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Abstract: A miniature tyrosinase-based electrochemical sensing platform for label-free detection
of protein tyrosine kinase activity was developed in this study. The developed miniature sensing
platform can detect the substrate peptides for tyrosine kinases, such as c-Src, Hck and Her2, in a
low sample volume (1–2 µL). The developed sensing platform exhibited a high reproducibility for
repetitive measurement with an RSD (relative standard deviation) of 6.6%. The developed sensing
platform can detect the Hck and Her2 in a linear range of 1–200 U/mL with the detection limit of
1 U/mL. The sensing platform was also effective in assessing the specificity and efficacies of the
inhibitors for protein tyrosine kinases. This is demonstrated by the detection of significant inhibition
of Hck (~88.1%, but not Her2) by the Src inhibitor 1, an inhibitor for Src family kinases, as well as the
significant inhibition of Her2 (~91%, but not Hck) by CP-724714 through the platform. These results
suggest the potential of the developed miniature sensing platform as an effective tool for detecting
different protein tyrosine kinase activity and for accessing the inhibitory effect of various inhibitors
to these kinases.

Keywords: biosensor; electrochemical analysis; tyrosine kinase

1. Introduction

Protein tyrosine kinases are one of the phosphotransferase families that transfer γ-
phosphate of adenosine triphosphate (ATP) to the tyrosine residues of the target proteins [1].
Tyrosine phosphorylation has been shown to play essential roles in many cellular events,
such as cell proliferation and differentiation, protein synthesis, cell cycle, embryo develop-
ment, cell migration and apoptosis [2–5]. Dysregulation of protein tyrosine kinases, either
by overexpression or overactivation, leads to many diseases, such as diabetes, neuronal
degenerative diseases, and cancers [6–12]. For example, many human tumors, such as
non-small cell lung cancer, squamous cell carcinoma of the head and neck, glioblastoma,
pancreatic cancer, ovarian cancer, breast cancer, and prostate cancer were found to closely
relate to the over-activation of human epidermal growth factor receptor 2 (Her2), a sub-
family of ErbB (erythroblastic oncogene B) protein tyrosine kinases [8,10–15]. Meanwhile,
dysregulation of hematopoietic cell kinase (Hck), a Src family protein tyrosine kinase [16],
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was found to associate with many human diseases, including cancers, autoimmune dis-
eases, and inflammation [17]. Hence, it is essential to determine the activity of tyrosine
kinases to reveal the development and progression of diseases and to understand the
molecular mechanisms leading to the diseases.

To detect the activity of protein tyrosine kinases, several direct methods, i.e., 32P-
phosphate labeling [18], fluorescence-labeling [19] and mass spectrometry analysis [20],
and indirect methods, i.e., detection with a phosphoryl tyrosine-specific antibody [21] and
the quantum dot-based method [22], were developed and widely used. However, these
conventional methods exhibit different disadvantages. For example, safety is the major
concern of using radio isotope labeling; while the detection of protein phosphorylation by
indirect methods, i.e., a phosphoryl tyrosine-specific antibody and the quantum dot-based
method, suffered from high reagent cost and complicated detection procedures. Although
a trace phosphorylation of residues can be sensitively detected on the mass spectrometer,
the expansive instrumentation blocks its extensive usage by scientists. Hence, a rapid,
simple, and effective method for the detection of protein tyrosine kinase activity in vitro
would be favorable for clinical diagnosis, prognosis of drug treatment, and drug design
and screening.

Electrochemical methods have been developed for the detection of interactions be-
tween protein–protein [23–25], protein–DNA [26] and enzymatic reactions, including the
protein tyrosine kinases activity [27–34]. These methods can be categorized into label-based
and label-free methods, based on the sources of redox responses. The label-based methods
are mainly based on the labeling of the electro-inactive phosphate group with electroactive
species, such as ferrocene-conjugated ATP [28–30] and catalytic components, such as gold
nanoparticles and redox enzyme [31–34], whereas the label-free methods are based on the
direct oxidation of tyrosine residues with or without amplifications [35–38]. Although
both methods exhibited high sensitivity to detect tyrosine phosphorylation, the label-free
methods are more direct without additional steps of labeling.

Recently, a novel label-free protein tyrosine kinase biosensor was reported by oxidizing
the tyrosine residue(s) on the substrates of protein tyrosine kinases by tyrosinase to generate
L-DOPA quinone, which was then reduced on the electrode to give a reductive response.
The tyrosinase-mediated tyrosine oxidation can be blocked by the phosphorylation and
suppress the reductive responses [38]. Thus, the tyrosine kinase activity can be revealed
on the biosensor by the decrease in the reductive responses of their substrates. This result
suggests that this biosensor can be utilized to detect the activity of various protein tyrosine
kinases. In this study, a tyrosinase-based miniature protein tyrosine kinase sensing platform
was developed for the quick detection of the activity of various protein tyrosine kinases,
such Hck and Her2, in a small sample volume.

2. Materials and Methods
2.1. Materials

Carbon fiber paper (CFP, MGL190) was purchased from AvCarb (Lowell, MI, USA).
Tyrosinase, CP-724714, Src inhibitor-1 (src-I1), HEPES, chitosan, N-hydroxysuccinimide
(NHS) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) were
purchased from Sigma-Aldrich (Darmstadt, Germany). Hck and Her2 were bought from
SignalChem (BC, Canada). ELMO-Y511 (QNLSYTEIL, a Hck peptide substrate) [39], FLT3
(DNEYFYV, a Her2 peptide substrate) [29], c-Src substrate-1 (YIYGSFK, a c-Src peptide
substrate) [38], and kemptide (LRRASLG, a PKA peptide substrate) were synthesized
by AngeneBiotech (Taipei, Taiwan). MgCl2 was purchased from Yakuri Pure Chemical
Co. (Kyoto, Japan). Sodium dihydrogen phosphate, sodium hydrogen phosphate and
MnCl2 were supplied by SHOWA (Kumamoto, Japan). DMEM (Dulbecco’s Modified
Eagle’s medium) and fetal bovine serum were obtained from HyClone Laboratory Inc.
(Marlborough, MA, USA).
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2.2. Preparation of Tyrosinase-Based Electrode

The working area (0.3 × 0.3 cm2) of a CFP strip (0.3 × 1.0 cm2) was first cleaned
with oxygen plasma using a plasma cleaner (Atto, Diener Electronic, Ebhausen, Germany).
The plasma treatment was performed under the oxygen pressure of 0.4 N and a power
of 75 watts for 15 s. After plasma treatment, the CFP strip was rinsed once with double
deionized water (d.d. H2O), followed by spreading 2 µL of 0.4% chitosan/1% acetic
acid solution on the working area and then air-dried. The immobilization of tyrosinase
(200 U) was performed by first mixing with the mixture of 10 mM NHS and 10 mM EDC
in 50 mM phosphate buffer, pH 6.6. After incubating at room temperature for 15 min, the
tyrosinase/EDC/NHS mixture (6 µL) was then spread on the working area of CFP under
the room temperature for at least 2 h.

2.3. Fabrication of the Miniature Protein Tyrosine Kinase Sensing Platform

The miniature tyrosine kinase sensing platform consists of a polylactic acid (PLA)
holder, a working electrode, a platinum counter electrode and a Ag/AgCl reference elec-
trode (Figure S1, Supplemental information). The PLA holder, generated by the 3D printer
(Botfeeder Co., Taiwan), is a rectangular block (4.2 × 4.2 × 7.5 cm3) with a cavity of
1.8 × 1.9 × 5.7 cm3. It is composed of two parts: (a) the desk-like top part (~5.5 cm height)
contains a hole of 0.8 cm in diameter to place the reference electrode; (b) the C-shaped
bottom part (~2 cm height) contains a rectangular cleft of 0.3 × 0.05 cm2 to fix the working
electrode. Once the holder was assembled, the counter (Pt wire) and reference electrodes
(CH Instruments, West Lafayette, IN, USA) were fixed on top of the working electrode at a
vertical distance of 2 mm (Figure S1).

2.4. Protein Tyrosine Kinase Reaction

The kinase reaction of Hck and Her2 was performed by mixing 2 µL of protein kinase
stock solution with 18 µL kinase reaction mixture (60 mM HEPES, pH 7.5, containing 3 mM
MgCl2, 3 mM MnCl2, 100 µM substrate peptide and 0.5 mM ATP) in a microfuge tube and
incubated at 30 ◦C for a period of time.

2.5. Electrochemical Measurement

The electrochemical responses of the tyrosine kinases on the miniature sensing plat-
form were determined by amperometric current–time responses (i–t curve). The space
between working and counter/reference electrodes (Figure 1) was first filled with 18 µL
of 100 mM phosphate buffer (pH 6.5). The electrochemical measurement was started
by injecting 1–2 µL peptide stock solution of kinase reaction mixture into the phosphate
buffer with pipetting and monitoring the electrochemical responses under the potential
of −0.2 V vs. Ag/AgCl [38] on the electrochemical analyzer CHI 6116e (CH Instruments,
West Lafayette, IN, USA). Kinase activity of Hck and Her2 was determined by the net
electrochemical responses before and after phosphorylation.

Biosensors 2021, 11, x FOR PEER REVIEW 3 of 11 
 

2.2. Preparation of Tyrosinase-Based Electrode 
The working area (0.3 × 0.3 cm2) of a CFP strip (0.3 × 1.0 cm2) was first cleaned with 

oxygen plasma using a plasma cleaner (Atto, Diener Electronic, Ebhausen, Germany). The 
plasma treatment was performed under the oxygen pressure of 0.4 N and a power of 75 
watts for 15 s. After plasma treatment, the CFP strip was rinsed once with double deion-
ized water (d.d. H2O), followed by spreading 2 μL of 0.4% chitosan/1 % acetic acid solu-
tion on the working area and then air-dried. The immobilization of tyrosinase (200 U) was 
performed by first mixing with the mixture of 10 mM NHS and 10 mM EDC in 50 mM 
phosphate buffer, pH 6.6. After incubating at room temperature for 15 min, the tyrosi-
nase/EDC/NHS mixture (6 μL) was then spread on the working area of CFP under the 
room temperature for at least 2 h. 

2.3. Fabrication of the Miniature Protein Tyrosine Kinase Sensing Platform 
The miniature tyrosine kinase sensing platform consists of a polylactic acid (PLA) 

holder, a working electrode, a platinum counter electrode and a Ag/AgCl reference elec-
trode (Figure S1, Supplemental information). The PLA holder, generated by the 3D printer 
(Botfeeder Co., Taiwan), is a rectangular block (4.2 × 4.2 × 7.5 cm3) with a cavity of 1.8 × 
1.9 × 5.7 cm3. It is composed of two parts: (a) the desk-like top part (~5.5 cm height) con-
tains a hole of 0.8 cm in diameter to place the reference electrode; (b) the C-shaped bottom 
part (~2 cm height) contains a rectangular cleft of 0.3 × 0.05 cm2 to fix the working elec-
trode. Once the holder was assembled, the counter (Pt wire) and reference electrodes (CH 
Instruments, West Lafayette, IN, USA) were fixed on top of the working electrode at a 
vertical distance of 2 mm (Figure S1). 

2.4. Protein Tyrosine Kinase Reaction 
The kinase reaction of Hck and Her2 was performed by mixing 2 μL of protein kinase 

stock solution with 18 μL kinase reaction mixture (60 mM HEPES, pH 7.5, containing 3 
mM MgCl2, 3 mM MnCl2, 100 μM substrate peptide and 0.5 mM ATP) in a microfuge tube 
and incubated at 30 °C for a period of time. 

2.5. Electrochemical Measurement 
The electrochemical responses of the tyrosine kinases on the miniature sensing plat-

form were determined by amperometric current–time responses (i–t curve). The space be-
tween working and counter/reference electrodes (Figure 1) was first filled with 18 μL of 
100 mM phosphate buffer (pH 6.5). The electrochemical measurement was started by in-
jecting 1–2 μL peptide stock solution of kinase reaction mixture into the phosphate buffer 
with pipetting and monitoring the electrochemical responses under the potential of −0.2 
V vs. Ag/AgCl [38] on the electrochemical analyzer CHI 6116e (CH Instruments, West 
Lafayette, IN, USA). Kinase activity of Hck and Her2 was determined by the net electro-
chemical responses before and after phosphorylation. 

 

Figure 1. Close up view of the miniature protein tyrosine kinase sensing platform. The organization
of working, counter and reference electrodes in the platform was revealed in the picture (Left) and
the diagram (Right).



Biosensors 2021, 11, 240 4 of 11

3. Results and Discussion
3.1. Characterization of Miniature Detection Platform

A miniature protein tyrosine kinase sensing platform (Figure 1 and Figure S1) with a
three-electrode setup was developed that allowed the detection of peptide substrates in a
volume as small as 18 µL (Figure 1). The ability of the miniature sensing platform to detect
the peptides with tyrosine residue(s) was demonstrated by measuring the i–t responses of c-
Src substrate 1 peptide, which was successively added into the phosphate buffer (Figure 2).
The step current responses were observed under the potential of −0.2 V (with a response
time from 85 to 42 s), suggesting the capability of the miniature sensing platform to detect
the tyrosine residue-bearing peptides without regenerating the electrode surface. However,
following the successive addition of c-Src substrate 1, the responses decreased gradually. It
may be due to the increase in detection volume during the successive measurements that
lead to dilution of the peptide concentrations. This hypothesis could be demonstrated by
plotting the responses curves of c-Src substrate 1 concentrations vs. current responses from
the results of Figure 2. Since the volume of electrolyte expanded from 18 µL to 32 µL upon
the successive injection of c-Src substrate 1 stock solution, the final concentration of peptide
after each addition could then be calculated by multiplying the corresponding dilution
factor. As shown in Figure S2, the current responses of c-Src substrate 1 was linearly
proportional to i-t concentration after adjustment with an R2 of 0.998. The developed
miniature tyrosinase-based tyrosine kinase sensing platform exhibited a repeatability of
6.6% RSD (Relative standard deviation) for a repetitive measurement of 50 µM c-Src
substrate I (n = 6) (Figure S4).
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Figure 2. The current–time curves of c-Src substrate 1 on the miniature sensing platform. Two
microliter c-Src substrate 1 stock solution (500 µM) were successively added into 100 mM phosphate
buffer, pH 6.5. The initial volume of phosphate buffer is 18 µL. The i-t responses of peptide were
monitored under a potential of −0.2 V vs. Ag/AgCl.

The specificity of the miniature sensing platform to recognize peptide with tyrosine
residues was further demonstrated by alternately adding 10 µM FLT3, a Her2 peptide
substrate, and 100 µM kemptide, and a PKA peptide substrate into the phosphate buffer
(Figure S3A, Supplemental information). The electrochemical responses occurred only
when FLT3 was added into the phosphate buffer. Similar results were also observed when
ELMO-Y511, a Hck peptide substrate, and kemptide were alternately added (Figure S3B).
Compared to the previously reported experimental setup [38], a smaller detection volume is
needed for the developed miniature sensing platform. The electrolyte required for analysis
was greatly reduced from 10 mL to 0.02 mL.
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3.2. Detection of Her2 and Hck Activity on the Miniature Sensing Platform

Previously, the miniature tyrosine kinase sensing platform was shown to be able
to detect peptide substrates of protein tyrosine kinase, i.e., ELMO-Y511 and FLT3. To
further elucidate the capability of miniature sensing platform in detecting the tyrosine
kinase activity the dose-dependent responses and time-dependent phosphorylation of
ELMO-Y511 and FLT3 were investigated. As shown in Figure 3, ELMO-Y511 (closed circle)
and FLT3 (open circle) could be detected in a linear range of 10 to 200 µM with the R2 of
0.997 and 0.991, respectively.

Biosensors 2021, 11, x FOR PEER REVIEW 5 of 11 
 

Compared to the previously reported experimental setup [38], a smaller detection volume 
is needed for the developed miniature sensing platform. The electrolyte required for anal-
ysis was greatly reduced from 10 mL to 0.02 mL. 

3.2. Detection of Her2 and Hck Activity on the Miniature Sensing Platform 
Previously, the miniature tyrosine kinase sensing platform was shown to be able to 

detect peptide substrates of protein tyrosine kinase, i.e. ELMO-Y511 and FLT3. To further 
elucidate the capability of miniature sensing platform in detecting the tyrosine kinase ac-
tivity the dose-dependent responses and time-dependent phosphorylation of ELMO-Y511 
and FLT3 were investigated. As shown in Figure 3, ELMO-Y511 (closed circle) and FLT3 
(open circle) could be detected in a linear range of 10 to 200 μM with the R2 of 0.997 and 
0.991, respectively. 

 
Figure 3. Dose responses of ELMO-Y511 and FLT3 peptides. The electrochemical responses of 
various concentrations (0, 10, 15, 30, 100 and 200 μM) of ELMO-Y511 (closed circle) and FLT3 
(open circle) were determined on the miniature sensing platform. The data is mean ± S.D of three 
independent experiments. 

A time-dependent phosphorylation of ELMO-Y511 and FLT3 peptides by Hck (10 
U/mL) and Her2 (10 U/mL), respectively, was also determined at 30 °C for 0, 10, 30, 60, 90, 
and 120 min (Figure 4). The reductive current of ELMO-Y511 and FLT3 peptides without 
phosphorylation were 4.45 × 10−7 ± 6.70 × 10−9 A and 4.48 × 10−7 ± 3.03 × 10−9 A, respectively. 
Upon the phosphorylation with tyrosine kinases, e.g. Hck and Her2, the reductive current 
of ELMO-Y511 and FLT3 peptides (i.e., 3.27 × 10−7 ± 2.13 × 10−8 A and 3.38 × 10−7 ± 1.13 × 
10−8 A, respectively) reduced about 25% after 10 min reaction and reduced over 50% (i.e., 
1.57 × 10−7 ± 2.75 × 10−8 A and 1.65 × 10−7 ± 1.60 × 10−8 A, respectively) after 30 min reaction. 
After 90 min phosphorylation, the electrochemical responses of both peptides reached 
plateau with a reductive current of 2.78 × 10−8 ± 4.26 × 10−9 for ELMO-Y511 and 4.52 × 10−8 
± 3.06 × 10−9 for FLT3. This result suggests that the activity of Hck and Her2 can be detected 
on the miniature sensing platform in a kinase reaction for as short as 10 min. 
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were determined on the miniature sensing platform. The data is mean ± S.D of three independent
experiments.

A time-dependent phosphorylation of ELMO-Y511 and FLT3 peptides by Hck (10 U/mL)
and Her2 (10 U/mL), respectively, was also determined at 30 ◦C for 0, 10, 30, 60, 90, and
120 min (Figure 4). The reductive current of ELMO-Y511 and FLT3 peptides without phos-
phorylation were 4.45× 10−7 ± 6.70× 10−9 A and 4.48× 10−7 ± 3.03× 10−9 A, respectively.
Upon the phosphorylation with tyrosine kinases, e.g., Hck and Her2, the reductive current
of ELMO-Y511 and FLT3 peptides (i.e., 3.27 × 10−7 ± 2.13 × 10−8 A and 3.38 × 10−7 ±
1.13 × 10−8 A, respectively) reduced about 25% after 10 min reaction and reduced over
50% (i.e., 1.57 × 10−7 ± 2.75 × 10−8 A and 1.65 × 10−7 ± 1.60 × 10−8 A, respectively) after
30 min reaction. After 90 min phosphorylation, the electrochemical responses of both peptides
reached plateau with a reductive current of 2.78 × 10−8 ± 4.26× 10−9 for ELMO-Y511 and
4.52 × 10−8 ± 3.06 × 10−9 for FLT3. This result suggests that the activity of Hck and Her2
can be detected on the miniature sensing platform in a kinase reaction for as short as 10 min.

The phosphorylation of ELMO-Y511 and FLT3 peptides by various activities (0, 1, 5,
10, 50, and 100 U/mL) of Hck and Her2, respectively, was carried out at 30 ◦C for 30 min
prior to the electrochemical measurement. As shown in Figure 5, the phosphorylation of
peptides increased linearly with the logarithm of the activity of Hck (Figure 5A and inset;
R2 = 0.972) and Her2 (Figure 5B and inset; R2 = 0.941) with the lowest detection limit of
1 U/mL (S/N ≥ 3) to Hck and Her2.
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chemical measurement under the potential of −0.2 V. The data is mean ± S.D of three independent
experiments.

Biosensors 2021, 11, x FOR PEER REVIEW 6 of 11 
 

 
Figure 4. Time-dependent phosphorylation of peptide substrates by Hck and Her2. The phosphor-
ylation of 100 μM ELMO-Y511peptide (close circle) and 100 μM FLT3 peptide (open circle) were 
performed by Hck (10 U/mL) and Her2 (10 U/mL), respectively, at 30 °C for 0, 10, 30, 60, 90 and 
120 min. At each time point, 2-μL of reaction mixture was withdrawn and subjected to electro-
chemical measurement under the potential of −0.2V. The data is mean ±S.D of three independent 
experiments. 

The phosphorylation of ELMO-Y511 and FLT3 peptides by various activities (0, 1, 5, 
10, 50, and 100 U/mL) of Hck and Her2, respectively, was carried out at 30 °C for 30 min 
prior to the electrochemical measurement. As shown in Figure 5, the phosphorylation of 
peptides increased linearly with the logarithm of the activity of Hck (Figure 5A and inset; 
R2 = 0.972) and Her2 (Figure 5B and inset; R2 = 0.941) with the lowest detection limit of 1 
U/mL (S/N ≥ 3) to Hck and Her2.  

 
Figure 5. Phosphorylation of ELMO-Y511 and FLT3 peptides by various activities of Hck and Her2. The kinase reaction 
was performed in kinase reaction mixture containing 0.5 mM ATP,100 μM ELMO-Y511 or FLT3 peptide and various ac-
tivities (0, 1, 5, 10, 50, 100 U/mL) of Hck (A) and Her2 (B). Reaction was performed at 30 °C for 30 min. Subsequently, 
reaction mixture (2 μL) was subjected to electrochemical measurement under the potential of −0.2 V. The inset of each 
panel is the semi-log plot of the same set of data. The data is mean ± S.D of three independent experiments. 

3.3. The Effect of Inhibitors to the Activity of Hck and Her2 
Protein tyrosine kinase inhibitors are widely used in the laboratory to elucidate the 

signaling pathway as well as in the clinic to treat cancers. The effect of inhibitors can be 
accessed by the decrease in the protein tyrosine kinase activity after treatment. Therefore, 
the capability of the developed miniature tyrosine kinase sensing platform in studying 
the inhibitory effect of Src-I1, the inhibitor of Src family kinases [40], and CP724714, the 
Her2 specific inhibitor [41], on the corresponding kinases was studied. As shown in Figure 

Figure 5. Phosphorylation of ELMO-Y511 and FLT3 peptides by various activities of Hck and Her2. The kinase reaction was
performed in kinase reaction mixture containing 0.5 mM ATP,100 µM ELMO-Y511 or FLT3 peptide and various activities
(0, 1, 5, 10, 50, 100 U/mL) of Hck (A) and Her2 (B). Reaction was performed at 30 ◦C for 30 min. Subsequently, reaction
mixture (2 µL) was subjected to electrochemical measurement under the potential of −0.2 V. The inset of each panel is the
semi-log plot of the same set of data. The data is mean ± S.D of three independent experiments.

3.3. The Effect of Inhibitors to the Activity of Hck and Her2

Protein tyrosine kinase inhibitors are widely used in the laboratory to elucidate the
signaling pathway as well as in the clinic to treat cancers. The effect of inhibitors can be
accessed by the decrease in the protein tyrosine kinase activity after treatment. Therefore,
the capability of the developed miniature tyrosine kinase sensing platform in studying the
inhibitory effect of Src-I1, the inhibitor of Src family kinases [40], and CP724714, the Her2
specific inhibitor [41], on the corresponding kinases was studied. As shown in Figure 6,
the activity of Hck, a Src family kinase, could be suppressed about 88% in the presence
of 176 nM Src I-1, whereas only about 13% of Her2 activity was inhibited. In contrast,
20 nM CP-72471 could inhibit Her2 activity by about 91%, but only slightly affected the
Hck activity by around 12%.
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Figure 6. Effect of inhibitors on the activity of Hck and Her2 protein kinases. The phosphorylation
reactions were performed in a kinase reaction mixture containing 10 U/mL of Hck (closed bar) or
Her2 (open bar) and 100 µM ELMO-Y511 (for Hck) or FLT3 (for Her2) with or without 176 nM
Src-I1 or 20 nM CP-724714. After reaction, 2 µL reaction mixture were subjected to electrochemical
measurement on the sensing platform. The relative responses upon phosphorylation in the presence
and absence of inhibitors were calculated and presented as the mean ± S.D of three independent
experiments. (* denote significantly different from the activity of “kinase only” at p < 0.05).

3.4. Interference Effect of Cultural Medium to the Protein Tyrosine Kinase Activity

Generally, most of the protein tyrosine kinases are either membrane bound or residing
in the cytoplasm. Hence, it is usually required to prepare samples from cellular extract
for protein kinase assay. To understand the effect of the cell remnants or intracellular
constituents in causing the interference with the electrochemical measurement, the culture
medium (DMEM containing 10% fetal bovine serum) was used to prepare the kinase
reaction mixture that contains peptide substrate, i.e., ELMO-Y511 or FLT3, and protein
tyrosine kinases, i.e., Hck or Her2. The reductive current of ELMO-Y511 and FLT3 alone
was 4.15 × 10−7 ± 2.66 × 10−8 A (closed bar) and 4.57 × 10−7 ± 3.25 × 10−8 A (open
bar), respectively (Figure 7, peptide only). When mixed with the culture medium, the
electrochemical responses of ELMO-Y511 and FLT3 (peptide + culture medium) decreased
slightly to 3.87 × 10−7 ± 4.34 × 10−8 A and 4.07 × 10−7 ± 3.78 × 10−8 A, respectively.
This result suggests that a cell culture medium or even a cell crude extract may not affect
the electrochemical measurement of peptides on the sensing platform.

In contrast, the activity of Hck and Her2 was moderately affected by the culture
medium. This is demonstrated by the finding that the phosphorylated form of ELMO-Y511
(dark bar) and FLT3 (bright bar) decreased in the kinase reaction mixture containing the
culture medium (Figure 7). The ELMO-Y511 and FLT3 peptides phosphorylating without
the culture medium exhibited a response (peptide + kinase) of 8.26 × 10−8 ± 5.31 ×
10−9 A and 8.51 × 10−8 ± 8.39 × 10−9 A, respectively; while in the presence of culture
medium, the responses of peptides (kinase + culture medium) changed to 1.63 × 10−7

± 2.44 × 10−8 A and 1.97 × 10−7 ± 2.88 × 10−8 A, respectively. This result indicates
that the kinase activity of Hck and Her2 was suppressed 33% and 43%, respectively, by
the culture medium. Although the exact mechanism underlying the medium-mediated
inhibition of kinase activity is not clear, the presence of kinase inhibitors, phosphatases,
proteases and/or thiol compounds, in the culture medium is postulated. Phosphotyrosine
phosphatases are known to remove the phosphate group from the phosphotyrosines; while
proteases contaminants can degrade protein kinases. The contamination of both substances
may result in the underestimation of kinase activity. Thiol compounds, such as cysteine and
glutathione, could block the reaction of tyrosinase by forming the inactive conjugates from
the intermediates [42]. To avoid the influence of cellular components on the kinase reaction,
the reaction mixture for protein tyrosine kinase reactions is suggested to be reformulated,
such as adding phosphatase inhibitors and sample pretreatment.
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kinases. Peptide stock solution and protein kinase stock solution were diluted with the cell culture
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Her2). The data is mean ± S.D of three independent experiments. (* p < 0.05).

4. Conclusions

In this work, a simple and label-free miniature sensing platform for detecting the
activity of protein tyrosine kinases was developed and characterized. Compared to the
previous experimental setup [38] and published reports (Table 1), the newly developed
platform is simple in design, easy to operate, and requires only 1–2 µL samples for kinase
activity assay. With the reduction of detection volume, the sample volume required
for analysis was also significantly decreased from 20 µL to 2 µL. Simple in design and
easy operation are also the advantages of the current experimental setup. These studies
showed that the current experimental setup exhibits great potential for the detection
of biological samples that are usually rare and expensive to acquire in large quantity.
The unique tyrosinase-based detection mechanism [38] allows the developed miniature
sensing platform to detect different protein tyrosine kinases on the same electrodes. This
is demonstrated by the observation that both Hck and Her2 activity can be successively
detected without changing electrodes. The platform was also effective in assessing the
specificity of inhibitors on different tyrosine kinases, indicating that the platform can be
used to monitor and screen the effect of drugs on different tyrosine kinases in a short time.
In summary, the developed tyrosine kinase sensing platform exhibits a great potential to
be a powerful tool for the detection of protein tyrosine kinase activity, the screening of
tyrosine kinase-based drugs, and clinical diagnoses.

Table 1. Comparison of the performance of various tyrosine kinase biosensors.

Electrode Types Working Mechanism Reusability
(R.S.D.)

Sample
Volume

Required
(µL)

Protein
Tyrosine
Kinases

Linear
Range of
Detection

Limitation
of

Detection
Ref.

Miniature
Tyrosinase/CFP

Tyrosinase-based Tyr
Oxidation

High
(6.6%)

Src N.D. N.D. This
study1–2 µL Hck 1–100 U/mL 1 U/mL

HerB 1–100 U/mL 1 U/mL

Peptide-
immobilized

SPCE
AuNP-based redox response Low

(N.A.) 25 µL Src N.A. 5 U/mL [32]
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Table 1. Cont.

Electrode Types Working Mechanism Reusability
(R.S.D.)

Sample
Volume

Required
(µL)

Protein
Tyrosine
Kinases

Linear
Range of
Detection

Limitation
of

Detection
Ref.

MWCNT
-modified SPCE Direct oxidation of Tyr High

(N.A.) 20 µL Src N.A. 5 U/mL [35]

Graphene-
modified glassy
carbon electrode

Graphene-assisted direct
oxidation of Tyr

High
(N.A.) 20 µL Src 0.26 to

33.79 nM 0.087 nM [37]

Tyrosinase/CFP Tyrosinase-based Tyr
Oxidation

High
(2.87%) 20 µL Src 1.9–237.6

U/mL 0.23 U/mL [38]

Peptide-
immobilized

Gold electrode

4-mercaptophenylboronic
acid (MPBA)MPBA-assisted

AgNP aggregates-based
redox response

Low
(N.A.) – Src 10–80 ng/mL 1.2 ng/mL [43]

Peptide-
immobilized ITO

electrode

Os(bpy)3
+2-mediate Tyr

oxidation
Low

(N.A.) – EGFR N.A. 1 U/mL [44]

N.D., Not determined; N.A., Not applicable; MPBA, 4-mercaptophenylboronic acid; SPCE, screen-printed carbon electrode.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios11070240/s1, Figure S1: The structure of the miniature protein tyrosine kinase sensing
platform., Figure S2: The response curve of c-Src substrate 1 concentration vs. current responses;
Figure S3. The chronoamperometric measurement of substrate peptides for Hck and Her2; Figure S4.
Reproducibility of tyrosine kinase sensing platform.
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