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Abstract: The impaired blood flow to the brain causes a decrease in the supply of oxygen that can
result in cerebral ischemia; if the blood flow is not restored quickly, neuronal injury or death will
occur. Under hypoxic conditions, the production of nitric oxide (•NO), via the classical L-arginine–
•NO synthase pathway, is reduced, which can compromise •NO-dependent vasodilation. However,
the alternative nitrite (NO2

−) reduction to •NO, under neuronal hypoxia and ischemia conditions,
has been viewed as an in vivo storage pool of •NO, complementing its enzymatic synthesis. Brain
research is thus demanding suitable tools to probe nitrite’s temporal and spatial dynamics in vivo.
In this work, we propose a new method for the real-time measurement of nitrite concentration
in the brain extracellular space, using fast-scan cyclic voltammetry (FSCV) and carbon microfiber
electrodes as sensing probes. In this way, nitrite was detected anodically and in vitro, in the 5–500 µM
range, in the presence of increasing physiological concentrations of ascorbate (100–500 µM). These
sensors were then tested for real-time and in vivo recordings in the anesthetized rat hippocampus;
using fast electrochemical techniques, local and reproducible transients of nitrite oxidation signals
were observed, upon pressure ejection of an exogenous nitrite solution into the brain tissue. Nitrite
microsensors are thus a valuable tool for investigating the role of this inorganic anion in brain redox
signaling.
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1. Introduction

The classical enzymatic production of the free radical messenger nitric oxide (•NO)
in vivo, is carried out by the enzyme nitric oxide synthase (NOS), which has the following
three isoforms: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS) [1–3]. This
process occurs in a two-step reaction, where L-arginine is oxidized, requiring a reduction
in oxygen [4].

Impaired blood flow to the brain causes a decrease in the supply of oxygen and
glucose, which are necessary to maintain the energetic metabolism of glial and neuronal
cells [5,6]. This results in cerebral ischemia and, if the blood flow is not restored quickly,
neuronal injury or death will occur [2,5]. Upon hypoxic conditions, the (oxygen-dependent)
enzymatic production of •NO is highly attenuated and, consequently, this can be translated
into a subsequent compromised •NO-dependent vasodilation [7]. In this scenario, nitrite
may contribute to the maintenance of •NO levels, since the tissue-accumulated nitrite has
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the potential to reduce back to •NO under hypoxia [8]. The nitrite concentration in tissues
has been estimated to be in the 0.1–10 µM range [9,10], but it can be easily increased with
diet, through the ingestion of nitrate-rich foods [8]. Nitrate accumulates in the oral cavity,
and commensal facultative anaerobic bacteria reduce it to nitrite, by the action of nitrate
reductases [11]. Because the classical L-arginine–NOS pathway is oxygen-dependent, and
the nitrate–nitrite–•NO pathway is enhanced under hypoxic conditions, the latter can be
viewed as a backup system to ensure that there is sufficient vasodilator formation when
the oxygen supply is compromised [8,12,13].

Topical administration of 1 µM nitrite to the brain (somatosensory cortex) has been
demonstrated to promote the recovery of cerebral blood flow after inhibition of NOS
activity, showing that the brain tissue can use nitrite as an alternative source of •NO [14].
However, no information was obtained about the mechanism through which this con-
version occurs. Enzymes such as deoxyhemoglobin and xanthine oxidase, are known to
recycle nitrite back to •NO in low oxygen tension and acidic conditions [8,12,13]. Alter-
natively, a simpler mechanism was proposed over 20 years ago, describing the direct and
non-enzymatic conversion of nitrite to •NO by ascorbic acid [15]. This hypothesis pro-
posed that upon glutamatergic stimulation, ascorbate is released into the brain extracellular
space [15,16]. The pH drops with the decrease in the local oxygen levels, and, under these
conditions, ascorbate readily reduces nitrite to •NO, which, upon diffusion to the smooth
muscle cells of nearby vessels, may induce local vasodilation.

Ascorbate and •NO were shown to be temporarily and spatially related in vivo,
in a quantitative fashion, upon glutamatergic stimulus in the hippocampus of animal
models [17]. These observations, coupled with the onset reduction in nitrite (in vitro) in
the presence of ascorbate, when media pH was lowered from 7.4 to 6.5 [7], are compelling
arguments that are in favor of the nitrite–•NO acidic reduction pathway.

In this context, the development of analytical tools for real-time and in vivo mea-
surements of nitrite concentration dynamics is of great interest. It is also important to
ascertain if ascorbate, which is present in high and varying concentrations in the brain, does
not interfere with measurements (ascorbate is an electroactive species, and its oxidation
products could affect both faradaic and non-faradaic currents).

A major obstacle to the real-time study of the extracellular chemical composition
derives from the limited spatial and temporal resolutions of the more frequently used
monitoring techniques (e.g., microdialysis sampling, spectroscopic techniques) versus
the dynamics of chemical signaling and the structures of interest in the brain [18,19].
Furthermore, since measurements performed directly in live tissue are invasive by nature,
the insertion of large probes (e.g., microdialysis probe with a 200 µm diameter) will
potentially result in tissue damage [19].

Alternatively, electrochemical methods differ from dialysis, in the way that com-
pounds can be measured in situ and in real-time, allowing the study of the dynamics
affecting the in vivo concentrations [20–22]. Also, the employment of microelectrodes
offers high sensitivity and spatial resolution (typical dimensions: length 100–200 µm; diam-
eter 10–30 µm). Carbon fiber microelectrodes (CFMs), in particular, can be constructed with
single-digit micrometer dimensions, which are much smaller than typical microdialysis
probes. They can be placed within micrometer distances of neuronal terminals, with the
added bonus of minimal tissue damage and high biocompatibility [23–25]. CFMs have
thus been extensively used over the last four decades, as an important analytical tool to
investigate brain function in vivo, ex vivo, and at the single-cell level. The use of CFMs has
improved electrochemical recordings, as it allows the application of faster scan rates due to
the small surface area, minimizing the effects of background charge and ohmic drop [26,27].
Moreover, hand-made fabrication of bare CFMs has many advantages, including low cost,
ease of fabrication, and customizability. The selectivity of CFMs may be increased through
the use of coatings and polymers. However, the process is time consuming, expensive, and
often leads to poor reproducibility. Additionally, during experiments, the coatings may
fail, due to cracking, peeling, or chemical degradation [28].
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The combination of CFMs with fast data acquisition methods provides the temporal
resolution that is required to evaluate the kinetics of many different neurochemical species
in the living brain. This is the case of fast-scan cyclic voltammetry (FSCV), in which the cur-
rent is recorded as a function of potential that is swept at very high rates (over 300 V s−1),
thus enabling the real-time detection of neurotransmitters on the sub-second time scale.
In spite of the high scan rates of the potential waveform, this technique does not affect
neuronal activity [18,19,27,29]. Another advantage of FSCV in association with CFMs,
over other electrochemical methods for in vivo and ex vivo recordings, relies on the se-
lectivity of detection, i.e., ability to distinguish electroactive species based on their redox
potentials, without the need of further modification of microelectrodes with membrane
coatings and other layers. In this way, the collected data provide information on the sig-
nature of the redox species, and on their dynamics in the surrounding media [27,29–31].
High-speed, highly localized measurements of dopamine [32,33] and •NO [34–36], for
example, have been extensively obtained in the brain extracellular space, with unparalleled
spatiotemporal resolution.

To the best of the authors’ knowledge, dynamic in vivo measurements of nitrite have
never been reported. Therefore, the present work addresses a novel sensing strategy for
the detection and monitoring of nitrite in vitro and in vivo, in the brain tissue. Homemade
carbon fiber microelectrodes (CFM) were used as sensing platforms, coupled with fast
electrochemical techniques. The microsensor was tested for the real-time detection of nitrite
in the hippocampus of an anesthetized rat.

2. Materials and Methods
2.1. Reagents and Solutions

Acetone was obtained from Sigma-Aldrich (St. Louis, MO, USA). Sodium ascorbate
was obtained from Fluka. Dibasic sodium phosphate, monobasic sodium phosphate and
sodium nitrite were obtained from Panreac. Silver conductive paint was purchased from
RS Components. All reagents were of analytical grade. Solutions were prepared with
deionized water (≥18 MΩ cm) from a Millipore Milli-Q purification system.

2.2. Carbon Fiber Microelectrode Fabrication and Calibration

Carbon fiber microelectrodes were fabricated as described in reference [36]. Briefly,
single carbon fibers (ø = 7 µm, Goodfellow, Huntingdon, UK) were inserted into borosilicate
glass capillaries (1.16 mm i.d. × 2.0 mm o.d.; Harvard Apparatus Ltd., Cambourne, UK),
previously filled with acetone. After the evaporation of the solvent at room temperature, the
capillary containing the carbon fiber was separated in half using a vertical puller (Harvard
Apparatus Ltd., Cambourne, UK), with the exposed fiber being cut. Afterwards, the
exposed carbon tip was trimmed, under the optical microscope, to obtain a length between
150 and 250 µm. The electrical contact was made by injecting a conductive silver paint into
the capillary, followed by the insertion of a copper wire. A small drop of cyanoacrylate
glue was used over the glass opening from where the copper wire protruded, to hold the
latter in place. Finally, a protective rubber sleeve was placed over the glued junction and
heated, thus producing a protective cap.

The produced microelectrodes were tested for general recording properties in 50 mM
phosphate buffer (pH 7.4), with 100 mM NaCl supporting electrolyte. This was car-
ried out by fast-scan cyclic voltammetry (FSCV, potentiostat from Ensman Instruments,
Bloomington, IN, USA), by sweeping the potential between −0.4 and 1.4 V (initially in the
anodic direction), for 30 s, at a 300 V s−1 scan rate. A two-electrode configuration was used,
with a Ag/AgCl 3 M KCl reference electrode from BASi (West Lafayette, IN, USA). The
selection of proper microelectrodes for recording was made based on the following criteria:
stable background current and sharp transients at reversal potentials [36].

Microelectrode calibration was conducted by spiking the supporting electrolyte with
nitrite and ascorbate standard solutions (50–500 µM) and recording the FSCV voltammo-
grams between−0.4 and 1.4 V, at a 300 V s−1 scan rate and with display rate of 10 Hz, using
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the data acquisition software Scope v4.1.4 (eDAQ). Nitrite calibration (5–500 µM) in the
presence of ascorbate (100–500 µM) was performed in the same conditions but sampling
the voltammograms at 1.1 V (vs. reference system) using the data acquisition software
Chart v5.5.20 (eDAQ).

The background current of all FSCV profiles was subtracted using OriginPro 2016
v9.3.226 (OriginLab Corporation, Northampton, MA, USA) and smoothed using the
10-point FFT filter. The QSoas v1.0 (CNRS, Marseille, France) [37] non-catalytic baseline
algorithm was used to baseline correct the smoothed FSCV profiles.

The obtained calibration curves were used to calculate the sensitivity (slope) and the
LOD, which was taken to be 3Sa/m, where Sa was the standard deviation of the y-intercept
and m the slope of the calibration curve.

2.3. In Vivo Measurements of Nitrite and Ascorbate Using the Microelectrode Sensor

The in vivo studies were performed on an adult male Wistar rat (300 g; Charles River
Laboratories). Animals were housed in pairs in the local vivarium in a 12 h light/dark
cycle, at a temperature of 22–24 ◦C, relative humidity of 45–65%, air exchange rate of
15 times per hour, and with food and water available ad libitum.

The experimental setup used for electrochemical detection of nitrite, and ascorbate
in vivo was analogous to previous studies [38]. Briefly, the animal was anesthetized with
urethane (1.25 g kg−1) via intraperitoneal injection, placed in a stereotaxic frame (Stoelting,
Wood Dale, IL, USA), body temperature was maintained at 37 ◦C and the skull exposed.
A craniotomy was made in the region of interest with removal of the meninges to expose
the brain surface. Another hole was drilled in a site remote from the recording area for the
insertion (ca. 3 mm) of a homemade Ag/AgCl pseudo-reference electrode in the subdural
space. The latter was constructed by oxidizing the exposed tip of a silver wire (ø = 200 µm,
Science Products, Hofheim, Germany) in a 1 M HCl solution saturated with NaCl [39].

A 7 µm o.d. bare carbon fiber microelectrode, previously calibrated for both nitrite
and ascorbate in 50 mM phosphate buffer (pH 7.4), with 100 mM NaCl, was coupled with
a glass micropipette (tip ø = 10–15 µm) using sticky wax (softened by flame), according
to a configuration in which tips separation was 250 µm. The micropipette was then filled
using a syringe fitted with a flexible microfilament (MicroFil, World Precision Instruments,
Hitchin, UK). The solutions had either 5 mM nitrite or 50 mM ascorbate in saline solution
(0.9% NaCl); the pH was set at 7.4.

The microelectrode/micropipette array was inserted into the hippocampus using a
stereotaxic frame, according to coordinates calculated based on rat brain atlas of Paxinos
and Watson (2007) [40]. The coordinates used to record the analytes dynamics in the
CA1 subregion of the hippocampus (calculated from bregma) were the following: AP
(antero-posterior) −4.0 mm; ML (medio-lateral) −2.1 mm; DV (dorso-ventral) −2.3 mm
(cf. Figure S2).

Following the insertion of the array in the brain, the baseline current was allowed
to stabilize (c.a. 30 min). Afterwards, the standard solution was pressure ejected (nL
range) from the micropipette using a Picospritzer III (Parker Hannifin Corp., General Valve
Operation, Hollis, NH, USA). The applied volume was monitored using a stereomicroscope
fitted with a reticule. FSCV profiles were recorded at a 300 V s−1 scan rate, between −0.4
and 1.4 V, and sampled at hold potential 1.1 V for nitrite and 0.2 V for ascorbate, with a
10 Hz data acquisition rate.

3. Results and Discussion
3.1. Carbon Fiber Microelectrode—Nitrite and Ascorbate In Vitro Calibrations

The in vitro electrochemical detection of nitrite and ascorbate, using a carbon fiber
microelectrode (7 µm o.d.) as the working electrode, was carried out by spiking the
buffered supporting electrolyte with standard solutions of each analyte and recording the
respective FSCV profiles. The voltammograms were then sampled at specific potentials
for the respective oxidations on the solid electrode surface, with the proportional current
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changes being plotted against the known analyte concentrations. For nitrite (Figure 1A),
the consecutive addition of stock solutions to the buffered media was accompanied by
an increase in the anodic current, with a wide oxidation wave starting at about 0.65 V
vs. Ag/AgCl (c.a. 3.5 ms, for a scan rate of 300 V s−1 and a start potential of −0.4 V
vs. Ag/AgCl) and reaching a maximum of around 1.1 V (c.a. 5 ms). This behavior is
in agreement with other previously reported unmodified carbon fiber microsensors for
nitrite detection [41,42], where it was proposed that nitrite was being oxidized to nitrate,
according to Equation (1) [42,43].

(1) NO −
2 → NO2+e− (2) 2NO2+H2O → NO −

2 +NO −
3 +2H+ (1)
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Figure 1. In vitro response of the carbon fiber microelectrode to increasing nitrite concentrations, as determined by FSCV.
(A) FSCV profiles for increasing nitrite concentrations (50–500 µM); inset shows the corresponding cyclic voltammograms.
(B) Background subtracted anodic traces, with 10-point FFT filter and baseline correction. Inset: linear correlation between
nitrite concentration and anodic current determined at 1.1 V vs. Ag/AgCl (5 ms). Measurements were performed in 50 mM
phosphate buffer (pH 7.4), with 100 mM NaCl, at a scan rate of 300 V s−1.

To better observe this electrochemical behavior, the voltammograms were subject to a
signal processing procedure [18,27]. First, the background current was subtracted from all
the voltammograms, to eliminate the contribution of the capacitive current. The resulting
anodic traces were then smoothed, and baseline corrected (Figure 1B). A linear correlation
between the anodic current response (at 1.1 V vs. Ag/AgCl) and nitrite concentration,
was obtained in the 50–500 µM range, with a sensitivity of 243 pA µM−1 and a LOD of
35 µM (Figure 1B, inset). It should be noted that the tested nitrite concentration range
was much higher than the expected physiological levels in the brain tissue (0.5 to 27 µM,
as obtained by microdialysis) [44–49]. The selected concentrations were thus chosen as a
preliminary working range, to detect the proper anodic signals. On another note, it should
also be stated that the potential at which nitrite oxidation was observed is susceptible to
interference by •NO. For a bare carbon fiber electrode, the oxidation peak for •NO occurs
at 1.1 V vs. Ag/AgCl and is accompanied by a reduction peak at –0.4 V, while nitrite is not
electroactive at that potential [35,50]. This difference in the profiles is key to distinguish
between the two, so in vivo measurements using the microsensor approach must be made
with this consideration in mind.

As for nitrite, a similar FSCV recording and signal treatment procedure was carried
out for ascorbate, and the resulting voltammograms and calibration curve are presented in
Figure 2. The anodic peak of ascorbate occurred at around 0.2 V vs. Ag/AgCl (c.a. 2 ms),
which is in agreement with the previously reported bare carbon microelectrodes [51] and
macroelectrodes [52]. However, the raw oxidation signals (Figure 2A) were ill-defined,
which could be attributed to a slow electron-transfer process of ascorbate at the surface of
the electrode, possibly due to fouling caused by the deposition of the oxidation product 2,3-
diketogulonic acid [53,54]. At the electrode surface, the two-electron oxidation of ascorbate
produces dehydroascorbate, which is irreversibly hydrolyzed to 2,3-diketogulonic acid [55],
a non-electroactive product that readily adsorbs onto the surface of the electrode [54].
Nonetheless, the current increased linearly in the concentration range tested (Figure 2B),
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with the microsensor having displayed a sensitivity, towards ascorbate, of 160 pA µM−1 and
a LOD of 84 µM, demonstrating that, compared to nitrite, the carbon fiber microelectrode
was less sensitive to ascorbate oxidation. Also, the oxidation potentials of ascorbate and
nitrite were sufficiently separated, for the two molecules to be distinguished by observation
of the FSCV profile.
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Additional microelectrodes were tested in vitro, for the detection of nitrite in the
presence of ascorbate, at the concentrations found in the cerebral extracellular space
(200–400 µM, in rat model) [56,57]. Therefore, a series of nitrite standard additions were
performed in pH 7.4 buffer media, with 0, 100, 200 and 500 µM ascorbate in solution, and
the current was sampled at 1.1 V vs. Ag/AgCl, from consecutive FSCV profiles. Figure 3
shows the current variation, with successive additions of nitrite, either with no ascorbate
present in the background (Figure 3A), or with 500 µM ascorbate (Figure 3B). The calculated
analytical parameters of sensitivity, linear range and LOD for each condition are presented
in Table 1.
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Table 1. Analytical parameters (as obtained by FSCV, at sample and hold potential 1.1 V vs. Ag/AgCl)
of the carbon fiber microelectrode towards nitrite oxidation, in the presence of increasing concen-
trations of ascorbate. Measurements were performed in 50 mM phosphate buffer (pH 7.4), with
100 mM NaCl.

Nitrite Linear
Range.
(µM)

Ascorbate
(µM)

CFM Analytical Parameters for Nitrite

Sens.Nitrite (pA M−1) LODNitrite (µM) R2

5–500 0 135 2.7 0.999
5–500 100 124 9.2 0.998
5–500 200 119 8.4 0.998
5–500 500 107 5.2 0.999

Overall, the microelectrode was able to detect all the concentrations of nitrite added,
showing a good linear response in the range 5–500 µM, which was kept unchanged, with
the sensitivity dropping around 8%, 12% and 21% when 100, 200 and 500 µM ascorbate
was added to the media, respectively. Also, the determined LOD values fluctuated, but
were kept in the same order of magnitude.

The approach of sampling the current at a fixed potential, rather than recording the
individual FSCV profiles, was shown to be more straightforward and simpler to operate,
without the need of signal processing that the individual recording of FSCV profiles
required. It should be noted that, upon the addition of ascorbate to the buffered media, the
baseline current increased and took about 2 min to stabilize. Although the oxidation peak
for ascorbate (0.2 V vs. Ag/AgCl) was well below the chosen sampling potential (1.1 V
vs. Ag/AgCl), the anodic current of the FSCV profile also increased for higher potentials
when compared to the background current, as evidenced in Figure 2A. This explains the
initial increase in the baseline current that is observed in Figure 3B, upon the addition of
500 µM ascorbate.

These results were of great relevance, since in vivo nitrite measurements in the brain
extracellular space are performed in an ascorbate-rich environment and the sensor has
been shown to be able to detect a slight increase in the anodic current (0.3 nA) when 5 µM
nitrite was added to the buffering media containing 100-fold more ascorbate.

3.2. In Vivo Nitrite and Ascorbate Measurements

Measurements of exogenously applied nitrite and ascorbate were performed in the
brain extracellular space of an anesthetized rat. The bare carbon fiber microsensor (coupled
with a glass micropipette) was inserted into the hippocampus CA1 subregion, and standard
solutions of either nitrite (5 mM) or ascorbate (50 mM) were locally pressure ejected in
small volumes (nL range). The current variation was monitored by FSCV and sampling at
1.1 V and 0.2 V vs. pseudo Ag/AgCl, for nitrite and ascorbate oxidation, respectively.

The recorded FSCV profiles, before and after the bolus injection of 625 pmol of nitrite,
are shown in Figure 4A. There were no detectable oxidation or reduction signals in the
background current profile. Upon the injection of the nitrite solution in the brain tissue,
close to the microelectrode (distance of 250 µm), a small increase in the anodic current
was briefly observed in the FSCV profile, between 4 and 6 ms, reaching a maximum
value around 1.2 V vs. pseudo Ag/AgCl (5.2 ms, with a 300 V s−1 scan rate and a
starting potential of –0.4 V at t0 min)—see Figure 4B. This result was in agreement with the
oxidation signal detected in the in vitro nitrite calibrations performed in Section 3.1, where
the oxidation peak was obtained at about 1.1 V vs. Ag/AgCl. The positive potential shift
of 100 mV could be due to the difference between the buffer used in the in vitro assay and
the live brain matrix, the difference between the reference and pseudo-reference electrodes
used in the respective assays, or a combination of both. Nonetheless, the similarity of both
signals is a compelling evidence that the oxidation of nitrite was being detected on the
surface of the microelectrode.
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Figure 4. In vivo detection of exogenous nitrite applied locally in the cerebral extracellular space of the rat hippocampus.
(A) FSCV profiles of background current (black trace) and local bolus injection of 625 pmol of nitrite (red trace). (B) Profile
obtained from the difference between nitrite addition and background current profiles, raw (black) and 60-points FFT
smoothed (red) traces. Electrochemical measurements were performed at 300 V s−1 scan rate, from −0.4 to 1.4 V vs. pseudo
Ag/AgCl.

However, the current measurements suffered from electrical noise interference and the
background profile kept shifting during the recordings. For these reasons, the background
subtraction method, demonstrated in Section 3.1, was not used in the in vivo experiments.
Thus, since the in vivo nitrite FSCV profile matched the one presented in the in vitro
calibration, attesting that the microsensor was measuring localized changes in the nitrite
levels, the in vivo experiments were further carried out by sampling the potential at
1.1 V, the potential at which the microelectrode had previously been calibrated for nitrite
detection in buffered media.

The current variations for a series of nitrite injections in the brain are shown in
Figure 5A, as well for ascorbate in Figure 5B. As in the FSCV profile recordings, the current
sampling procedure was affected by electrical noise interference, which caused the baseline
to shift briefly. Nonetheless, upon achieving a stable baseline, the standard solution was
injected. As previously observed in the FSCV profiles, the presence of nitrite in the vicinity
of the surface of the microelectrode was accompanied by an increase in the recorded anodic
current at 1.1 V, with reproducible transient signals (see Table 2).
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the 100-points FFT filtered current signals.
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Table 2. Parameters calculated from injections of nitrite and ascorbate in the CA1 subregion of the
rat hippocampus, using a carbon fiber microsensor. The peaks’ concentrations were determined
using the previously obtained calibration curves–nitrite: ycurrent = 331 pA/µM × x[Nitrite] − 5 nA (R2

0.999); ascorbate: ycurrent = 235 pA/µM × x[Ascorbate] − 2 nA (R2 0.996).

Amount of.
Injected Species

IMax
(nA) trise (s) Signal Duration

(s)

Concentration
at Peak
(µM)

Nitrite (nmol)
0.2 14 5 82 57
0.2 14 4 81 58
0.6 39 6 53 135
0.6 36 8 118 123

Ascorbate (nmol)
6.3 22 22 236 85

12.5 35 25 211 142
28.1 59 20 252 243

IMax—current at the signal’s maximum; trise—signal rise time.

For the duplicated injections of the nitrite standard, the maximum current (IMax)
values were consistent, corresponding to an average peak concentration of 57.5 ± 0.7 µM
and 129 ± 8 µM, with an average rise time of 6 ± 1 s (from the lowest to highest current
value detected due to the oxidation of the analyte). The total duration of the signal for
the 0.2 nmol injections was also consistent (c.a. 80 s), although this was not the case for
the 0.6 nmol injections (53 vs. 118 s), possibly due to a shift in the baseline, as observed
between 4.5 and 5 min. To the best of the authors’ knowledge, this was the first time
that nitrite clearance was directly recorded in real time, in vivo and in situ in the brain.
Classically, nitrite detection has been successfully achieved in the brain, via microdialysis
sampling coupled with amperometric [45,47], spectrophotometric (Griess reaction) [44],
and chemiluminescence [58] detection. Although these procedures were able to determine
the cerebral nitrite concentrations, they lacked the temporal and spatial information needed
to study the in situ dynamics of the targeted analyte. Although the methodology described
here does not allow for the determination of the basal levels of nitrite, it can be useful
in assessing local variations with high temporal and spatial resolution. For example, it
enables the assessment of nitrite kinetics in the brain, after a systemic administration.

As for the detection of exogenously applied ascorbate, the sampling potential was
shifted to 0.2 V and, upon injection of the stock solution, transient signals were observed
with consistent rise times (average 22 ± 3 s) and total signal duration (average 233 ± 21 s).
Ferreira and co-workers reported similar rise time values for endogenous ascorbate (about
25 s), upon glutamatergic stimulation, by local injection of 20 mM l-glutamate in the rat
hippocampus [17]. As observed in Section 3.1, the carbon microelectrode was shown to be
more sensitive towards nitrite than ascorbate, which explains why the injection of 12.5 nmol
ascorbate produced a maximum current increase (35 nA) that was equivalent to the one
recorded for 0.6 nmol of nitrite (36/39 nA).

The real-time in vivo detection of nitrite transient signals in the brain, upon localized
pressure-ejection of the standard solution, was thus shown to be achievable by applying
carbon-based microsensors combined with FSCV measurements. However, and as pre-
viously mentioned, the potential at which nitrite is oxidized at these carbon surfaces is
susceptible to interference by •NO. This could be solved by employing a self-reference
carbon fiber electrode with a Nafion®-modified surface, which would repel negatively
charged molecules (nitrite and ascorbate), but still be permeable to •NO [36]. In this
manner, the contribution of •NO oxidation could be subtracted from the overall current
measured at 1.1 V vs. Ag/AgCl.
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4. Conclusions

The importance of measuring nitrite in real-time in the brain extracellular space comes
from the key interest in its putative role as a mediator of •NO signaling, especially in
conditions of diminished blood flow to the brain tissue, such as in hypoxic states. In this
work, we studied the coupling of carbon fiber microelectrode-based sensors with FSCV and
fixed potential sampling, for the real-time monitoring of nitrite in vivo. First, the micro-
electrodes’ response to this anion was characterized in vitro, in the presence of increasing
physiological concentrations of ascorbate, which is a potential electrochemical interferent.
Nitrite was effectively detected anodically in the 5–500 µM range, with negligible inter-
ference from ascorbate (only at 500 µM ascorbate, a small increase in the baseline current
was observed). Then, the same sensing platform was able to measure fast transient nitrite
oxidation signals in the hippocampus of an anesthetized rat, following the pressure ejection
of exogenous nitrite into the brain tissue. These results demonstrate that the combined
approach CFM/FSCV is a valuable tool to probe the nitrite’s temporal and spatial dynamics
in vivo and in real-time, paving the way for a wide study on the role of nitrite in brain
redox signaling and on its potential beneficial effects in neurovascular function.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/bios11080277/s1, Figure S1: schematic representation of a homemade glass-encased carbon
fiber microelectrode. The electrical contact between the fiber and the copper wire was made using
conductive silver paint. Figure S2: schematic representation of (A) the animal in the stereotaxic frame
and (B) the placement of the array used in the electrochemical recordings (microelectrode attached to
an ejection micropipette) in the hippocampus (CA1 subregion). Adapted from [40].
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