuracy of 0.952 ± 0.014, and a kappa
value of 0.928 ± 0.022. By comparing the staging results based on spectral characteristics from the
nuclear compartments and peripheral regions, the spectral data of the nuclear compartments were
found to contribute more to the accurate staging of SCC.

Keywords: hyperspectral microscopic imaging technology; machine learning; skin cancer; cancer
classification; staging identification

1. Introduction

Skin cancer is a relatively common type of cancer and is generally divided into three
categories: basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and malignant
melanoma (MM). The incidence of skin cancer has continued to increase worldwide in
recent years, with patients covering all age groups, especially those in middle and old age.
According to the statistics of the International Agency for Research on Cancer (IARC), there
were 1.518 million new skin cancer patients and 121,000 new deaths worldwide in 2020.
Therefore, the diagnosis and treatment of skin cancer has become a major public health
problem worldwide. The traditional diagnosis of skin cancer is carried out by shave biopsy,
punch biopsy and excisional biopsy of the lesion areas. All three biopsy methods will
cause damage to the patient; moreover, the biopsy results mainly depend on the clinical
experience of the doctors, and there is the possibility of misdiagnosis or missed diagnosis [1].
Hyperspectral microscopic imaging (HMI) technology has been developed as a non-contact
optical diagnostic method in recent years [2]. HMI combines hyperspectral imaging (HSI)
technology with microscopy to provide both spectral information and image information
of the tissue that is to be measured. The spectral data in the HMI cube reveal the internal
microenvironment changes in the samples through parameters such as waveform and
intensity, and the microscopic image data can intuitively reflect the sample’s differences
in structure with high spatial resolution. At the same time, the combination of HMI and
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machine learning can assist doctors in diagnosis and greatly improve the efficiency and
accuracy of the diagnosis, as well as having a wide field of application in the future [3–7].

In 2018, Nansen et al. [8] designed a cancer detection system that incorporated HSI and
machine learning to distinguish the different types of cancers. Using principal component
analysis (PCA) to find the features for artificial neural networks (ANNs) and support vector
machines (SVMs), different cancer types could be distinguished with an overall accuracy of
87.4% using an ANN solution whereas the SVM accuracy ranged from 73–88.9%. In 2019,
Chen et al. [9] used H&E to stain hepatic carcinoma tissues and obtained spectral–spatial
data from their nuclei using hyperspectral microscopy. The transmission spectra of the nu-
clei were used to train an SVM model for cell classification. Their sensitivity and specificity
in the identification of cancer cells could be increased to 99% and 98%, respectively. In 2020,
Wang et al. [10] presented an automatic approach for the measurement of the superficial
spreading depth of cutaneous melanomas based on microscopic hyperspectral imaging
technology. An edge-detection method combined with kernel minimum noise fraction
was used to extract the skin granular layer; the least squares SVM based on characteristic
spectrum supervision was used to identify malignant melanocytes with an accuracy of
more than 85%. Notarstefano et al. [11] analyzed tissue samples with diagnosis of pancre-
atic ductal adenocarcinoma and pancreatic neuroendocrine tumor using Fourier transform
infrared HSI by means of both multivariate and univariate analyses and identified definite
spectral markers of the different lesions. Their study showed that the malignant lesions
were recognizable both from healthy/dysplastic pancreatic tissues and between each other.
In 2021, Liu et al. [12] used an HMI system to identify 4’,6-diamidino-2-phenylindole
(DAPI)-stained liver cancer cells. They took advantage of DAPI’s sensitivity to DNA, and
used DAPI’s fluorescence intensity and spectral shape as features to identify liver cancer
tissue and normal tissue. Using the SVM classification model, the sensitivity and specificity
for the identification of 1000 liver cancer samples were 99.3% and 99.1%, respectively. In
2022, van Vliet-Pérez et al. [13] assessed the feasibility of near-infrared HSI for the detection
of epithelial ovarian cancer in ex vivo tissue samples. Hyperspectral images with 25 spec-
tral bands were acquired from the resected tissues in the wavelength range of 665–975 nm.
A linear SVM was employed to classify healthy and tumorous tissue. The performance
of the classification was evaluated by leave-one-out cross-validation. It was proved that
tumorous tissue could be classified with a sensitivity of 0.81, a specificity of 0.70, an area
under the curve (AUC) of 0.83, and Matthew’s correlation coefficient of 0.41.

In this paper, HMI data cubes of BCC, MM and SCC were collected by an HMI system.
Based on spectral data, the staging identification of SCC was realized, and the influence of
the selection of spectral regions on staging results was studied.

2. Materials and Methods
2.1. Materials

The skin tissue samples used in our experiments were purchased from Xi’an Alenabio
(sample no: SK801c; Xi’an, China) and ZhongkeGuanghua (Xi’an) Intelligent Biotechnology
(sample no: K683501; Xi’an, China). In total, there were 34 cases of BCC, 63 cases of SCC
and 39 cases of MM. For the SCC staging study, there were 13 cases of stage I, 37 cases of
stage II and 13 cases of stage III.

2.2. HMI System

The schematic diagram of the push-broom HMI system used in our experiments is
shown in Figure 1a. The main instruments included a tungsten halogen lamp light source
(HL-2000, Ocean Insight; Dunedin, FL, USA), a hyperspectral camera (Xispec_MQ022HG-
IM-LS150-VN2, XIMEA, Münster, Germany), an objective lens (10×/0.45, CFI Plan Apo
Lambda, Nikon; Tokyo, Japan) and a motorized translation stage (OMS20-85, Sigma;
Tokyo, Japan). The HMI system had a wavelength range of 465.5–905.1 nm, with a total of
151 bands and a spectral resolution of ~3 nm. The system magnification was 28.15×, the
field of view was 400.18 µm × 192.47 µm, and the actual resolution was in the range of
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~1.10–1.38 µm depending on the light wavelength. The light emitted from the tungsten
halogen lamp illuminated the skin tissue on the sample stage. The transmitted light carrying
the sample information was collected by the objective lens, and then passed through the
mirror and lens group, and was directed to the hyperspectral camera. The motorized
translation stage stepped in the x direction with a step size of 1 µm; thus, an HMI data cube
containing image and spectral information with a size of 2048 × 985 × 151 was obtained,
as shown in Figure 1b. Selecting the points or areas of interest for spectral analysis, the
spectral profiles were displayed as in Figure 1c.
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Figure 1. HMI system and data analysis. (a) Schematic diagram of the push-broom HMI system;
(b) HMI data cube; (c) spectral profiles corresponding to the marked points in (b), the red and blue
spectral curves corresponded to the red and blue points, respectively.

2.3. Methods
2.3.1. Spectral Data Preprocessing

The spectral information of the HMI data cube can reflect the chemical composition
and variation in the microenvironment within samples. In this paper, spectral data were
used for SCC staging identification.

Generally, to reduce the influence of external noise and system scattering on the HMI
system, spectral preprocessing is necessary [14,15], which can also improve the accuracy
of subsequent procedures. The preprocessing methods used in this paper included the
derivative method, standard normal variate (SNV) transformation and multiplicative
scatter correction (MSC). The derivative method, such as the commonly used first derivative
method (FD) and second derivative method (SD), can correct the spectral baseline and
remove the background interference. The basic idea of SNV is to perform standard normal
processing on the original spectrum, subtract the average value from the original spectrum,
and then divide this by the standard deviation of the spectrum, so that the mean value
of the spectrum is 0 and the standard deviation is 1. MSC first calculates the average
spectrum, and then makes a univariate linear regression between each spectrum and the
average spectrum. Both SNV and MSC can be used to eliminate the effect of scattering on
the spectrum due to uneven particle distribution and particle size.

2.3.2. Dimensionality Reduction

The HMI data cube contains high-dimensional information, which may result in an
extremely complex computational procedure or even non-convergence and low accuracy
in the classification model. Dimensionality reduction has been proven to be a powerful
tool for high-dimensional data analysis because it can eliminate the redundances among
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data samples and simultaneously extract useful features. In this paper, two dimensionality
reduction methods, namely, principal component analysis (PCA) and partial least squares
(PLS), were used to reduce the dimensions of the HMI datasets to improve the accuracy of
the model and speed up the algorithms [16,17]. PCA is a widely used linear unsupervised
method, which can convert a set of observations of possibly correlated variables into as few
uncorrelated variables, named principal components, as possible to retain the characteristics
of the original data to the maximum extent; however, PCA cannot predict the dependent
variables well. PLS is a linear, supervised, regression-based method that incorporates the
ideas of principal component analysis and canonical correlation analysis. While used to
reduce dimensionality, PLS can make the extracted feature variables not only generalize the
information of the original variables well, but also have a strong explanatory power for the
dependent variables, which is an improvement to the shortcomings of the PCA algorithm.

2.3.3. Staging Identification Model

In the experiments, skin cancer staging identification models were established based
on four classification methods: extreme learning machine (ELM), SVM, decision tree and
random forest (RF) [18–20].

ELM is a single hidden-layer feedforward neural network, and its basic structure
is shown in Figure 2a. The network consists of an input layer, output layer and hidden
layer. b is the threshold of the hidden layer, and l is the number of neurons in the hidden
layer. ωij are the input weights connecting the input layer and hidden layer, and βjk are
the output weights connecting the hidden layer and output layer. The input data can be
converted into an interpretable output signal through the activation function g(x). In the
implementation of the ELM algorithm, only the input parameter l is needed, ω and b are
randomly generated after the input, and the output matrix of the hidden layer can be
uniquely determined. In our experiments, the parameter l was set to 55.
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The basic principle of the SVM algorithm is shown in Figure 2b. By solving the optimal
hyperplane, the training dataset can be partitioned correctly and the geometric interval
can be maximized. In the SVM algorithm, choosing the appropriate kernel function can
effectively guarantee the classification accuracy. In this paper, the linear kernel function
was selected after many repeated experiments.

A decision tree is a predictive model expressed in the form of a tree diagram, as shown
in Figure 2c. A decision tree classifier includes root nodes, internal nodes and leaf nodes. In
the process of generating a decision tree, three problems need to be solved: which feature
to be chosen as the root node, which features to be chosen as the internal nodes, and when
to stop splitting child nodes and achieve the stated goal.

RF uses the idea of ensemble learning to statistically analyze the voting results of
multiple decision trees, and this process is shown in Figure 2d. In the RF classification
algorithm, each decision tree selects some samples and some features. The number of
decision trees determines the quality of the classification model. After repeated experiments,
15 decision trees were determined in the RF models for skin cancer staging identification.

3. Results

In this paper, the HMI system was used to collect the data cube of the skin cancer
tissues. Then, SCC staging identification based on spectra was investigated.

3.1. SCC Staging Identification Based on Spectral Data
3.1.1. Spectra Preprocessing

We used various methods to preprocess the spectra from the HMI data cube. As
shown in Figure 3, the original spectra (a1–a3) of SCC at stage I, stage II and stage III in the
SK801c tissue microarray were pretreated by FD (b1–b3), SD (c1–c3), MSC (d1–d3) and SNV
(e1–e3), respectively. The effects of the preprocessing methods on modeling are discussed
in the following process.

3.1.2. Dimensionality Reduction

PCA and PLS were performed on the original spectra of SCC at stages I, II and III
to reduce the dimensions. Figure 4 shows the contribution of the extracted characteristic
bands using PCA and PLS, respectively. The contribution rate of the first 10 principal
components in PCA was 73%, and the contribution rate of the first 8 principal components
in PLS was 96%. The results showed that the PLS method could more effectively extract the
spectral features and greatly compress the HMI data cube. In this paper, the PLS was used
for spectral dimensionality reduction, and the first 10 principal components were selected
for SSC staging identification.

3.1.3. SCC Staging Identification

The spectral data of SCC at stage I, II and III were preprocessed by FD, SD, MSC and
SNV. Then, the preprocessed data were reduced dimensions with PLS for characteristic
band extraction. Next, the dataset was divided into a training set and a test set with the ratio
of 4:1 using the hold-out method. Finally, the SCC staging identification models of ELM,
SVM, decision tree and RF were established. In this paper, accuracy and kappa values were
used to evaluate the model performance. Overall accuracy is the most basic requirements
in the classification, which is the number of correctly classified samples divided by the total
number of classified samples. The kappa value is used to test the consistency of judgment
and is obtained based on the confusion matrix. It ranges from 0 to 1, which can be divided
into five groups to represent different levels of consistency: 0.0–0.20 for slight consistency,
0.20–0.40 for fair consistency, 0.40–0.60 for moderate consistency, 0.60–0.80 for substantial
consistency and 0.80–1.0 for almost perfect consistency.
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The staging results of each model are shown in Table 1. From the figures, it was
clear that different spectra preprocessing methods had important impacts on the accu-
racy and kappa value of the staging models, and SNV performed best in each model.
Among the four staging identification models, the RF model presented the optimum results
with the highest accuracy and kappa value (0.952 ± 0.014, 0.928 ± 0.022), followed by
ELM (0.948 ± 0.009, 0.922 ± 0.014), SVM (0.941 ± 0.015, 0.912 ± 0.022), and decision tree
(0.885 ± 0.011, 0.827 ± 0.017).

Table 1. SCC staging results based on spectral data.

Classification Model Spectral Data
Preprocessing Accuracy Kappa

ELM

FD 0.907 ± 0.015 0.861 ± 0.021
SD 0.879 ± 0.024 0.818 ± 0.035

MSC 0.937 ± 0.009 0.906 ± 0.014
SNV 0.948 ± 0.009 0.922 ± 0.014

SVM

FD 0.907 ± 0.019 0.860 ± 0.029
SD 0.841 ± 0.021 0.761 ± 0.032

MSC 0.901 ± 0.031 0.861 ± 0.047
SNV 0.941 ± 0.015 0.912 ± 0.022

Decision tree

FD 0.853 ± 0.032 0.779 ± 0.049
SD 0.819 ± 0.015 0.729 ± 0.022

MSC 0.866 ± 0.022 0.799 ± 0.034
SNV 0.885 ± 0.011 0.827 ± 0.017

RF

FD 0.912 ± 0.019 0.868 ± 0.028
SD 0.873 ± 0.029 0.809 ± 0.043

MSC 0.942 ± 0.014 0.913 ± 0.020
SNV 0.952 ± 0.014 0.928 ± 0.022

3.2. Effects of Spectral ROIs on SCC Staging Identification

Figure 5(a1–a3) show the HMI images of SCC at different clinical stages as an example.
In the previous staging identification, larger ROIs including the nucleus and surrounding
areas (for example, the regions marked with “3”) were selected to obtain average spectra
for post-processing. In this section, the spectral data of the nuclear compartments and the
peripheral regions (for example, the regions marked with “#” and “�”, respectively) were
analyzed respectively, as shown in Figure 5(b1–b3,c1–c3), to compare their effects on the
staging results. According to the results listed in Table 1, SNV and MSC were selected for
spectra preprocessing, and RF and ELM were selected as the staging models.
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Figure 5. HMI images and original spectra of SCC at different clinical stages: stage I, stage II and
stage III, respectively. (a1–a3) 3D HMI images. “3”, “#” and “�” represented the selected spectral
ROIs including the nucleus and surrounding areas, the nuclear compartments, and the peripheral
regions, respectively; (b1–b3) original spectra of the nuclear compartments; (c1–c3) original spectra
of the peripheral regions. The different color lines represented the spectra of different sample pixels
of the ROIs.

The SCC staging results based on spectral data from different ROIs are shown in
Table 2. The findings indicated that the spectral ROIs influenced the staging results. When
the selected spectral ROIs were the nuclear compartments, the staging accuracies were
greatly improved: the highest accuracy reached 0.999 ± 0.001 and the kappa value was
0.998 ± 0.001. However, when the peripheral regions were selected as the spectral areas, the
accuracies and kappa values were seriously reduced. Therefore, it could be concluded that
the spectral data of the nuclear compartments contributed more than that of the peripheral
regions to SCC staging.

Table 2. SCC staging results based on spectral data from different ROIs.

Classification
Model

Spectral Data
Preprocessing

Nuclear Compartments Peripheral Regions

Accuracy Kappa Accuracy Kappa

ELM
MSC 0.996 ± 0.001 0.995 ± 0.001 0.599 ± 0.025 0.399 ± 0.037
SNV 0.998 ± 0.002 0.997 ± 0.002 0.609 ± 0.026 0.414 ± 0.039

RF
MSC 0.998 ± 0.002 0.997 ± 0.003 0.541 ± 0.021 0.312 ± 0.032
SNV 0.999 ± 0.001 0.998 ± 0.001 0.541 ± 0.019 0.312 ± 0.029

In order to further verify the performance of the method discussed in this paper,
300 blind samples of SCC at stage I, stage II and stage III were used for staging identification.
According to the above optimal results, the spectral data were from nuclear compartments,
the spectra preprocessing method and the staging identification model were SNV and
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RF, respectively. Finally, the staging accuracy and kappa values of 0.807 ± 0.025 and
0.71 ± 0.018 were obtained, respectively. This result will provide reference for the staging
of SCC.

4. Discussion and Conclusions

Skin cancer has attracted increasing attention, and its early diagnosis can help to
improve the disease cure rates. In this paper, hyperspectral microscopic imaging (HMI)
technology and machine learning are combined for skin cancer staging diagnosis. In the
staging identification of SCC, spectral data were preprocessed by FD, SD, MSC and SNV;
PCA and PLS were used to reduce the spectral dimensions; the hold-out method was used
to divide the training set and test set; and the models of ELM, SVM, decision tree and RF
were established for SCC staging identification. Moreover, the influence of the spectral
ROIs on the staging results was also studied.

The results are as follows: SNV performed best in all of the spectral data prepro-
cessing methods; PLS was better than PCA for dimensionality reduction; the RF model
obtained the optimal SCC staging results with the highest staging accuracy and kappa
value (0.952 ± 0.014, 0.928 ± 0.022); the spectral data of the nuclear compartments con-
tributed more than that of the peripheral regions to SCC staging (accuracy and kappa value:
(0.999 ± 0.001, 0.998 ± 0.001) vs. (0.609 ± 0.026, 0.414 ± 0.039)).

The results of this work show that the staging identification of SCC can be performed
with high accuracy based on HMI technology and machine learning, which has great
application potential in skin cancer diagnosis. This research can also provide a reference
for the diagnosis of other diseases and lay a foundation for the study of spectral–spatial
feature extraction for hyperspectral medical image classification.
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