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Abstract: Cell-based biosensors appear to be an attractive tool for the rapid, simple, and cheap
monitoring of chemotherapy effects at a very early stage. In this study, electrochemical measurements
using a four-point probe method were evaluated for suspensions of four cancer cell lines of different
tissue origins: SK–N–SH, HeLa, MCF-7 and MDA-MB-231, all for two different population densities:
50 K and 100 K cells/500 µL. The anticancer agent doxorubicin was applied for each cell type in
order to investigate whether the proposed technique was able to determine specific differences in cell
responses before and after drug treatment. The proposed methodology can offer valuable insight into
the frequency-dependent bioelectrical responses of various cellular systems using a low frequency
range and without necessitating lengthy cell culture treatment. The further development of this
biosensor assembly with the integration of specially designed cell/electronic interfaces can lead to
novel diagnostic biosensors and therapeutic bioelectronics.

Keywords: cancer cell lines; cell-based biosensor; doxorubicin; four-point probe measurements; poly-
dimethylsiloxane

1. Introduction

Cancer constitutes a complex disease mechanism as it involves interactions among
cancer cells and their tissue microenvironments [1,2]. Doxorubicin (DOX) is considered
the most common chemotherapeutic agent whose main mechanism of reaction affects the
activation of apoptotic pathways, the intercalation into DNA, as well as the generation of
reactive oxygen species [3–5]. Because of the many techniques used for the identification of
the basis of the biological and physical properties of cancer cells require a long preparation
time, highly trained personnel and expensive equipment [2] are critical to enhancing the
basis for more direct prognosis of therapeutic effects using patient-derived tissues/cells for
cell-based analysis.

An electrical impedance measurement provides a beneficial tool for the complex re-
sistance in the presence of alternating current. This mainly depends on the frequency of
the applied AC signal in conjunction with the biological tissue composition [6–8]. Thus,
the frequency-dependent response of the biological tissues differs from the applied sig-
nal, taking into account the physiological and physiochemical conditions of the tissues.
In addition, the value of the electrical impedance changes when responding to varia-
tions in health condition (e.g., disease, infection, etc.), composition, and biological tissue
structure [9,10]. Through the study of the impedance of biological tissue (bioimpedance),
valuable information can be obtained about both tissue physiology and anatomy, and hence
the complex electrical impedance of the biological tissue appears to be a powerful tool
used for non-invasive examinations of pathological or physiological status [11].
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Multifrequency impedance analysis can provide valuable information considering the
tissue’s features that contribute to the tissue’s characterization, since the response of the
electrical impedance is frequency-dependent. Thus, plenty of research studies based on
both single- and multi-frequency impedance analysis are very promising for noninvasively
investigating the pathological or physiological health condition of the biological tissues.

The impedance measurement procedure can be implemented by using either two-
electrode or four-electrode techniques. In order to perform an impedance measurement
using two electrodes (two-point probe), both the current injection and the voltage mea-
surement are implemented by the same electrodes. This method can cause considerable
errors during the measurement procedure of the biological tissue, since the impedance
of the electrode–tissue interface is not negligible and is added to the impedance of the
measured sample, resulting in the perturbation of the final measured impedance [12,13]. In
the three-point electrode configuration, the reference electrode is distinct from the counter
electrode and it is connected to a third electrode, allowing for the measurement at a point
close to the working electrode. This method is superior to the two-electrode setup as the
potential alterations of the working electrode are measured separately from the alterations
that might take place at the counter electrode [14]. The four-point probe method is applied
in order to provide a solution to this problem. It consists of four electrodes placed in a
straight line with an equal distance between them [15]. The two outer electrodes (current or
driving electrodes) are used for the current injection of the sample, whereas the other two
(voltage or sensing electrodes) are utilized for the determination of the resulting potential.
This structure eliminates the effect of the electrode–tissue interface impedance during the
measurements [12,13,15,16]. The increase in the distance among the electrodes for current
and voltage can cause a decrease in the magnitude of the measured impedance [12,17]. The
individual use of electrodes for the current injection and electric potential’s determination
rules out the effect of the contact resistance between the electrodes and the sample. The
two-electrode configuration system is restricted from the presence of electrode polarization
impedance in the output signal, which is extracted at the same time as the measured sig-
nal [18,19]. On the contrary, in the four-electrode configuration, the polarization impedance
is eliminated as the voltage electrodes do not carry current. Hence, the detection of the
electrical properties of the biological tissue can be performed [20] while the effect of the
contact impedance at the tissue, electrolyte, and the electrode interface is minimized [21].

Hence, in this study, we investigated the possibility of classifying different populations
of various cancer cell line suspensions by their unique electrical impedance responses by
utilizing a four-point probe method in order to rapidly assess the differences among them,
as well as the instant interactions. The purpose of our investigation focused on monitoring
both the phenotype alterations and behavior among the various cancer cell types and
not on the development of a biosensor for the detection of a certain cancer biomarker.
More specifically, four cancer cell types (SK-N-SH, HeLa, MCF-7, and MDA-MB-231)
were cultured in population densities of 50 K and 100 K cells/500 µL. The effect of an
anticancer compound (DOX) was also studied when applied to each cell type, so as to
present differential cellular responses before and after drug treatment. A theoretical model
was developed for the presentation of the main fitted features of the impedance responses
for each cancer cell type in order to extract a unique signature for every cancer cell line.
Our system could be further optimized as a non-invasive method for the identification of
the cell status response when treated with an anticancer agent.

Literature Review

In literature, a technique that utilizes the fundamentals of the electrochemical impedance
spectroscopy can be also described as cell-based impedance. The characterization of
intrinsic dielectric cell properties can be obtained using electrical impedance measurements.
In the last decade, electrical impedance spectroscopy has become a possible method for
the profiling of various cancer types in order to provide valuable information regarding
capacitance, inductance, and impedance. The study of these electrical properties can be
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related to the behavior of cancer cell lines, in particular for monitoring their sensitivity
and chemoresistivity [22].

By measuring the dielectric parameters of a cell culture and monitoring its metabolism
and viability, information regarding cell proliferation can be obtained [23,24]. In the
impedance technique, bioelectric recordings can be performed by utilizing either two-,
three- or four-point probe configurations. Significant responses can be obtained with the use
of the two-point probe system as both electrodes are utilized for the voltage measurement
and the current injection [12]. The three-point probe setup dominates compared to the
respective two-point probe setup as it allows for a measurement close to the working
electrode due to the position of the reference electrode connected to the third one [14]. In
the above-mentioned configurations, interactions occur between the electrodes and the
tissues during the measurement procedure. The four-point probe methodology provides
a solution to this problem as the two outer electrodes are used for the current injection
and the remaining two for the voltage measurement, allowing for the monitoring of the
electrical features in a biological tissue [20].

The application range of the cell-based impedance varies as this technique can con-
tribute to the performance and non-destructive evaluation of the quality control of the cell
cultures, providing significant and precise data. It can be applied for research in fields of
toxicology and cancer, along with both 2D and 3D in vitro cell cultures [25]. Regarding
cancer, many researchers have used electrical impedance measurements in order to ana-
lyze various cancer cell lines. More specifically, Wang et al. [26], reported an impedance
sensor for the performance of a real-time cell viability analysis and the examination of
the anticancer activity of three various drugs applied to a 3D in vitro model of human
hepatoma cells (HepG2). A multidimensional impedance platform was introduced by
Seidel et al. [27]. In order to test the anticancer activity in a single and combination treat-
ment, they extracted a tissue from a patient for the development of a 2D and 3D cell culture
model for melanoma cancer.

In a previous study, Bragos et al. [28] performed a rapid model for cancer cell growing,
utilizing two-electrode and four-electrode interfaces in cell suspensions (CD34- cell line).
As it was observed, at very low frequency range (<10 Hz) the two-electrode configuration
interactions led to a difficulty regarding the classification of the cell types (in terms of
size and morphology), whereas these obstacles were eliminated with the use of the four-
electrode system [29].

In addition, Fing et al. [30] developed a microfluidic system for the differentiation of
three various cancer cell lines, including HeLa, A549, and HepG2. This system combined
both electrochemical impedance and impedance flow cytometry showing that, at higher
frequencies, electrical properties prevail over not only the total impedance but also the cell
size, leading to the successful differentiation of the cell lines [30]. Regarding cell spreading,
adhesion, and proliferation, Yang et al. [31] presented the importance of these biomarkers
for the discernment of cancer and non-cancer cell cultures. In particular, in their work, they
analyzed the alterations between oral cancer cells (CAL 27) and non-cancer oral epithelial
cells (Het-1A) using electrochemical impedance measurements [22].

2. Materials and Methods
2.1. Human Cell Culture and Application of the Anticancer Agent Solutions

Human neuroblastoma cell line SK-N-SH (ATCC® HTB-11™), HeLa cervical cancer
cells (ATCC® CRM-CCL-2™), triple positive breast cell line MCF-7 (ATCC® HTB-22™),
and triple negative MDA-MB-231 (ATCC® HTB-26™) were cultured in an incubator at
37 ◦C, 5% CO2 as described previously [32]. Doxorubicin hydrochloride (>98.0%) (DOX)
(Fluka Chemie GmbH, Buchs, Switzerland) was initially dissolved in dimethylsulfoxide
(DMSO). DOX was inserted into the cell suspensions’ medium in a final concentration of
1 mM before measurement. DOX concentrations used were particularly high in order to
present their cytotoxic effects on cancer cells in a short time [33].
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2.2. Trypan Blue Dye Exclusion Cell Viability Testing

The determination of cell viability in the cell suspensions was performed by the
Trypan Blue dye exclusion assay [34] based on the principle that intact membranes of living
cells exclude certain dyes, whereas dead cells do not. Equal parts of 0.4% trypan blue
dye solution (Merck KGaA, Darmstadt, Germany) were mixed with the cell suspension,
incubated for 2–3 min at 25 ◦C, and afterward inserted into the hemacytometer counter.
All cells (clear and blue) in each large square in each of the four hemacytometer’s corners
were counted by an inverted light microscope (ZEISS Axio Vert.A1, Carl Zeiss Microscopy,
LLC, White Plains, NY, USA), and the pictures were processed by ZEN lite software. Each
experiment was repeated four times. The percentage of viable cells was calculated by the
following Equation:

%” Viable” = (“Nv”⁄NT) × 100, (1)

where Nv is the number of viable cells and NT is the number of total cells counted (living
and dead).

2.3. Background-Experimental Setup

A complex electrical impedance can be described as the overall response of the bio-
logical tissues when an alternating electrical signal is applied. The electrical impedance
is a quantity that depends on various parameters such as the signal frequency, tissue
composition, tissue health, and tissue structure. For that reason, the impedance differs
not only from tissue to tissue but also for measurements within the same tissue sample at
different electrode locations. Moreover, the impedance of the biological tissue might have
different values compared to other parts of the same tissue, considering the alterations in
tissue health, physiology and pathology, morphology, and composition.

The electrical impedance of the tissue was measured by applying a sinusoidal alter-
nating current with an amplitude in the order of 10 µA at different low frequencies (5 to
1000 Hz) through the electrodes attached to the tissue surface [15].

The four-point impedance methodology required four probes in the line. The current
was applied in the two outer electrodes, thus the impedance was extracted by measuring
the voltage in the two inner electrodes. The four-point probe impedance “Z” could be
defined as the ratio V/I, where “V” is the measured voltage drop and “I” is the current
passing through the sample [35].

The experimental setup consisted of a cylindrical glass tube (d = 15.5 mm) that was
mounted onto a patterned prelaminated PCB with four Au-sputtered pin headers (2.54 mm
pitch), which served as terminals for four-point impedance measurement (Figure 1). The
electrodes’ height was 1.2 mm and the coating thickness was 0.381 µm. SYLGARD™
184 Silicone Elastomer Kit was used for filling a quarter of the glass tube with polydimethyl-
siloxane (PDMS); the polymer was cured for one hour in a convection oven set at 100 ◦C,
resulting in a bottom-sealed well (h = 0.166 cm) with the Au-coated pins exposed, thus
allowing contact with the nutrient fluid. Au showed no inhibitory effects on cell growth
in in vitro cytotoxicity studies. The use of this type of electrode (vertical-positioned pins)
contributed to direct interaction with the bulk solution and not only with the bottom layer,
creating several shortcomings [36]. The bottom of the well was covered with a cured
polydimethylsiloxane (PDMS) layer in order to obtain a cell-compatible environment. Due
to its many advantages over other fabrication materials, PDMS received much attention as
it constituted one of the most popular materials for the development of substrate platforms
for mechanobiological [37,38] and microfluidic applications [39–41].
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configuration. The PDMS layer is placed on the bottom of the tube, covering half of the electrodes,
allowing the addition of the cell culture on the top; (b) cross-section of the experimental setup.

2.4. Electronic Interfacing

An equivalent electrical circuit for measuring the cells’ impedance is presented in
Figure 2. As seen from the equivalent circuit, the total measured impedance consisted of the
buffer resistance (Rb), the intracellular resistance (Ri), and the cell membrane impedance,
which included a resistor (Rm) and a capacitor (Cm) in parallel. The buffer resistance exhib-
ited a purely ohmic behavior; the intracellular resistance was also modeled as a resistive
junction (based on the extracellular fluids and proteins which were conductive) [42]. The
cell impedance, in contrast to the other components, was frequency dependent, and so the
applied frequencies should be chosen accordingly. The equivalent capacitor was based
on the cell size; the larger the cell, the more lipid membrane was sandwiched between
proteins, therefore increasing the capacitance. Based on the literature [11], the cell mem-
brane resistance prevailed over the measurement due to the presence of the Cm element
which acted as a bypass capacitor in a lower frequency range, impeding the current from
passing through the intracellular space. Hence, the whole cell population in the buffer was
treated as a unified resistor whose value depended on each cell membrane’s impedance.
However, in a high-frequency range, the cell membrane impedance was considered as a
high-pass filter and allowed the determination of the intracellular resistance, which had
a much lower value compared to the total measured impedance. Therefore, by applying
a frequency sweep, the cell contribution to the overall impedance could be highlighted,
given the fact that the rest of the components of the system exhibited a purely ohmic,
frequency-independent behavior.
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For measuring the samples’ impedance at different frequencies, a Howland Pump
circuit [43] (Figure 3) was implemented with a differential amplifier (AD8276) and a voltage
buffer (AD8603). This circuit converted an input voltage (VREF) to an output current (IO)
which was applied to a load (RL) without being affected by the load voltage drop. It was of
great importance to the output impedance that the resistor ratios RF1/RG1 and RF2/RG2
were matched; for example, by using 1% tolerance 10 kΩ resistors, the worst-case output
impedance was ±250 kΩ, which was unacceptable for high-precision applications [44].
Therefore, for the presented application an operational amplifier with highly matched
trimmed built-in resistors was chosen. The proposed measurement system (Figure 4),
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which was an implementation of a Howland Pump circuit (Figure 3) was a voltage con-
trolled current source and, by driving its input with varying frequency voltage waveforms
generated by a Tektronix AFG3021 function generator, the resulting current waveforms
were applied to the samples. This circuit topology was implemented in applications that
required a steady current at a wide frequency bandwidth for bioimpedance measure-
ments [45–47]. Output current was adjusted with VREF and R1 applying a voltage to pin
VREF and selecting a resistor value (R1) (Figure 3). VREF pin was a driver with the output of
function generator, while in the setup high-precision resistors were used for R1. This design
offered flexibility in adjusting the current applied to the samples simply by tuning the two
aforementioned parameters; by driving the VREF pin with a VCC = ±2.5 V, R1 = 11.378 kΩ.
A driving square wave of VPP = 110 mV, an IRMS = 10 µA was constantly provided to the
samples via pins 1 and 4 (outer pins in Figure 1 which corresponded to pin 3 and ground
of AD8603 in Figure 3), while voltage was measured using a Brymen BM867 handheld
multimeter with TrueRMS in pins 2–4 (Figure 1). The setpoint current was selected to
ensure that no damage occurred to the samples, while the generated voltage was detectable
from the measurement equipment [11,41,48,49]. Additionally, by selecting an appropriate
current, unwanted phenomena such as localized heating induced by current and excessive
electrode polarization were avoided [50,51].
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The four-point technique’s main advantage over the two-point and three-point
impedance measurements was that by supplying a current from two points and by mea-
suring the voltage using two other points, the effect of the electrode impedance, as well
as the contact impedance, could practically be neglected. This configuration could be
applied in order to obtain the precise values of the solution’s resistance separately or
cell suspension [21].

3. Results-Discussion

In our study, the AC for impedance studies was applied for frequencies from 5 to
1000 Hz. Discrete frequency values of 5, 10, 100, 250, 500, and 1000 Hz were used for
the evaluation. In each case, an increasing and a decreasing sweep was performed in
the predefined frequency values and the average was calculated for each frequency. For
every frequency, four cancer cell types (SK-N-SH, HeLa, MCF-7, and MDA-MB-231) were
tested in two different population densities (50 K and 100 K cells/500 µL). For comparison
purposes, DOX was applied to all cell lines in order to observe the impact of the anticancer
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agent as well as the alterations through the cell membrane’s reactions. Mean impedance
values were calculated for each case of cell type/population, with and without the presence
of DOX. The plain cell medium and the plain DOX in the plain cell culture medium were
also tested for reference reasons.

In order to investigate the cell morphology throughout the time frame of a single
measurement run, we examined the cells under a microscope. The 30 min incubation
period was the average time of the experimental run in the frequency range chosen. At
the first step, the four cancer cell lines were initially treated with 1 mM of DOX [4,52]
for 30 min (the incubation time was based on the calculated duration of the impedance
frequency sweeps) and cell viability percentages were counted (Figure 5). Our results were
in accordance with a previous study conducted by Qiao et al. [11]. Even though there were
no obvious changes in cell morphology (Figure 6), cervical HeLa, as well as the mammary
MDA-MB-231 cell lines, presented the highest viability rates (98.7% and 96.8% respectively)
that were slightly but significantly reduced after the DOX treatment at 92.5% and 91.2%, as
predicted by previous studies [52]. Neuroblastoma SK-N-SH cells presented a lower initial
viability (92.8%), whereas, in this case, DOX treatment caused a higher percentage of cell
death (~10%). DOX exhibited no significant cytotoxic effects on the other breast cancer
cell line, MCF-7, since they were considered a DOX-resistant cell model [53]. The DOX’s
incubation time was chosen as the mean time of the experimental run and was considered
a relatively short time, leading to ~10% alterations in the cells’ viability. An increase in the
incubation period was expected to enhance the specific effect.
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In the second step, the impedance evaluations were performed by the experimental
setup that was described in previous sections.

Results indicate that for every cell line studied, the impedance decrease as frequency
increases (Figure 7). In all graphs, the notation control and DOX represent the response
of the medium solution and the response of the DOX solution, respectively. Both solu-
tions do not include cells and are considered as a reference throughout the frequency
range tested in every experimental case. In almost all cases, the impedance appears to
be almost constant for frequencies above 100 Hz, indicating an ohmic behavior. In all
the cases the impedance value tends to reach the same level for both population densi-
ties (50 K and 100 K cells/500 µL). An exception is observed in the MCF-7 (c) case where
the impedance plateau is much higher for 100 K cells/500 µL. When DOX is applied to
untreated cells a decrease in the impedance level is observed for the cases of SK-N-SH
(50 K/500 µL) and MDA-MB-231 (50 K and 100 K/500 µL). In all the other cases an in-
crease in the impedance is measured, indicating the reduction of the charged units into
the solution. The absolute values are higher in the MCF-7 case (550 Ω) (c), whereas the
SK-N-SH cell line (a) provides a lower impedance drop. We observe that the population of
50 K SK-N-SH cells/500 µL provides stronger signals in frequencies below 500 Hz than the
respective 100 K cells/500 µL, but this behavior reverses when DOX is introduced to the
system. An increase in impedance values relative to the cell population augmentation is
observed in HeLa cells (b) treated with DOX, but the graph is completely mirrored in the
absence of the anticancer agent. The population density of MCF-7 100 K cells/500 µL (c)
gave the highest impedance values with DOX treatment, whereas MDA-MB-231 cells (d)
demonstrated the maximum impedance responses at 100 K and 50 K cells/500 µL without
the presence of DOX.
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Figure 8 illustrates the normalized impedance variations (∆Z/Z0) as a function of the
cells’ concentrations, including the standard values for several measurements in the same
samples for all cell lines tested. The corresponding system sensitivity for each cell line can
be extracted for the specific graphs. The ratio of the change in impedance is expressed as a
function of frequency with the following Equation, by taking the absolute percentile value:

∆Z/Z0 = |((Z − Z0 )·Z0
−1)·100|, (2)

where Z0 was the impedance at the first frequency and Z is the alternating frequency
impedance of the solution tested for every cell line, with or without DOX. As it is observed,
the sensitivity is frequency-dependent whereas in all the cases it is dropping with the
increase in the cells’ population. The limit of detection and resolution parameters are
considered vital, nevertheless, no respective experiments have been carried out as of yet.
Further ongoing research is being conducted toward this goal.
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Figure 8. ∆Z/Z0 (%) for four cell lines in six different frequencies (10, 50, 100, 250, 500, and 1000 Hz) for two different
population densities (50 K cells and 100 K cells/500 µL) before and after treatment with the anticancer agent doxorubicin:
(a) SK-N-SH; (b) HeLa; (c) MCF-7; (d) MDA-MB-231.

The normalized impedance variations frequency curves of the four-point probe sensor
under different cellular concentrations, treated or untreated with DOX, are shown in
Figure 9. In all cases, the normalized impedance is higher at low frequencies (5–100 Hz)
and drops at higher frequencies till a plateau is reached.
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Figure 9. ∆Z/Z0 (%) for cell lines before and after treatment with the anticancer agent doxorubicin in two different
population densities (50 K cells and 100 K cells/500 µL) in five different frequencies (5, 10, 100, 250, 500 and 1000 Hz):
(a) SK-N-SH; (b) HeLa; (c) MCF-7; (d) MDA-MB-231.

Generally, the differential impedance values for treated cells are very close for both
population densities with the exception of case (c): MCF-7 (50 K cells). Furthermore, the
high-frequency differential impedance values for the treated cells are close to 30 for all
the cases, except for the SK-N-SH cells, where the corresponding values are in the area
of 7. The distribution of cellular ∆Z/Z0 lies between the DOX (upper limit) and plain
culture medium (lower limit) responses. Each cell line of different tissue origin presents a
different profile. Thus, neuroblastoma SK-N-SH cell responses (a) are mainly gathered in
the area up to 20, whereas the cervical HeLa cell line (b) provides ∆Z/Z0 dispersed between
20–40. Even in the case of the two breast cancer cell lines, MCF-7 (c) and MDA-MB-231
(d), we can observe variations in the responses. The estrogen-receptor positive MCF-7 cells
provide ∆Z/Z0 values ranging between 5, whereas, in the case of the triple negative cell
line MDA-MB-231, the values for the respective treatments vary within the area 20–30.

As an alternative to the four-electrode system, three-electrode systems for bioimpedance
measurements are occasionally applied for low-frequency measurements of biological
samples in order to counterbalance the polarization effect of the sensing electrode due
to the formation of double-layer capacitance between the charged electrode surface and
the available ions in the surrounding electrolytic solution [54,55]. In our study, we do
not encounter this problem as demonstrated by the considerably low variability of ECIS
measurements at each applied frequency. Four-electrode ECIS configurations are more
commonly employed for the assessment of drug cancer-cell cytotoxic interactions [54].
In the same context, this could have been facilitated by the use of vertical, small-surface
pin-shaped electrodes instead of planar ones, since it has been shown that impedance
values are generally inversely proportional to the active working electrode area [56,57],
with smaller-radius working electrodes generating more sensitive impedance shifts to cell
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density changes. The latter attribute was beyond the scope of our study, since impedance
measurements were recorded soon after the application of the cytotoxic agent (DOX). For
the same reason, we used pin-shaped electrodes (to cover as much possible of the vertical
dimension of the cell suspension) instead of planar ones.

Further experimental sets will be needed in order to investigate the behavior of several
cell suspensions from different tissue origins, as well as cell culture media and buffers of
equivalent ionic strength. The importance of volume fraction will also need to be explored,
using electrically conductive and electrically insulating materials (e.g., hydrogels and
resins) in order to better understand the effect of the presence of cells in the total impedance
value. The technique could be potentially used to predict cell bioelectric responses in tissue
degeneration and biosensing applications, as well as an analytical tool to better understand
ion kinetics in the presence of live tissues.

Bioelectric profiling of cancer cell responses to chemotherapeutic agents is an emerg-
ing research field, as indicated by another report [32] by our group of authors where
impedance spectroscopy was applied in order to study interactions between the anticancer
cytostatic agent 5-fluoruracil (5-FU) and four adherent mammalian cancer cells lines were
immobilized in a three-dimensional (3D) calcium alginate hydrogel matrix, thus mimicking
in vivo tissue conditions.

The transfer function for the equivalent electrical circuit of Figure 2 is extracted as:

Z(ω) =

∣∣∣∣ j2πfRbRiRmCm + RbRi + RmRb
j2πfRbRmCm + j2πfRiRmCm + Rb + Ri + Rm

∣∣∣∣ , (3)

where Z is the measured impedance, and the parameters Rb, Ri, Rm and Cm are the
equivalent electrical components for each cell suspension. The fitting to the measured data
presented in Figure 7 was performed with MATLAB (MathWorks Inc.), using the nonlinear
least squares method. Results are presented in Tables 1–4 alongside the goodness of fit.

Table 1. SK-N-SH-Electrical parameters of cell suspensions from the equivalent circuit.

Cm Rb Ri Rm R2

50 k 3.698 × 10−6 266.077 317.715 260.592 0.981
100 k 4.342 × 10−5 248.450 411.050 70.9458 0.773

50 k + DOX 3.240 × 10−5 139.636 454.263 109.0952 0.880
100 k + DOX 2.089 × 10−5 278.842 780.831 165.798 0.871

Table 2. HeLa-Electrical parameters of cell suspensions from the equivalent circuit.

Cm Rb Ri Rm R2

50 k 1.493 × 10−6 425.469 346.470 494.807 0.955
100 k 1.245 × 10−5 415.238 373.484 385.830 0.886

50 k + DOX 9.803 × 10−6 1309.046 283.377 124.010 0.912
100 k + DOX 6.640 × 10−6 531.136 596.051 503.853 0.980

Table 3. MCF-7-Electrical parameters of cell suspensions from the equivalent circuit.

Cm Rb Ri Rm R2

50 k 1.152 × 10−5 302.415 54.797 77.177 0.815
100 k 1.158 × 10−5 982.287 660.825 230.720 0.835

50 k + DOX 7.969 × 10−6 654.050 494.472 536.906 0.984
100 k + DOX 2.920 × 10−6 778.910 911.089 658.333 0.862
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Table 4. MDA-MB-231-Electrical parameters of cell suspensions from the equivalent circuit.

Cm Rb Ri Rm R2

50 k 4.180 × 10−6 713.775 1106.618 885.778 0.925
100 k 2.854 × 10−6 1109.801 730.105 281.783 0.940

50 k + DOX 1.024 × 10−5 375.680 417.337 377.959 0.907
100 k + DOX 6.121 × 10−6 602.064 834.219 260.759 0.965

According to the literature [11], the parameters Cm and Rm correspond to the mem-
brane capacitance and resistance, respectively, while the parameter Ri reflects the intracel-
lular resistance. From the above-mentioned tables, we can observe that the addition of the
DOX induces a major impact in all the cell-related parameters, as expected. The resistance
of the buffer which is represented by the parameter Rb does not seem to be related to the
addition of the DOX, since the percentage of the solvent dimethylsulfoxide (DMSO) of
DOX stock solution in the cell medium is negligible. Moreover, the parameter Cm for all
the cases ranges between 10−6 and 10−5, indicating that the geometrical characteristics of
the four cell lines under investigation do not exhibit major differences, which is the case in
our evaluation.

This study demonstrates the ability of the bioimpedance technique to detect drug-cell
interactions at low frequencies (up to 1 kHz). The identification of the non-observed effects
of drug-cell interactions was also presented by Gelsinger et al. [58]. The authors stated that
different frequencies could give higher resolution with the H1299 cell line during ECIS
at the frequency range 250–1000 Hz for a 60-min time period. The main advantage of
the utilization of low frequencies is that structural cell membrane alterations that could
interfere with the instant effects of the cytotoxic agent could be avoided. This characteristic
would facilitate the fingerprinting of drug effects without exposure to the cells for long
time periods (e.g., for 24 or 48 h). On the same grounds, the proposed impedance system is
supposed to be compatible with a cell suspension instead of adherent cell cultures.

4. Conclusions

The electrical impedance investigates the electrical behavior of cells which constitutes
one of the main ways to understand cell function and provides valuable information about
the dispersion caused by the cell membrane in a wide frequency range, depending on the
membrane permittivity [59]. The electrical impedance cell-based biosensors are considered
a beneficial approach based on the electrical signals, since they allow the direct analysis
of the cellular activities that take place on the surface of an electrode and appear to be
a critical tool for providing a quick, simple, and cheap technique to monitor numerous
compounds for drug discovery at the very early stage [60–63].

Using the four-electrode configuration, the influence of the electrode polarization
impedance can be reduced, compared to the two-electrode set-up where the electrode
polarization impedance dominates during the measurement procedure, and thus the ex-
traction of the contribution from the tissue with sufficient accuracy or sensitivity becomes
difficult [29,64]. Measurements using a four-point probe setup can provide morpholog-
ical information as they have a higher accuracy and sensitivity, especially in measuring
the density of the biological tissues [21]. In addition, for bioimpedance measurements
in a low-frequency range, the four-point probe is adopted for the determination of the
impedance features [65].

In this work, highly sensitive four-point probe measurements were utilized in a
frequency sweep sequence from 5 Hz to 1 KHz in order to extract differential cellular
impedance responses from various cancer cell lines of different tissue origin. A custom-
made electronic circuit was implemented for this purpose, based on the Howland Pump
topology. Four cancer cell types were assessed, in two populations (50 K and 100 K cells)
with and without treatment with DOX in order to study the impact of the anticancer agent as
well as the alterations through the cell membrane’s reactions. A decrease in the impedance
value was found with a frequency increase for all cases. Furthermore, the impedance
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value in high frequencies reaches almost the same level for both populations. When DOX
is applied to a plain cell culture medium, a different behavior is observed for each cell
type. All the measured values are fitted to the theoretical model and the main parameters
of the impedance of the cell suspension are extracted in each case. The specific result
indicates that a signature can potentially be extracted for each cell type in order to identify
its response to the anticancer agent as a means of non-invasive cell status monitoring.

The present study is among the few using bioimpedance at a low frequency range
(up to 1 kHz) to identify the previously unobserved effects of drug–cell interactions. As
also shown by Gelsinger et al. for the H1299 cell line, a higher resolution between different
frequencies can be achieved during ECIS at the frequency range 250–1000 Hz over an initial
period of 60 min [58]. A low-frequency-based approach would help avoid structural cell
membrane alterations that could interfere with the direct effect of the cytotoxic agent. This
could be a vital performance trait of our method, since it enables the fingerprinting of drug
effects without necessitating long periods (e.g., for 24 or 48 h) of cell culture treatment. For
the same reason, the assay system is configured to be compatible with a cell suspension
instead of attached cell cultures.
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