
biosensors

Article

A Carbon-Based Antifouling Nano-Biosensing Interface for
Label-Free POCT of HbA1c

Zhenhua Li 1,2, Jianyong Li 1,2, Yanzhi Dou 1,2, Lihua Wang 1,3 and Shiping Song 1,3,*

����������
�������

Citation: Li, Z.; Li, J.; Dou, Y.; Wang,

L.; Song, S. A Carbon-Based

Antifouling Nano-Biosensing

Interface for Label-Free POCT of

HbA1c. Biosensors 2021, 11, 118.

https://doi.org/10.3390/bios11040118

Received: 20 February 2021

Accepted: 7 April 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of
Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; lzh@sinap.ac.cn (Z.L.);
lijianyong18@mails.ucas.ac.cn (J.L.); douyanzhi@sinap.ac.cn (Y.D.); wanglihua@sinap.ac.cn (L.W.)

2 Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility,
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: songshiping@sinap.ac.cn

Abstract: Electrochemical biosensing relies on electron transport on electrode surfaces. However,
electrode inactivation and biofouling caused by a complex biological sample severely decrease
the efficiency of electron transfer and the specificity of biosensing. Here, we designed a three-
dimensional antifouling nano-biosensing interface to improve the efficiency of electron transfer by a
layer of bovine serum albumin (BSA) and multi-walled carbon nanotubes (MWCNTs) cross-linked
with glutaraldehyde (GA). The electrochemical properties of the BSA/MWCNTs/GA layer were
investigated using both cyclic voltammetry and electrochemical impedance to demonstrate its high-
efficiency antifouling nano-biosensing interface. The BSA/MWCNTs/GA layer kept 92% of the
original signal in 1% BSA and 88% of that in unprocessed human serum after a 1-month exposure,
respectively. Importantly, we functionalized the BSA/MWCNTs/GA layer with HbA1c antibody
(anti-HbA1c) and 3-aminophenylboronic acid (APBA) for sensitive detection of glycated hemoglobin
A (HbA1c). The label-free direct electrocatalytic oxidation of HbA1c was investigated by cyclic
voltammetry (CV). The linear dynamic range of 2 to 15% of blood glycated hemoglobin A (HbA1c) in
non-glycated hemoglobin (HbAo) was determined. The detection limit was 0.4%. This high degree
of differentiation would facilitate a label-free POCT detection of HbA1c.

Keywords: electrochemical biosensing; three-dimensional electron transporter; multi-walled carbon
nanotubes; HbA1c; point-of-care testing

1. Introduction

Electrochemical biosensors hold great promise for the global healthcare industry
owing to rapid, inexpensive, miniaturized analytical devices [1–14]. Nevertheless, it
still remains challenging to develop electrochemical biosensors for practical point-of-care
testing (POCT) systems. First, the matrix effect caused by other biomolecules than targets
from human fluid interferes the target recognition process, delivering a high possibility of
false positive results, so the biosensing interface should be highly antifouling. Second, the
abundance of detected biomarkers in human fluid is much lower than that of irrelevant
biomolecules, so the biosensor should have a high sensitivity and have a high differentiation
ability. A typical application of such electrochemical biosensors is for the detection of blood
glycated hemoglobin A (HbA1c).

HbA1c level detection has become a standard diagnostic method of diabetes control.
The American Diabetes Association has recommended measuring HbA1c for diabetes
screening and diagnosis [15]. In healthy adults, HbA1c is within the range of 4.0–6.0%,
whereas levels >6.5% indicate diabetes [16]. Several kinds of electrochemical biosensing
methods for HbA1c had been developed. Additionally, commercial tests are available.
However, these commercial tests and devices are bulky and mainly used in clinical lab-
oratory. Currently, POCT methods and devices are solely needed, but suffer from much
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more non-specific adsorption than laboratory tests because samples are often used without
pretreatment in POCT [17]. Although a number of nanocomposite-based sensors have been
developed for the detection of HbA1c [18–22], a high abundance of interfering components
such as non-glycated hemoglobin (HbAo) or serum proteins in clinical matrices can greatly
interfere with detection results. Thus, anti-biofouling must be considered [17,23,24].

To improve the detection sensitivity of electrochemical biosensors, a number of surface
modification and biomolecular immobilization strategies were developed for the detec-
tion of nucleic acids [12–14,25], proteins [6,26], small molecules [27,28] and cells [10,29]
in different sample matrixes. Typically, nanomaterials [30] with good conductivity such
as gold nanoparticles [31,32], graphene [28] and carbon nanotubes [33,34], had been in-
tensively applied to design electrochemical biosensing interfaces, facilitating the direct
electron transfer between biomolecules and electrodes. In particular, CNTs can offer
both a large surface-to-volume ratio and excellent electronic properties for biosensing
analysis [30,35–38]. Nevertheless, the involvement of inorganic nanomaterials may absorb
proteins and increase nonspecific adsorption [39,40]. To reduce the matrix effect during
the electrochemical biosensing process, a common route is to decorate the electrode’s
surface with highly biocompatible materials such as bovine serum albumin (BSA) and
polyethylene glycol (PEG) [39–43]. However, the involvement of these materials would
lead to the inevitable decrease in electrode conductivity, increasing the limit of detection
(LOD) of electrochemical biosensors.

Recently, three-dimensional (3D) porous matrixes with antifouling properties have
attracted much attention [44–48]. These strategies tried to combine the good conductivity
of nanomaterials to the antifouling properties of 3D biological structures. For example,
Jonathan et al. constructed an antifouling coating for electrodes consisting of a 3D porous
matrix of cross-linked BSA supported by a network of conductive nanomaterials composed
of gold nanowires and gold nanoparticles [44]. These nanocomposites allowed their
electrochemical biosensor to operate in complex biological fluids such as blood plasma or
serum. Nevertheless, such developed strategies suffer from two disadvantages. First, the
need for noble metals would impede the industrial applications and the spread of these
techniques. Second, complicated operations of these methods make them fail to meet the
requirement of point-of-care diagnostics.

Here, we designed a novel carbon-based nano-bio interface for electrochemical biosen-
sors in combination of disposable screen-printed carbon electrodes (SPCE) with 3D nano-
bio structures including BSA, multi-wall carbon nanotubes (MWNTs) and glutaraldehyde
(GA). SPCE has many more advantages than other kinds of electrodes because of its
low cost and feasibility of mass production [49–55]. We tried to functionalize a bovine
serum albumin and multi-walled carbon nanotubes cross-linked with glutaraldehyde
(BSA/MWCNTs/GA) layer with anti-HbA1c and 3-aminophenylboronic acid (APBA) for
the detection of HbA1c and demonstrate the feasibility of the antifouling nano-interface for
both large molecular probes and small molecular probes in the development of electrochem-
ical biosensors (Scheme 1). Our results indicate that the BSA/MWCNTs/GA layer could
both improve electrochemical performance and reduce non-specific binding, showing a
great promise for developing simple, high-sensitivity and non-fouling biosensing platform
to drive industrial application toward multi-scenario POCT.
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Scheme 1. (a) Schematic illustration of the bovine serum albumin and multi-walled carbon nano-
tubes cross-linked with glutaraldehyde (BSA/MWCNTs/GA) layer on the surface of the screen-
printed carbon electrodes (SPCE); (b) schematic illustration of the BSA/MWCNTs/GA-coated elec-
trodes functionalized with different bioprobes for selective sensing of HbA1c. 
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purchased from Sigma-Aldrich (St. Louis, MO, USA). HbAo, HbA1c, anti-HbA1c were 
purchased from Fitzgerld Industries International (Acton, MA, USA). MWNTs (50 nm in 
diameter, 1–2 μm in length) were purchased from Shenzhen Nanotech Port Co. Ltd. 
(Shenzhen, China). Normal human sera were obtained from Renji Hospital, School of 
Medicine, and Shanghai JiaoTong University. The 16-channel screen-printed carbon elec-
trode (16-SPCE) was purchased from Zhejiang Nanosmart Biotechnical Co. Ltd. (Ningbo, 
China). 

2.2. Fabrication of the Antifouling Layer 
2.2.1. The Preparation of MWCNT-Based Composites 

In this process, 1.5 mg MWCNTs and 5.0 mg BSA were mixed in 1 mL 10 mM PBS to 
form the BSA/MWCNTs composite. Then, the mixture was sonicated in a sonicator (Q700, 
Qsonica) with a microtip for 30 min. After the sonication was done, the obtained solution 
was centrifuged for 15 min, the supernatant was recovered and ready for use. 

2.2.2. Electrode Layer Fabrication 
The SPCE was pretreated electrochemically to clean the surface on their working 

electrode by running cyclic voltammetry (CV) with the 16-channel electrochemical detec-
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pH 7.4) in a shaker for 30 min, the BSA/MWCNTs/GA-modified SPCE can be stored in a 
N2 atmosphere at 4 °C for 4 weeks. The SPCE can also be functionalized by carbodiimide 

Scheme 1. (a) Schematic illustration of the bovine serum albumin and multi-walled carbon nanotubes cross-linked with
glutaraldehyde (BSA/MWCNTs/GA) layer on the surface of the screen-printed carbon electrodes (SPCE); (b) schematic
illustration of the BSA/MWCNTs/GA-coated electrodes functionalized with different bioprobes for selective sensing
of HbA1c.

2. Materials and Methods
2.1. Materials

BSA, hydrogen peroxide (H2O2), ethanolamine, 3-aminophenylboronic acid (APBA),
carbodiimide hydrochloride (EDC), N-hydroxy-succinimide (NHS) and 70% GA were
purchased from Sigma-Aldrich (St. Louis, MO, USA). HbAo, HbA1c, anti-HbA1c were pur-
chased from Fitzgerld Industries International (Acton, MA, USA). MWNTs (50 nm in diam-
eter, 1–2 µm in length) were purchased from Shenzhen Nanotech Port Co. Ltd. (Shenzhen,
China). Normal human sera were obtained from Renji Hospital, School of Medicine, and
Shanghai JiaoTong University. The 16-channel screen-printed carbon electrode (16-SPCE)
was purchased from Zhejiang Nanosmart Biotechnical Co. Ltd. (Ningbo, China).

2.2. Fabrication of the Antifouling Layer
2.2.1. The Preparation of MWCNT-Based Composites

In this process, 1.5 mg MWCNTs and 5.0 mg BSA were mixed in 1 mL 10 mM PBS to
form the BSA/MWCNTs composite. Then, the mixture was sonicated in a sonicator (Q700,
Qsonica) with a microtip for 30 min. After the sonication was done, the obtained solution
was centrifuged for 15 min, the supernatant was recovered and ready for use.

2.2.2. Electrode Layer Fabrication

The SPCE was pretreated electrochemically to clean the surface on their working
electrode by running cyclic voltammetry (CV) with the 16-channel electrochemical detector.
Then, 69 µL of BSA/MWCNTs composites in 10 mM PBS was directly mixed with 1 µL
of 70% GA. The SPCE was kept in a 60% humidity box for 20 h at room temperature.
After being rinsed twice with PBST buffer (10 mM phosphate, 140 mM NaCl, 2.7 mM
KCl, 0.5% (v/v) Tween20, pH 7.4) and once with PBS (10 mM phosphate, 140 mM NaCl,
2.7 mM KCl, pH 7.4) in a shaker for 30 min, the BSA/MWCNTs/GA-modified SPCE can
be stored in a N2 atmosphere at 4 ◦C for 4 weeks. The SPCE can also be functionalized by
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carbodiimide chemistry during this period. Independent SPCE arrays were used for all of
the electrochemical experiments to produce statistical results.

2.3. BSA/MWCNTs/GA Layer Characterization and Optimization
2.3.1. Characterization by UV Spectroscopy

The MWCNT-based composites were characterized by UV-vis absorption spectropho-
tometer (Hitachi U-3010, Tokyo, Japan) before and after addition of GA. The samples were
diluted in 10 mM phosphate buffer.

2.3.2. Characterization by SEM and AFM

The BSA/MWCNTs/GA layer was characterized using an atomic force microscope
(AFM, Multimode Nanoscope VIII Instrument, Bruker, Billerica, MA, USA) and scanning
electron microscope (SEM, LEO 1530 VP, Zeiss, Oberkochen, Germany). AFM images were
obtained under tapping mode in air by using a RTESPA tip (Bruker).

2.3.3. Electrochemical Measurements

All electrochemical experiments were carried out on 16-SPCE arrays. The nanocom-
posite layer were electrochemically characterized, using 5 mM K4Fe(CN)6/K3Fe(CN)6
prepared in 0.1 M KCl by CV (scan rate 100 mV/s between −0.2 and 0.6 V versus Ag/AgCl
reference electrode) and electrochemical impedance spectroscopy (EIS) (0.1 MHz to 0.1 Hz,
5 mV amplitude versus Ag/AgCl reference electrode).

2.3.4. BSA/MWCNTs/GA Layer Optimization and Antifouling Properties

The tested concentrations of MWCNTs were 0.5, 1, 1.5, and 2 mg/mL. Additionally,
we chose the concentration of BSA (0, 0.1, 1 and 5 mg/mL) and the percentage of GA (0,
0.1, 1 and 5%) for the layer formation. The formation time of the layer was chosen (1 h,
4 h, 8 h, 18 h, 1 day and 2 days). Then, SPCEs were washed twice with PBST and once
with PBS. The formed layer on SPCE was characterized electrochemically, using 5 mM
K4Fe(CN)6/K3Fe(CN)6 prepared in 0.1M KCl by CV (scan rate 100 mV/s between −0.2
and 0.6 V versus Ag/AgCl reference electrode) at room temperature. For the antifouling
experiment, the BSA/MWCNTs/GA layers were placed in 1% BSA and unprocessed
human serum separately for 1 week, 2 weeks, 3 weeks and 1 month at 4 ◦C. Then, the
layer on SPCE was characterized electrochemically, using 5 mM K4Fe(CN)6/K3Fe(CN)6
prepared in 0.1 M KCl by CV.

2.4. Biosensing of HbA1c Based on the Functionalized BSA/MWCNTs/GA Layer
2.4.1. Functionalization of BSA/MWCNTs/GA Layer

The BSA/MWCNTs/GA layer was activated with 20 µL mixture solution of 0.05 M
NHS in 10 mM PBS and 0.2 M EDC in 10 mM PBS for 30 min. Then, 20 µL of 25 µg/mL anti-
HbA1c in 10 mM PBS or 10 mM APBA in 100 mM PB was added, following by incubation
at 37 ◦C for 2 h. Then, 30 µL of 0.1 M ethanolamine in 100 mM PB was casted on the layer.
Each step was washed twice with PBST and once with PBS.

2.4.2. Selectivity Study of Functionalized BSA/MWCNTs/GA Layer

The anti-HbA1c- or APBA-functionalized BSA/MWCNTs/GA layer was incubated
with 10 µL of 200 µg/mL HbAo and 6% HbAlc (containing 188 µg/mL of HbAo and
12 µg/mL of HbA1c) in unprocessed human serum at 37 ◦C for 5 min. After being
washed twice with PBST and twice with PBS, the electrochemical analysis on anti-HbA1c-
BSA/MWCNTs/GA layer was performed in 3 mM H2O2 containing 0.05 M PBS at room
temperature by CV (scan rate 100 mV/s between −0.8 and 0 V). The electrochemical analy-
sis on APBA-BSA/MWCNTs/GA layer was performed by EIS as described in Section 2.3.3.
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2.4.3. Biosensing of HbA1c Based on the Functionalized BSA/MWCNTs/GA Layer

HbA1c standards at variable concentrations (1, 2.5, 5, 10, 25 and 50 µg/mL) were
prepared in unprocessed human serum. It is a consensus statement to use mmol mol−1

(IFCC) or % (NGSP) to report HbA1c concentrations. Here, we used the latter [56]. HbA1c
at different percentile concentrations (2%, 4%, 6%, 9%, 12% and 15%) was prepared by
serially diluting 200 µg/mL (100%) HbA1c with 200 µg/mL (0%) HbAo in unprocessed
human serum. The electrochemical detection was measured using CV and EIS.

3. Results and Discussion
3.1. Design and Preparation of the BSA/MWCNTs/GA Layer

To decrease the LOD and antifouling properties of biosensors in clinical practice, here
we designed an antifouling film for the sensing of HbA1c by the physical adsorption of BSA
to multi-walled carbon nanotubes and then BSA cross-linking with GA to form a 3D porous
matrix (BSA/MWCNTs/GA layer) onto SPCE. MWCNTs can offer both a large surface-to-
volume ratio and excellent electric properties for biosensing analysis [35]. In our design,
BSA is physically adsorbed to the surface of MWCNTs through hydrophobic interaction
and then cross-linked with GA, producing 3D nanostructures in the form of porous film
(that is, the BSA/MWCNTs/GA layer), as shown in Scheme 1a. The BSA/MWCNTs/GA
layer not only displayed high resistance against nonspecific binding in complex biological
fluids, but also exhibited excellent electron transfer ability. To evaluate the electrochemical
sensing performance of the BSA/MWCNTs/GA layer, we functionalized the layer with
anti-HbA1c antibodies and APBA for the detection of HbA1c in unprocessed human serum
(Scheme 1b).

The consistency of the SPCE is one of the most important points to demonstrate the
performance of the electrode. CV tests were carried out on 16-channel SPCE arrays. The
relative standard deviation (RSD) of redox peak signals were evaluated as 2%, indicating a
reliable repeatability (Figure S1a). To assess the electron transfer on BSA/MWCNTs/GA-
coated electrodes, we also evaluated voltammograms at different scan rates. The currents
were proportional to the square root of the scan rate, indicating a diffusion-limited process
(Figure S1b,c).

In order to find the best composition of the BSA/MWCNTs/GA conjugate, the con-
centration of MWCNTs concentration was studied in the range of 0.5 to 2 mg/mL. The
optimum concentration of MWCNTs was selected to be 1.5 mg/mL (Figure S2a). Then,
BSA ranges from 0.1 to 5 mg/mL and GA from 0.1 to 5% were also investigated. The
optimum composite 5 BSA/1 GA was chosen with the lowest drop in performance after
1-d incubation in 1% BSA (Figure S2b). Figure S2c showed that it required 18 h or more to
obtain a stable BSA/MWCNTs/GA layer.

3.2. Structural Characterization of the BSA/MWCNTs/GA Layer and Its Performance

To confirm the formation of 3D porous structure, BSA/MWCNTs/GA was investi-
gated by various methods. First, BSA/MWCNTs/GA was analyzed by measuring UV
absorbance at 280 nm (Figure S3a). Compared to those without cross-linking through
GA (BSA and BSA/MWCNTs), BSA/MWCNTs/GA and BSA/GA showed an increase in
absorbance and the spectrum had shifted blue to 267–270 nm (Figure S3a), indicating that
polymers of pyridine are yielded during BSA cross-linking by GA [57,58]. According to
the rapid cross-linking mechanism, the produced polymers form 3D molecular networks.
Then, atomic force microscopy (AFM) was used to further investigate and visualize the
topography of BSA/MWCNTs/GA. As show in Figure S3b, the BSA-coated mica showed
a very flat surface, while the topography of MWCNTs with the BSA can been seen on the
BSA/MCWNT-coated mica. After cross-linking by GA, a sponge-like protein-MWCNT
matrix was generated. Figure S3c shows the decrease in valleys from AFM results. These
results prove that the cross-linking reaction of GA to the BSA/MWCNTs composite in-
creased the roughness of the layer due to pore formation. Additionally, similar results were
observed by scanning electron micrography (SEM) (Figure S3d).
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To demonstrate the electrochemical properties of the BSA/MWCNTs/GA layer, the
bare, BSA-, BSA/GA-, BSA/MWCNTs- and BSA/MWCNTs/GA-modified SPCE were
prepared and investigated in 5 mM K4Fe(CN)6/K3Fe(CN)6 by CV and EIS. As shown in
Figure 1a, the bare SPCE displayed a pair of quasi-reversible redox peaks, while the BSA-
coated SPCE displayed redox peak signals reduced by 57% than those observed for the bare
SPCE. The result should be attributed to the electrode passivated by non-conductive BSA.
The modification of BSA/GA, BSA/MWCNTs on SPCE resulted in increased current re-
sponses than that of BSA, indicating that the presence of GA and MWCNTs accelerated the
electron transport process. Significantly, the current response based on BSA/MWCNTs/GA
modification was a 32% increase over the bare SPCE, demonstrating that the layer could
provide a rapid and reliable path for electron transfer.
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The impedance data can be fitted to a Randles circuit by using elements including
constant phase element (CPE), charge transfer resistance (Rct), warburg element (W) and
electrolyte solution resistance (Rs). In this work, Zview2 impedance software was used to
fit the experimental data to the equivalent circuit to obtain Rct, which was used for further
evaluation. Electrochemical responses of differently modified SPCE were also tested by EIS
with curves shown in Figure 1b. The BSA layer exhibited the biggest resistance (6138 Ω),
suggesting that it hindered the electron transfer. On the BSA/GA layer, the Rct value
declined to 2426 Ω, indicating that the presence of GA-cross-linked BSA accelerated the
electron transport process, and the Rct of the BSA/MWCNTs layer further declined to
1270 Ω due to conductivity of MWCNTs. Importantly, the Rct of the BSA/MWCNTs/GA
layer declined to 469 Ω, proving that the nano-integrated layer could reduce the interface
resistance and accelerate the electron transfer significantly.

It is crucial to demonstrate the performance of biosensors in complex biological
fluids. Thus, we challenged the electrochemical biosensors with the BSA/MWCNTs/GA
layer. The modified SPCEs were incubated in 1% BSA and unprocessed human serum
separately. Impressively, the BSA/MWCNTs/GA layer showed excellent stability in these
fluids during a 4-week period, keeping the original signal of 92% in 1% BSA and 88% in
unprocessed human serum after one month, respectively (Figure 1c).

3.3. Biosensing of HbA1c Based on the Functionalized BSA/MWCNTs/GA Layer

The measurement of HbA1c level has become the standard of diabetes control. Here,
the catalytic reduction of H2O2 by HbA1c on the BSA/WCNTs/GA layer was investigated
to evaluate its electrochemical biosensing performance. Figure S4 shows the impedance
of anti-HbA1c immobilization and then ethanolamine block. After the immobilization of
anti-HbA1c, impedance values were significantly increased, compared with the impedance
of the BSA/WCNTs/GA layer. Then, the experimental parameters for the electrocatalytic
response of H2O2 by HbA1C were optimized. As shown in Figure S5a, the peak current
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increased with increasing concentration until 3.0 mM H2O2, above which the values did
not steeply increase. Therefore, 3.0 mM H2O2 was optimal. Figure S5b showed the effect of
temperature from 20 to 40 ◦C. The peak current increased gradually and then decreased
at 40 ◦C. This tendency might be due to the thermal deactivation of HbA1c. For practical
applications, the subsequent experiments were performed at 37 ◦C. Figure S5c showed
the effect of pH value. At pH 7.4, the current response was the maximum and used as
the optimal pH value. Figure S5d showed the effect of applied potential. The response
current increased and reached the steady state over at −0.60 V. The application of potential
more than −0.60 V did not contribute more to the current response. Hence, the potential of
−0.60V was used for the subsequent experiments.

The principle of HbA1c sensing on the anti-HbA1c-BSA/MWCNTs/GA layer is
illustrated in Figure 2a(1) (anti-HbA1c modified bare SPCE as a contrast, Figure 2a(2)).
HbA1c solution was serially diluted and detected by the electrochemical biosensor. The
reduction current of H2O2 increased with the increase in HbA1c concentration (Figure 2b).
The value of redox peak was proportional to the amount of HbA1c in the sample. The
electrocatalytic response of H2O2 for the HbA1c detection was linear from 1 to 50 µg/mL
(Figure S6). A regression equation (∆IP(µA) = 0.24[HbA1c] + 0.69, R2 = 0.995) was obtained
from the linear fitting. The limit of detection (LOD) of HbA1c was 0.6 µg/mL, which was
calculated from 3σ/slope, where σ is the standard error of blank. This result shows that
the BSA/MWCNTs/GA layer can detect HbA1c with low LOD.
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sensing of HbA1c; (b) CV curves of the anti-HbA1c-BSA/MWCNTs/GA layer in the detection of different concentrations of
HbA1c (no HbAo). (n = 3, only one CV plot for each condition is shown); (c) CV curve of the anti-HbA1c-BSA/MWCNTs/GA
layer in the detection of HbAo and 6% HbA1c. (n = 3, only one CV plot for each condition is shown); (d) CV curves of the
anti-HbA1c-BSA/MWCNTs/GA layer in the detection of different concentrations of % HbA1c (contain HbAo). (n = 3, only
one CV plot for each condition is shown); (e) CV curves of the anti-HbA1c layer in the detection of different concentrations
of % HbA1c (contain HbAo). (n = 3, only one CV plot for each condition is shown); (f) calibration curves as a function of %
HbA1c for anti-HbA1c layer and anti-HbA1c-BSA/MWCNTs/GA layer. (n = 3, error bars represent the standard deviation
of the mean).

A high abundance of non-glycated hemoglobin (HbAo) or serum proteins can interfere
with the biosensor’s performance. Thus, we investigated the selectivity for HbA1c in
relation to HbAo. Figure 2c shows CV plots for assaying 200 µg/mL HbAo and 6%
HbA1c in unprocessed human serum. Upon the introduction of HbAo, CV plots virtually
remained unchanged in comparison with the redox peak of the anti-HbA1c modified SPCE
in the absence of HbAo. Thus, no redox peaks were observed. When the 6% HbA1c was
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captured on the anti-HbA1c-BSA/MWCNTs/GA layer, a catalytic reduction peak of H2O2
appeared at −0.5 V. This result shows that the biosensor can distinguish HbA1c from
HbAo clearly, demonstrating its availability for accurate measurement of HbA1c levels of
diabetic individuals.

Figure 2d shows CV plots acquired after incubation with different % HbA1c concen-
trations for the anti-HbA1c-BSA/MWCNTs/GA layer—the peak current increased with
increasing concentration of % HbA1c, and the concentration differentiation is obviously
better than that of anti-HbA1c layer (Figure 2e). These results indicate that the anti-HbA1c-
BSA/MWCNTs/GA layer could efficiently prevent non-specific protein adsorption as
compared to pure anti-HbA1c layer. A regression equation (∆IP(µA) = 0.36 [HbA1c](%) +
1.00, R2 = 0.996) was obtained from linear fitting. The LOD of HbA1c was 0.4%, which was
calculated from 3σ/slope (Figure 2f).

Having demonstrated that the BSA/MWCNTs/GA layer can benefit the immobiliza-
tion of large bioprobes such as antibodies of HbA1c, we also tried to demonstrate the
availability of the layer for small bioprobes. Thus, we used APBA to functionalize the
BSA/MWCNTs/GA-based SPCE for the detection of HbA1c by EIS. Figure 3a shows the
selectivity of the APBA-based biosensor for HbA1c detection. An increase in the membrane
resistance was observed in the presence of increasing HbA1c concentrations (Figure 3b,c).
The normalized Rct was plotted vs. HbA1c concentration (Figure 3d), demonstrating
that the response was linear from 4.0 to 15% of HbA1c in in unprocessed human serum
with a LOD of 1.2% (3σ/slope). The EIS detection results demonstrate the versatility of
the BSA/MWCNTs/GA layer for both large and small bioprobes in the development of
HbA1c biosensors.
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Figure 3. (a) EIS response of the APBA-BSA/MWCNTs/GA layer in the detection of HbAo and 6%
HbA1c. (n = 3, only one EIs plot for each condition is shown); (b) EIS curve of the APBA layer in the
detection of % HbA1c (contain HbAo). (n = 3, only one EIS plot for each condition is shown); (c) EIS
curve of the APBA-BSA/MWCNTs/GA layer in detection of % HbA1c (contain HbAo). (n = 3, only
one EIs plot for each condition is shown); (d) calibration curves as a function of % HbA1c for APBA
layer and APBA-BSA/MWCNTs/GA layer. (n = 3, error bars represent the standard deviation of
the mean).
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4. Conclusions

A three-dimensional nano-integrated BSA/MWCNTs/GA layer was developed to
improve both the efficiency of electron transfer and the antifouling ability of biosensing
surfaces. The BSA/MWCNTs/GA layer could keep 92% and 88% of the original signal
in 1% BSA and unprocessed human serum after a 1-month exposure, respectively. The
label-free direct electrocatalytic oxidation of HbA1c was explored by cyclic voltammetry
(CV) on the BSA/MWCNTs/GA layer-based biosensor. The dynamic range of HbA1c in
HbAo was determined from 2 to 15% with a LOD of 0.4%. Significantly, selective lab-free
EIS detection demonstrated the versatility of the BSA/MWCNTs/GA layer for general
electrochemical biosensing applications. We believe that such a nano-integrated biosensing
strategy holds great potential for the development of POCT devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios11040118/s1, Figure S1: (a) CV curves of 16-channel SPCE array; (b) CV curves of
BSA/MWCNTs/GA layer of an equimolar solution of 5 mM ferri-/ferrocyanide at different scan
rates 50–550 mV s−1; (c) Extracted oxidation/reduction peak current (ip) mean values from the
CV shown in b plotted versus the square root of the scan rate, Figure S2: Optimization of the
preparation of BSA/MWCNTs/GA layer in terms of (a), MWCNTs concentration; (b), BSA and
GA ratio; (c), incubation time, Figure S3: (a) UV-Vis absorption spectra of BSA, BSA/MWCNTs,
BSA/GA and BSA/MWCNTs/GA; (b) AFM topographies of micas coated with BSA, BSA/MWCNTs
and BSA/MWCNTs/GA; (c) Line profile based on BSA, BSA/MWCNTs and BSA/MWCNTs/GA
coated micas; (d) SEM images of SPCEs coated with BSA, BSA/MWCNTs and BSA/MWCNTs/GA,
Figure S4: EIS curve of immobilization anti-HbA1c and APBA on BSA/MWCNTs/GA layer, Figure S5:
Optimization of the experiment parameters in terms of (a) H2O2 concentration; (b) pH; (c) Applied
potential for catalytic H2O2 reduction; (d) Temperature, Figure S6: Calibration curves for detection of
HbA1c for anti-HbA1c-BSA/MWCNTs/GA layer.
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