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Abstract: With the global population prevalence of diabetes surpassing 463 million cases in 2019
and diabetes leading to millions of deaths each year, there is a critical need for feasible, rapid, and
non-invasive methodologies for continuous blood glucose monitoring in contrast to the current proce-
dures that are either invasive, complicated, or expensive. Breath analysis is a viable methodology for
non-invasive diabetes management owing to its potential for multiple disease diagnoses, the nominal
requirement of sample processing, and immense sample accessibility; however, the development
of functional commercial sensors is challenging due to the low concentration of volatile organic
compounds (VOCs) present in exhaled breath and the confounding factors influencing the exhaled
breath profile. Given the complexity of the topic and the skyrocketing spread of diabetes, a multifari-
ous review of exhaled breath analysis for diabetes monitoring is essential to track the technological
progress in the field and comprehend the obstacles in developing a breath analysis-based diabetes
management system. In this review, we consolidate the relevance of exhaled breath analysis through
a critical assessment of current technologies and recent advancements in sensing methods to address
the shortcomings associated with blood glucose monitoring. We provide a detailed assessment of the
intricacies involved in the development of non-invasive diabetes monitoring devices. In addition, we
spotlight the need to consider breath biomarker clusters as opposed to standalone biomarkers for the
clinical applicability of exhaled breath monitoring. We present potential VOC clusters suitable for
diabetes management and highlight the recent buildout of breath sensing methodologies, focusing on
novel sensing materials and transduction mechanisms. Finally, we portray a multifaceted comparison
of exhaled breath analysis for diabetes monitoring and highlight remaining challenges on the path to
realizing breath analysis as a non-invasive healthcare approach.

Keywords: diabetes; non-invasive detection; exhaled breath analysis; breath sensor; volatile organic
compounds; blood glucose monitoring; biomarkers

1. Introduction

Diabetes mellitus (DM) is a severe chronic metabolic disease that affects around
463 million people globally [1]. An estimated 4.2 million deaths among adults in 2019
were attributed to DM, which is equivalent to one death every 8 s [1]. DM can be broadly
categorized as type 1 (T1DM), type 2 (T2DM), and gestational. T1DM is caused by β-cell
destruction in the pancreas, leading to absolute insulin deficiency [2]. T2DM is an outcome
of insulin resistance and is associated with comorbidities such as obesity, hypertension,
and dyslipidemia [2]. Gestational Diabetes is the onset of diabetes during pregnancy
due to increased adiposity and hormonal variations caused by the placenta, resulting in
insulin resistance [3]. Additionally, there are other forms of diabetes, such as monogenic
diabetes syndromes, exocrine pancreas diseases, and drug-induced diabetes [2]. Diabetes
has inevitable detrimental effects on the quality of life, including issues with psychological
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and physiological functioning, risk of developing comorbidities, and the financial burden
of insulin treatment. Despite being crucial for T1DM patients, insulin is not readily globally
accessible due to affordability and availability issues. A survey of 15 countries found only
four countries with 100% insulin availability and six with greater than 80% availability [4].
The median cost of human insulin and analogue insulin was around USD 7.64 and USD 5.90,
respectively, in the public sector. Comparatively, these prices in the private sector were 2.8
and 5.2 times higher per 10 mL 100 IU vial equivalent [1]. People with diabetes are prone
to developing cardiovascular diseases, eye disorders, neuropathy, and nephropathy. There
is a 20% higher risk of breast cancer and a two-fold greater risk of developing endometrial
and intrahepatic cholangiocarcinoma among adults with T2DM and a high body mass
index (BMI) [1]. These acute and long-term complications create enormous burdens on
the healthcare economy. Direct costs comprise providing preventative and curative health
services, family planning activities, nutrition activities, and emergency aid. In contrast,
premature deaths, workplace absenteeism and presenteeism, and loss of labour due to
disabilities contribute to indirect costs [1]. The annual global health expenditure on diabetes
is expected to reach USD 845 billion by 2045 [1].

Despite the severity of the disease, the state of its global screening is unsatisfactory.
Approximately 50.1% of adults with diabetes are unaware of their health condition [1].
This justifies the need for a simple diabetes monitoring system that can be employed
for community screening. Regular blood glucose monitoring is an effective strategy for
personalized diabetes management, as blood glucose fluctuations with different activities
or illnesses need to be considered to plan an appropriate lifestyle. Currently, there are
various invasive, minimally invasive, and non-invasive devices available in the market
for blood glucose monitoring. Invasive self-monitoring blood glucose devices require
finger-pricking, up to even 10 times per day [5]; however, the associated pain and risk of
infection make these devices inconvenient. Minimally invasive devices generally target
interstitial fluid, requiring subcutaneous sensor insertion, leading to the possibility of
allergic reactions [5]. These devices also require finger-pricking for calibration and in
the cases of rapid fluctuations or unexpected symptoms. Such issues have made non-
invasive monitoring a pressing priority to enable early detection and preventative treatment.
Integrating various physical parameters and biomarkers could lead to the development of
a reliable non-invasive blood glucose measurement system [6]. Devices estimating blood
glucose using biofluids, such as tears, saliva, and sweat, are gaining attention in recent
years; however, most are either expensive, complicated, or unreliable. Exhaled breath
analysis is emerging as a promising methodology on account of its non-invasive nature,
ease of sampling, and dynamicity.

Exhaled breath is a complex mixture comprising inorganic gases, non-volatile com-
pounds [7], and more than 3500 VOCs [8]. Since the exhaled breath profile is enormously
influenced by body metabolism, exhaled gases can serve as the biomarkers of diseases. The
analysis of exhaled VOCs has drawn significant attention in recent decades in healthcare.
Researchers have previously discussed the clinical potential of the exhaled VOC profile and
have reviewed commercialized breath analyzers, and fabrication and detection method-
ologies, addressing the limitations of breath analysis [7,9–12]. Breath analysis can be
broadly categorized as targeted or untargeted. The targeted approach is hypothesis-driven,
whereas the latter is hypothesis-generating [13]. Targeted breath analysis is challenging
because of the complex mixture of compounds present in the breath. On the other hand,
non-targeted analysis requires complex statistical analysis of the generated data, where
the lack of demographic representation creates bias, leading to reproducibility issues [13].
Irrespective of the adopted strategy, breath sampling and sensing constitute the foundation
of a reliable analysis. Overlooking the sampled breath phase and confounding factors leads
to inappropriate sampling, altering the sample’s actual composition. A poorly designed
sensing unit may fail to detect exhaled VOCs present in sub-ppm/ppb concentration.

Although exhaled breath analysis is a promising methodology in non-invasive health-
care, identification of suitable biomarkers along with their efficient sampling and sensing
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remains a critical challenge. Additionally, the clinical implementation of breath analysis is
limited, owing to the lack of standardization in procedures. This review critically analyses
the developments and challenges in exhaled breath analysis for diabetes diagnosis and
monitoring. First, we provide an overview of non-invasive diabetes monitoring devices
that are either commercialized or in development. Next, we discuss the factors influencing
the exhaled breath VOC profile and present potential standalone biomarkers and VOC
clusters suitable for diabetes management. Finally, we highlight the recent buildout of
breath-sensing methodologies, focusing on novel sensing materials and transduction mech-
anisms. The review concludes with a discussion on shortcomings and future directions for
breath analysis.

2. Non-Invasive Diabetes Monitoring Devices

The non-invasive glucose-monitoring devices market is expected to increase by
USD 11.35 million during 2021–2025 [14]. Table 1 lists some of the non-invasive glucose-
monitoring devices under development or which are available in the market. MARD in
Table 1 stands for Mean Absolute Relative Difference. It is the average absolute relative
difference between the measured value and the value obtained through the reference
device [15]. Demonstrating the proximity of measurements to correct values, MARD is
an acceptable metric for assessing the performance of glucose-monitoring devices [15].
However, it is strongly influenced by the study’s design and should be perceived as a
value with some uncertainty [16]. The studies conducting at-home analysis prefer using
glucometers as a reference for performance assessment, whereas clinical studies predom-
inantly use lab-based blood or plasma glucose measurements. Error grids are also used
for gauging the performance of glucose-monitoring devices. They consider the potential
clinical outcome of treatment based on the measurement method under study [15]. The
Clarke Error Grid is one of such error grids. It consists of five distribution risk zones
marked with the letters A to E, where each zone represents a clinical interpretation of
device performance [15]. ISO 15197 is a standard with stricter accuracy criteria which
was released in 2013 for glucose-monitoring and self-testing devices [15]. Notably, most
non-invasive devices either use spectroscopy or some optical technique. GlucoTrack [17]
and Egm1000™ [18] use ultrasound, thermal, and electromagnetic technologies together
to counterbalance the demerits of each one individually. Most of the devices in Table 1
involve complicated technologies customized for a specific type of diabetes and patients of
a particular age group.

Researchers have been focusing on the correlation between blood glucose and other
biofluids such as sweat, saliva, tears, and interstitial fluid, which can be collected non-
invasively or minimally invasively. However, the active body mechanisms minimizing
glucose loss to these biofluids are a primary barrier to their utilization for non-invasive
diabetes monitoring. Figure 1 summarizes the critical issues related to using these bioflu-
ids for glucose monitoring [6,19–23]. Saliva sampling is a relatively simple procedure,
but it is prone to contaminations [6]. Tear-based analysis has low user compliance [20].
Blood glucose estimation using sweat requires developing proper sampling techniques [22].
Additionally, the glucose pathway from blood to sweat is yet to be deciphered [22]. Tech-
niques targeting interstitial fluid sampling are usually minimally invasive but risk skin
irritation [6]. Insufficient accuracy, sensitivity to environmental interferences, and time
lag in measurements are other significant disadvantages associated with non-invasive
monitoring approaches using biofluids.
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Table 1. Glucose-monitoring devices working on non-invasive/minimally invasive technologies.

Technology Device Participants/Number of
Paired Measurements Performance Measurement Area Comments References

NIR Spectroscopy Wizmi
32 women

224 paired glucose
measurements

MARD: 7.23% Wrist • Patent-pending [24]

Ultrasound + Thermal +
Electromagnetic GlucoTrack 91 subjects

MARD: 23.4%
97.3% readings lie in

clinically acceptable zones
in Clarke Error Grid

Earlobe

• CE-certified
• Intended for adults (18 years or older)

with T2DM or pre-diabetes
• Ear clip needs to be replaced after

every six months
• Range of measurement: 70–500 mg/dL

[17,24,25]

Ultrasound + Thermal +
Electromagnetic Egm1000™

36 T2DM patients
11 people with prediabetes

188 paired glucose
measurements

MARD: 13.8% Earlobe

• CE certified
• Intended for adults (18 years or older)

with T2DM or pre-diabetes
• Compatible for 95% relative humidity
• Ear clip needs to be replaced after

every 6 months
• Range of measurement: 70–500 mg/dL

[18,26]

Fluorescence EverSense 23 subjects MARD: 14.8% Subcutaneous implant in
the upper arm

• Minimally invasive
• Suitable for 18 years or older adults
• 90 days lifetime of the sensor (FDA

approved)
• On-body vibration alert for dangerous

glucose swings

[27,28]

Reverse Iontophoresis SugarBEAT 13,639 paired glucose
measurements MARD: 13.39% Skin

• CE certified
• Targets T2DM and prediabetes
• Sensor has to be disposed daily

[29–31]

Photo Thermal Detection Diamontech D-Base 59 healthy subjects
41 subjects with diabetes

99.1% precise
measurements Finger

• In development
• Fingertip to be relaxed on the sensor
• Suitable for all ages and both T1DM

and T2DM

[32]

Tissue Photography Analysis Tensortip Combo
Glucometer 19 subjects MARD: 17.1% Finger

• CE approved
• Has an add-on invasive glucometer [33,34]
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Table 1. Cont.

Technology Device Participants/Number of
Paired Measurements Performance Measurement Area Comments References

Subcutaneous Wired Enzyme
Glucose Sensing

Abbott FreeStyle
®

Libre
144 subjects MARD: 9.2%

Upper arm skin (Sensor
uses thin filament inserted

just under the skin)

• FDA-cleared
• Suitable for age four years and above

people
• Minimally Invasive

[35–37]

Radio Wave Spectroscopy Glucowise™ N/A N/A Skin between thumb and
forefinger or earlobe • In development [38]

Infrared Spectroscopy
Tech4Life

Enterprises
Non-Invasive
Glucometer

N/A N/A Finger • In development [39]

Photoplethysmography HELO Extense N/A N/A Finger

• Certified as Medical Device Class 1 for
user safety in Europe

• Not targeted for diabetes but general
sugar trend monitoring

[40]

MIR spectroscopy/Optical
Parametric Oscillation

Light Touch
Technology N/A

99% of measured values are
within A zone and B zone
defined by the ISO 15197

standard

Hand • In development [41]

SkinTaste Technology:
Biosensors and array of

micropoints
K’Watch Glucose N/A N/A Wrist

• Uses a hypo-allergic pad that requires
replacement after seven days

• Minimally invasive
• In development

[42]

Radiofrequency Sensor
Technology Alertgy N/A N/A Wrist • In development

• For T2DM [43]

Bio RFID Technology:
Spectroscopy

UBAND-Know
Labs N/A 4.3% mean difference

compared to FreeStyle Libre Wrist • In development [44]

Photoplethysmography LifePlus: LifeLeaf N/A N/A Wrist • Patent-pending [45,46]

Tear Sensor Noviosense 24 T1DM subjects MARD = 16.7% Lower Eyelid • Targeted for T1DM [47–49]

Sensors based on photonics
sensing technology Indigo Diabetes N/A N/A Subcutaneous implant

• Minimally invasive
• In development [50]
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3. Potential Breath Biomarkers of Diabetes

Breath analysis is emerging as a popular non-invasive disease-monitoring tool, owing
to the easy accessibility and simpler nature of the breath sample matrix in comparison
to the serum/urine matrix [51]. Its user-friendliness and point of care operation are the
added advantages, making breath-monitoring a potential strategy for non-invasive health
management [52]. However, the composition of exhaled breath depends upon various
factors, as indicated in Figure 2.

Physical activity causes physiological changes leading to higher O2 requirements,
increased blood pressure, variation in blood pH, and alteration in systemic oxidative
stress [53,54]. These are well-reflected in the exhaled volatiles. Diet directly impacts the
metabolism as well as the gastrointestinal flora. A high-fat diet has been observed to
increase the level of expired NO [55]. A ketogenic diet can raise the exhaled breath acetone
to even five times in a healthy subject [55]. Exposure to aromatic compounds, sulfur
compounds, and other air pollutants is also a prominent exogenous factor determining
the nature of exhaled breath. The inhaled compounds may get subjected to metabolic
functions, leading to an unexpected inhale/exhale concentration ratio. A study consisting
of 1417 adults confirmed that the body mass index (p-value < 0.001), age (p-value = 0.01),
gender (p-value < 0.001), and smoking habits (p-value < 0.001) significantly influence the
exhaled breath content, with smoking being the dominating factor [56]. The presence of
comorbidities complicates the exhaled breath analysis further. Diabetes is often accompa-
nied by other health conditions, such as kidney diseases, diabetic ketoacidosis, diabetic
foot, obstructive sleep apnea syndrome, halitosis, and Helicobacter pylori infection [57]. Not
only do numerous diseases co-exist, but they may also have similar breath biomarkers.
Yokokawa et al. conducted a study including 35 diabetes patients with stage C heart failure
and 20 diabetes patients with or at risk of heart failure (stage A or stage B). They concluded
that people with both stage C heart failure and diabetes exhale higher amounts of ace-
tone [58]. Table 2 lists and Figure 3 pictorially presents the diseases that have biomarkers
overlapping with diabetes.
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Table 2. Diseases with Breath Biomarkers Overlapping with Diabetes Breath Biomarkers.

Serial Number Disease Biomarkers Overlapping with
Diabetes Breath Biomarkers References

1. Cystic Fibrosis Ethanol, isopropanol, acetone,
methanol [59]

2. Heart Failure Acetone, ethanol [60]

3. Lung Cancer Methanol, ethanol, acetone, isoprene,
isopropanol, propane, undecane [61]

3.1. Standalone Breath Biomarkers of Diabetes

Numerous researchers have tried to correlate diabetes with a single targeted exhaled
VOC. Table 3 lists these potential standalone biomarkers of diabetes. A higher level of
breath acetone (T2DM: >1.71 ppm, T1DM: ≥2.19 ppm, can go up to 21 ppm [62–64]) is
hypothesized to be an indicator of diabetes as the insulin in the body inhibits ketone
synthesis, and insulin levels are generally low in people with diabetes. Breath Health,
Inc. is developing a pain-free diabetic glucose breath detector based on exhaled breath
acetone detection (Figure 4a). The device comprises single-use sensor slides made from
polymer films of 4-vinyl benzene boronic acid and allylamine hydrochloride that can react
with the acetone in the exhaled breath via petasis reaction [65]. However, the relevance
of acetone as the sole biomarker for diabetes-monitoring is uncertain, as most single
measurement studies report no correlation between exhaled acetone and blood glucose,
whereas continuous monitoring studies report both positive and negative correlations [66].
(Figure 4b–d).
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Figure 4. (a) Glucair: Pain-Free Diabetic Glucose Breath Detector. Reprinted with permission from Breath Health Inc. [67]
(b,c): Relation between breath acetone as measured by mass spectrometry and blood glucose (b) Healthy Volunteers [68]
(c) TIDM subjects [68] (d) The individual mean breath acetone concentration versus the individual mean blood glucose
(IMBG) level measured in the 20 T1DM outpatients (no strong correlation) [69].

Likewise, the correlation of exhaled ethanol and blood glucose is also debatable due to
contrasting observations [70,71]. Exhaled isoprene, carbon monoxide, methyl nitrate, pen-
tanal, isopropanol, and dimethyl sulfide levels are higher in T1DM patients [72–75]. T2DM
patients exhale elevated amounts of isopropanol, ethylene, ammonia, carbon monoxide,
toluene, 2,3,4-trimethylhexane, 2,6,8-trimethyldecane, tridecane, and undecane, but lesser
m-xylene [62,72,76–79]. However, these results are based on studies including cohorts
not large enough to encompass all the determining factors. Thus, a suitable standalone
biomarker is yet undiscovered.
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Table 3. Potential Standalone Exhaled Breath Biomarkers of Diabetes.

Type of Diabetes Potential Breath Biomarkers References

T1DM

Acetone
Ethanol

Carbon Monoxide
Isoprene
Propane

Methyl Nitrate
Pentanal

Isopropanol
Dimethyl Sulphide

[10,63,70,72,73,75,76,80,81]

T2DM

Acetone
Isopropanol

Ethylene
Ammonia

Carbon Monoxide
Toluene

m-Xylene
2,3,4-trimethylhexane
2,6,8-trimethyldecane

Tridecane
Undecane

[62,72,76–79]

3.2. Breath Biomarker Clusters of Diabetes

The lack of one-to-one correspondence between the exhaled VOCs and diseases, and
the dynamic nature of the exhaled breath profile has led to more studies focusing on
clusters of compounds to ensure the inclusion of comorbidities and intra-individual vari-
abilities [10]. Table 4 gives a brief outline of such studies and their deductions. Minh et al.
used gas chromatography to identify about 100 VOCs in the exhaled breath [82]. They
observed a strong correlation between glucose measurements and the estimates made
using a cluster of VOCs consisting of acetone, methyl nitrate, ethanol, and ethylbenzene
and another cluster of 2-pentyl nitrate, propane, methanol, and acetone. Mansouri et al.
employed a three-gas prediction model for blood glucose prediction [83]. They observed
that the actual blood glucose values correlate with those estimated using different pos-
sible combinations of the three exhaled gases, namely, ethanol, acetone, and propanol.
The best results were obtained for multiple linear regression, considering all three gases
together. Yan et al. determined eight potential T2DM breath biomarkers using the gas
chromatography–mass spectrometry (GC-MS) technique [79]. They observed that a clus-
ter containing isopropanol, 2,3,4-trimethylhexane, 2,6,8-trimethyldecane, tridecane, and
undecane could be used as a predictive biomarker group for clinical diagnosis.

Table 4. VOC Clusters for Diabetes Diagnosis.

Biomarker Clusters Healthy/T1DM/T2DM
Subjects Method Used Research Outcome References

Acetone, methyl
nitrate, ethanol, and

ethylbenzene

17 healthy, 8 T1DM
subjects Gas Chromatography

Mean Correlation Coefficients
All = 0.883

Healthy Subjects = 0.836
T1DM Subjects = 0.950

[82]

2-pentyl nitrate,
propane, methanol,

and acetone

17 healthy, 8 T1DM
subjects Gas Chromatography

Mean Correlation Coefficients
All = 0.869

Healthy Subjects = 0.829
T1DM Subjects = 0.990

[82]

Acetone, ethanol, and
propane

130 healthy, 70
subjects with diabetes

Analog
Semiconductor

Sensors

Mean Correlation Coefficients
All = 0.25

Healthy subjects = 0.97
Subjects with diabetes = 0.35

[83]
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Table 4. Cont.

Biomarker Clusters Healthy/T1DM/T2DM
Subjects Method Used Research Outcome References

Isopropanol,
2.3.4-trimethylhexane,
2,6,8-trimethyldecane,

tridecane, and
undecane

39 healthy, 48 T2DM
subjects

Gas
Chromatography—

Mass
Spectrometry

Sensitivity = 97.9%
Specificity = 100% [79]

The strategy of using a VOC cluster for diabetes breath diagnostics is a promising
development in exhaled breath analysis for healthcare. However, the results from various
studies cannot be combined as researchers use different breath sampling and analysis
techniques in their studies. Moreover, the factors such as the diet of the subjects, time be-
tween meals and tests, medication, insulin injection, and medical history introduce drastic
variations in the collected auxiliary data. Thus, wide-scale research with standardized
methodologies is needed to deduce the best cluster for diabetes management, suitable for
diverse groups of people.

4. Sensing Methodologies for Breath Analysis

Effective breath analysis requires a sensing unit with high sensitivity and selectivity,
low limits of detection, adequate stability, rapid detection, and a convenient user inter-
face [84]. This section sheds light on the recent developments in exhaled breath sensing,
focusing mainly on the sensing materials and transduction mechanisms.

Spectrometry-based techniques constitute the standard exhaled breath analysis meth-
ods, and most breath biomarkers to date have been identified using them, owing to their
reliability, high sensitivity, and low detection limit [12,85]. Gas chromatography (GC) is
the gold standard for VOC identification, but its operation demands expertise and is bulky
and expensive [9]. Similarly, other spectrometry-based techniques also have associated
disadvantages. Ion Mobility Spectroscopy (GC-IMS) is inapt for unknown compound
identification [12]. Proton Transfer Reaction Mass Spectrometry (PTR-MS) and Selected Ion
Flow Tube Mass Spectrometry (SIFT-MS) lack specificity, require a skilled operator, and
are unsuitable for molecules with low proton affinity [12]. Though spectrometry-based
techniques are apt for offline analysis in hospitals or diagnostic clinics, the above-listed
drawbacks have led to research on alternate sensing methods to develop a portable, com-
pact, and user-friendly diabetes management system.

The sensors used in breath analysis can be classified into chemiresistive, electro-
chemical, optical, piezoelectric (mass-sensitive), and several other categories based on the
involved transduction mechanism. A transducer is responsible for generating measurable
signals from the analyte’s interaction with the sensor and, therefore, is a determining factor
for reliable measurement.

4.1. Chemiresistive Sensing

Chemiresistive sensing is an emerging non-invasive healthcare technique due to its
high sensitivity, compactness, cost-effectiveness, portability, and ease of fabrication [86].
These sensors rely on changes in electrical conductivity caused by an interaction with
the analyte. Metal oxide semiconductors, carbon nanotubes, graphene oxides, metal
chalcogenides, and conductive polymers are amongst the most popular chemiresistive
materials.

4.1.1. MOS Sensors

Metal oxide semiconductor (MOS) sensors are extensively used in breath sensing.
The small size, ease of operation, inexpensiveness, and low maintenance make MOS
sensors one of the best candidates for breath analysis [8]. BIOSENSE™ Readout Health
has developed a high-resolution portable breath acetone meter (PBAM) (Figure 5A,B)
based on chemiresistive metal oxide semiconductor (MOS) sensors [87]. Keyto is another
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reported device based on the nanostructured semiconducting metal oxide core selective to
acetone [88].
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The sensitivity, selectivity, and stability of the MOS sensors are determined by several
factors [8,89], as indicated in Figure 6. This multi-factor dependence provides liberty to
tailor the sensors as per the requirement of the application. Power consumption, heat
generation, lack of selectivity, and humidity interference are the most common issues
associated with MOS sensors [8]. There has been research tackling these problems and
selecting suitable materials for the fabrication of sensors satisfying the requirements of an
inexpensive portable device.

Cheng et al. used planar MEMS technology to develop a MOS gas sensor with SnO2
as the sensing material. The operating temperature was 400 ◦C, and the sensor required a
microheater, consuming 39 mW of power. The sensor was found adequately sensitive to
1 ppm ethanol [90]. Siebert et al. introduced a mixed semiconducting metal oxide sensor
selective to acetone with the highest response of 50% at an operating temperature of 300 ◦C.
The printed Cu and Fe microparticles were annealed at 425 ◦C in the air for 4 h, leading to
highly porous bridging non-planar CuO/Cu2O/Cu—Fe2O3/Fe nanostructures beneficial
for sensitive detection. The lowest power consumption was about 0.26 µW for 100 ppm
acetone [91].

Das et al. prepared a highly sensitive, fast, and stable (negligible change in base
resistance for at least six months) cobalt chromite thick film-based trace acetone sensor [92].
It showed minimal cross-sensitivity to ethanol, ammonia, and saturated moisture. The
response to one ppm, two ppm, and five ppm acetone was 3.81, 4.82, and 6.64 folds,
respectively, and thus, a clear resolution existed between lower concentrations of acetone.
Hanh et al. utilized the synergetic effect of the hollow structure of Zn2SO4 (ZTO) and the
high catalytic activity of the Pt catalyst to develop a highly sensitive and stable acetone
sensor with a limit of detection at the ppb level [93]. The Pt10-ZTO sensor, that is, the sensor
with a Pt loading amount of 1 wt%, performed best amongst the sensors with different
compositions. Brahma et al. reported the enhanced sensitivity and specificity to acetone
at room temperature on doping p-type ZnO with Cu [94]. In contrast, no such response
was observed for the n-type undoped and n-type Cu-doped ZnO. Kim et al. prepared a
SnO2 nanosheet gas sensor with mainly (101) crystal facets exposed [95]. The nanosheets
synthesized for 6 h (NS-6) had the highest sheet area, leading to a 10 times higher response
than those synthesized for 2 h and 24 h. They concluded that controlling the crystal facet
of a nanomaterial can enhance the sensing characteristics without the requirement of
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noble metal decoration. Xu et al. synthesized WO3 nanofibers using SiO2 nanoparticles
and polyvinylpyrrolidone (PVP) as sacrificial templates, ammonium paratungstate as a
tungsten precursor, and water as a solvent [96]. WO3 nanofiber-based sensors were found to
show magnificent acetone-sensing capabilities with a low detection limit, fast response and
recovery, and high stability. The uniform mesopores assisted the diffusion of gas molecules,
and the highly crystalline nature also supported the rapid transportation of charge carriers
to the bulk. The abundant active sites and high specific area contributed to the large
adsorption of acetone molecules. Table 5 contains the specifications of some recently
developed sensors selective to acetone. As evident from the table, the rapid response and
recovery time makes these sensors compatible for real-time analysis of exhaled breath.
Several other reviews focus on MOS sensors for exhaled breath analysis [11,89,97].
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Cheng et al. used planar MEMS technology to develop a MOS gas sensor with SnO2
as the sensing material. The operating temperature was 400 ◦C, and the sensor required a
microheater, consuming 39 mW of power. The sensor was found adequately sensitive to
1 ppm ethanol [90]. Siebert et al. introduced a mixed semiconducting metal oxide sensor
selective to acetone with the highest response of 50% at an operating temperature of 300 ◦C.
The printed Cu and Fe microparticles were annealed at 425 ◦C in the air for 4 h, leading to
highly porous bridging non-planar CuO/Cu2O/Cu—Fe2O3/Fe nanostructures beneficial
for sensitive detection. The lowest power consumption was about 0.26 µW for 100 ppm
acetone [91].



Biosensors 2021, 11, 476 14 of 28

Das et al. prepared a highly sensitive, fast, and stable (negligible change in base
resistance for at least six months) cobalt chromite thick film-based trace acetone sensor [92].
It showed minimal cross-sensitivity to ethanol, ammonia, and saturated moisture. The
response to one ppm, two ppm, and five ppm acetone was 3.81, 4.82, and 6.64 folds,
respectively, and thus, a clear resolution existed between lower concentrations of acetone.
Hanh et al. utilized the synergetic effect of the hollow structure of Zn2SO4 (ZTO) and the
high catalytic activity of the Pt catalyst to develop a highly sensitive and stable acetone
sensor with a limit of detection at the ppb level [93]. The Pt10-ZTO sensor, that is, the sensor
with a Pt loading amount of 1 wt%, performed best amongst the sensors with different
compositions. Brahma et al. reported the enhanced sensitivity and specificity to acetone
at room temperature on doping p-type ZnO with Cu [94]. In contrast, no such response
was observed for the n-type undoped and n-type Cu-doped ZnO. Kim et al. prepared a
SnO2 nanosheet gas sensor with mainly (101) crystal facets exposed [95]. The nanosheets
synthesized for 6 h (NS-6) had the highest sheet area, leading to a 10 times higher response
than those synthesized for 2 h and 24 h. They concluded that controlling the crystal facet
of a nanomaterial can enhance the sensing characteristics without the requirement of
noble metal decoration. Xu et al. synthesized WO3 nanofibers using SiO2 nanoparticles
and polyvinylpyrrolidone (PVP) as sacrificial templates, ammonium paratungstate as a
tungsten precursor, and water as a solvent [96]. WO3 nanofiber-based sensors were found to
show magnificent acetone-sensing capabilities with a low detection limit, fast response and
recovery, and high stability. The uniform mesopores assisted the diffusion of gas molecules,
and the highly crystalline nature also supported the rapid transportation of charge carriers
to the bulk. The abundant active sites and high specific area contributed to the large
adsorption of acetone molecules. Table 5 contains the specifications of some recently
developed sensors selective to acetone. As evident from the table, the rapid response and
recovery time makes these sensors compatible for real-time analysis of exhaled breath.
Several other reviews focus on MOS sensors for exhaled breath analysis [11,89,97].

Table 5. Recently Developed Acetone-Selective MOS Sensors.

Material Operating Temperature Detection Limit Response Time/Recovery Time References

Stable cobalt chromite
(CoCr2O4) 300 ◦C 1 ppm 1.65 s/62 s

(1 ppm) [92]

Pt−Zn2SnO4 hollow
octahedra 350 ◦C

Theoretical detection limit:
1.276 ppb for Pt10–ZTO

sensor (Pt loading amount
of 1 wt%)

14 s/607 s (100 ppm) [93]

Cu-doped p-type ZnO
nanostructures Room Temperature 1 ppm 450 s/100 s [94]

SnO2 nanosheet structure,
with mainly exposed (101)

crystal facets
280 ◦C 110 ppb 40 s/610 s

(1 ppm) [95]

WO3 300 ◦C <1 ppm 24 s/27 s [96]

4.1.2. Other Chemiresistive Materials

Carbon nanotubes (CNTs), graphene, and semiconductor chalcogenides are also being
studied for breath-biomarker detection [8]. Freddi et al. developed a sensing array for
human breath analysis based on Single-Walled Carbon Nanotube (SWCNT) layers func-
tionalized with semiconductor organic molecules. It was found that the sensor array could
detect target gases with a clear fingerprint [98]. Liu et al. proposed a graphene quantum
dot (GQD) functionalized three-dimensional ordered macroporous (3DOM) ZnO structure.
The GQD-modified 3DOM-structured ZnO sensor displayed a rapid and high response
and good selectivity towards acetone. It could differentiate the exhaled breath of healthy
people and those with diabetes [99]. ZnS, a transition metal chalcogenide, has interstitial
defects, trapped surface states, and sulfur vacancies, facilitating oxygen adsorption crucial
for gas sensing [100]. It further has commendable electrical, optical, and catalytic properties.
Mishra et al. used a hot injection method to synthesize ZnS quantum dots (QDs) for acetone
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detection [100]. The ZnS QDs sensor’s optimal operating temperature was reported to
be 175 ◦C. The sensitivity and selectivity to 100 ppm acetone at 175 ◦C were 92.4% and
91.1%, respectively. The theoretical detection limit was found to be 1.2 ppm. In addition,
the sensor exhibited quick response and recovery (5.5 s and 6.7 s, respectively). Organic
material-based sensors are also gaining popularity due to their small size, low cost, and
room temperature operation [101]. Chuang et al. developed a room-temperature-operating
poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)] (TFB)
acetone sensor based on cylindrical nanopore structures [101]. It exhibited a response of 5%
to 300 ppb of acetone. The TFB sensor was also sensitive to ammonia. Hence, the authors
designed a filter utilizing the water solubility of ammonia to improve acetone selectivity.
Sensors based on CNTs, graphene, and semiconductor chalcogenides usually operate at
lower temperatures than the MOS sensors. CNTs are minimally sensitive to moisture due
to the hydrophobic surfaces [86]. Graphene demonstrates excellent sensing due to a higher
theoretical specific surface area [86]. Semiconducting chalcogenides can be used to detect
both polar and nonpolar gases [8]. These distinct properties have opened avenues for
developing different types of chemiresistive sensors, rather than relying on only metal
oxides.

4.2. Electrochemical Sensing

Electrochemical sensors have been gaining attention in the breath analysis area due
to their highly selective nature, low cost, miniaturizability, low power requirement, and
biocompatibility [8]. Lavanya et al. reported the utility of a Zn-MgNi2O3 conductometric
sensor, selective to acetone and with a 0.5 ppb limit of detection [102]. Zn-MgNi2O3 was
also found suitable for electrochemical detection of glucose. Jiang et al. fabricated an
yttria-stabilized zirconia (YSZ)-based mixed potential acetone sensor using a Cd2SnO4
sensing electrode [103]. Figure 7A depicts the schematic of the sensor measurement setup.
The sensor was found to be negligibly cross-sensitive to other gases (Figure 7B), but highly
selective to acetone (Figure 7C). Moreover, there was no significant difference between the
exhaled breath acetone measurement values obtained by the sensor and those obtained
using time-of-flight mass spectrometry (TOFMS) (Figure 7D). Operating at a temperature of
600 ◦C, the sensor’s response value to 10 ppm acetone exhibited a slight fluctuation (±7%)
after consecutive high-temperature measurements of more than 75 days. The detection
limit was reported to be 50 ppb. The sensor also demonstrated a satisfactory humidity
resistance. The response to 10 ppm acetone did not vary substantially in the relative
humidity range of 60% to 98%.

Liu et al. also fabricated a mixed-potential-type acetone sensor based on Ce0.8Gd0.2O1.95
(GDC), with a detection limit of 0.3 ppm and an operating temperature of 590 ◦C [104]. The
sensor was found to be stable in 45 days of continuous testing. The authors suggested using
a dehumidifier to remove moisture, adding a hydrophobic layer to modify the sensing
layer, or including a humidity compensation device in the system to reduce the influence
of humidity on the measurements.

4.3. Piezoelectric Sensors

Some studies also report the usage of piezoelectric sensors for exhaled breath sensing.
Fu et al. developed a self-powered breath analyzer based on polyaniline/polyvinylidene
fluoride (PANI/PVDF) piezo-gas-sensing gas arrays [105]. Figure 8a shows the PANI/PVDF
bellow comprising five PANI/PVDF electrodes. Each PANI derivative was doped with
an individual dopant and was labeled accordingly. PANI (SS), PANI(SDS), PANI(SO),
PANI(CA), and PANI(NA) correspond to the following dopants, respectively: sodium sul-
fate, sodium dodecylbenzene sulfonate, sodium oxalate, camphorsulfonic acid, and nitric
acid. The device worked at room temperature by converting exhaled breath energy into
electrical signals without external power sources. The gas markers of PANI(SS), PANI(SDS),
PANI(SO), PANI(CA), and PANI(NA) were reported to be acetone, ethanol, CO, NOx, and
CH4, respectively. Since each sensing unit demonstrated selectivity to a specific gas, the
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device was proposed for multiple disease diagnoses. The response of five sensing units to
600 ppm of different gases is shown in Figure 8b. The gas flow rates did not influence the
sensors’ response, making them suitable for use in exhaled breath analyzers.
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4.4. Optical Sensing

The interaction between an analyte and a biorecognition substance results in opti-
cal changes measurable by colorimetric, fluorescence, chemiluminescence, or scattering
mode [7]. Ye et al. developed a fiber-optic biochemical acetone sensor using a flow-cell
with a nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydro-
genase (S-ADH) immobilized membrane attached to a fiber-optic NADH measurement
system [106]. UV-LED with a peak emission of 335 nm was used as an excitation source.
The relationship between acetone concentration from 20 ppb to 5300 ppb and fluorescence
was established. The sensor exhibited a response time of 35–70 s corresponding to 95%
of the steady state. Chien et al. also came up with a bio-sniffer, utilizing the NADH
fluorescence as the signal, targeting isopropanol in the exhaled breath [107]. The detection
limit was reported to be 0.5 ppb. The humidity in the sample had a negligible effect on
the measurements. Wang et al. reported a colorimetric sensor for breath acetone detection
using a reaction between acetone and hydroxylamine sulfate [108]. Figure 9 shows a
schematic of the device and a plot of signals of breath acetone tests. The designed sensor
was disposable and did not require frequent calibration.
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Colorimetric sensing has been extensively used for lung cancer diagnosis using ex-
haled breath. Instead of using a single colorant, researchers opt for a larger number of
colorants belonging to different chemical categories to accommodate a maximum number
of VOCs and observe the change in microarray with the subject’s health condition [109].
The same approach can be used for diabetes monitoring as well. Optical sensors are re-
ceiving attention for breath sensing, but they are prone to environmental interferences and
sometimes require complete isolation to alleviate external light. Thus, these sensors require
further improvements in terms of the stability of the sensing system [7].

4.5. FET Sensing

Field Effect Transistor (FET)-type gas sensors are known for their small size, low
power consumption, and high stability [110,111]. Nanomaterials such as carbon nanotubes,
nanowires, graphene, and transition metal chalcogenides are used to enhance their proper-
ties [112]. Yu et al. developed a gas-sensitive field-effect transistor with ZnO nanorods for
non-invasive diabetes detection at room temperature [113]. The target analyte was acetone,
and the detection limit was found to be 0.8 ppm. Wu et al. achieved highly sensitive
and selective acetone detection through MoTe2 FETs under UV illumination [114]. The
schematic diagram of the MoTe2 FET sensing setup is given in Figure 10a. The sensing
response to 100 ppm of seven gases, namely, acetone, chloroform, ethanol, hexane, IPA,
toluene, and methanol, was negative in the dark. UV light illumination led to a positive
response to acetone, but no change was observed for other VOCs (Figure 10b). The trans-
formation of acetone from a weak reducing agent to a weak oxidizing agent due to the
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UV absorption and intramolecular photon–electron interaction promoted by the acetyl
group was recognized as the possible reason for this unique behavior. Further, the sensor
response was also positive for other ketones, including 2-pentanone and 3-pentanone.
UV-assisted sensing also improved the detection limit of the MoTe2 FET gas sensor from
23 ppm in the dark to 200 ppb. Along with sensitivity and specificity to acetone, the sensor
demonstrated stability to humidity. The response to 100 ppm to 2000 ppm acetone at 45%
and 65% relative humidity, respectively, was independent of the humidity level.
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4.6. Wearable Sensing

There has been a gradual shift from a hospital-centered health monitoring system
to individual-centric healthcare owing to the increasing population, health issues, and
associated economic burdens. Wearable technologies are paving the way for personalized
healthcare as they can provide real-time, continuous, and fast detection of biomarkers from
the human body. The lightweight, low-cost, and commendable stretchability of flexible
sensors make them an ideal platform for biosensing and wearable bioelectronics [115].
These sensors can be further classified as “on-body”, “in-clothing”, and “accessories”-type
sensors. The “on-body- type sensors are attached to the surface of a body part. The “in-
clothing” sensors are integrated with wearable textiles, and the “accessories”-type sensors
are usually made a part of wristwatches, wristbands, rings, and armbands [116].

Xu et al. fabricated a multifunctional wearable sensing device (Figure 11a) based on
two graphene films for simultaneous detection of physiological signals and VOCs [117].
The sensor array integrated with pattern recognition detected and discriminated eight
different VOCs, namely ethanol, ethyl acetate, dichloromethane, acetaldehyde, isopropanol,
acetone, ammonia, and methanol. Principal component analysis (PCA) of the exhaled
breath of five healthy subjects and that of five simulated exhaled breaths of subjects
with diabetes and nephrotic disease led to distinguishable clusters without any overlap
(Figure 11b). Zhang et al. developed a PEDOT:PSS sensor based on a cotton thread [118].
PEDOT:PSS acted as a chemical resistor and underwent conductivity changes on exposure
to acetone. The sensor was found to be flexible enough for incorporation in clothing and
other wearables (Figure 11c). The sensor’s current measurements were observed to be
proportional to acetone concentration, but the response became indistinguishable after a
certain level (Figure 11d). Additionally, the sensor was only found suitable for acetone
concentrations producing signals above 3%, as water vapors also generated an average
signal of 3%. The washing experiments conducted on the sensor indicated no significant
variation in performance for a washing duration up to 20 min and heating durations of
up to 30 min, respectively. These results attest to the possibilities of developing sensors
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integrated with textiles. Wang et al. developed an acetone sensor by depositing chitosan
and reduced graphene oxide (CS-rGO) biocomposite on mechanically flexible cellulose
paper (Figure 11e) with a response time ≤ 1 s [119]. The sensor’s response to simulated
breath containing two ppm acetone is given in Figure 11f. The limit of detection was
estimated to be 20 ppb. Andrysiewicz et al. reported a flexible Kapton-based CuO gas
sensor (Figure 11g) operating at a temperature of 150 ◦C [120]. It demonstrated a detection
limit of 0.05 ppm. The changes in the sensor’s resistance on exposure to acetone ranging
from 0.05 ppm to 0.8 ppm concentration are given in Figure 11h. Though the developed
sensors exhibited characteristics compatible with a portable breath analyzer, they require
humidity compensation due to their sensitivity to moisture.
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Figure 11. (a,b): On-body Sensor (a) Photograph of the as-prepared multifunctional wearable device
mounted on the human wrist for simultaneously monitoring VOC-related disease; (b) PCA of exhaled
breath of simulated nephrotics patients, diabetic patients, and healthy people. Reprinted with
permission from [117]. Copyright (2018), American Chemical Society. (c,d): In-clothing type sensor;



Biosensors 2021, 11, 476 20 of 28

(c) Camera image of a cotton thread with PEDOT:PSS; (d) Signal–response curve to acetone at dif-
ferent concentrations. Sensing experiment for each concentration is repeated three times with
the sensor (n = 3). Reprinted with permission from [118]. Copyright (2016), The IOPscience;
(e) Photograph of a proof-of-concept wearable sensor and illustration of the performance eval-
uation method. (f) Real-time sensor response to a pulsated ejection of simulated diabetic breath
containing 2 ppm of acetone vapor (85% RH) flown directly over the sensor. Reprinted with per-
mission from [119]. Copyright (2013), The Royal Society of Chemistry; (g) Resistance changes for
Kapton-based CuO gas sensor; (h) General view of the electrode layer [120] (Link to the Creative
Commons License: http://creativecommons.org/licenses/by/4.0/ (accessed on 14 October 2021)).

The rapid progress in the development of flexible sensors is apparent. However,
along with a suitable sensing system, the issues related to power management, real-time
communication, system integration, data security, calibration, and biocompatibility have
to be mitigated to devise feasible wearable devices [115,121]. Zou et al. reviewed the
possibilities of human body energy harvesting for bioelectronic devices and concluded
that chemical, mechanical, and thermal energy from the human body could be utilized
for powering smart bioelectronics, including wearable devices [122]. Xue et al. developed
a self-powered breathing and temperature sensor by mounting a metal-coated PVDF
film with electrodes on an N-95 respirator, forming a pyroelectric nanogenerator [123].
The pyroelectric generator was found to generate an open-circuit voltage of 42 V and a
short-circuit current of 2.5 µA.

5. Discussion

As per a report by the International Diabetes Federation (IDF), there will be around 700
million people with diabetes by 2045 [1]. Non-invasive diabetes monitoring solutions are
urgently required to enable self-health management, precision medicine, and telemedicine,
but there is still no concrete information about the breath biomarkers associated with
diabetes. Most of the studies focusing on diabetes monitoring through exhaled breath
revolve around exhaled acetone. However, a better perspective would be identifying the
clusters of biomarkers of which acetone, perhaps, can be the key component. The specificity
of the sensing unit cannot be put to use until the target is identified. A generic approach
is to use cross-reactive sensors along with the pattern-recognition systems, that is, an
electronic nose, but it assists in identifying the fingerprints of a disease and not the specific
breath biomarkers. Sarno et al. developed an electronic nose using a deep neural network
to classify people into three categories, namely, healthy (Blood Glucose (BG) < 120 mg/dL),
suffering from prediabetes (BG: 120–150 mg/dL), and diabetes (BG > 150 mg/dL) [124]. It
consisted of a temperature-humidity sensor and four MOS sensors, with the main target
biomarkers being carbon dioxide, carbon monoxide, acetone, and other VOCs, respectively.
The study included 10 people belonging to each category. The system achieved an accuracy
of 96.29% and an error rate of 0.050. Bahos et al. tested an electronic nose comprising
a surface acoustic wave (SAW) sensor array based on zeolitic imidazolate frameworks,
ZIF-8, and ZIF-67 nanocrystals (pure and combined with gold nanoparticles) as sensitive
layers, to detect acetone, ethanol, and ammonia [125]. The SAW sensor array consisted
of four sensing layers with different compositions and performance characteristics. The
system operated at room temperature and demonstrated biomarker discrimination ability.
Wulandari et al. reviewed the electronic noses for diabetes detection. They reported the
recent progress in sensor types, number of sensors, characterization methods, feature
extraction methods, and pattern recognition methods used in an electronic nose [126],
concluding that there has been a significant development in characterization methods, but
feature extraction and pattern recognition have not advanced much in the past few years.

The integration of smartphones with exhaled breath sensors is emerging as a con-
structive implementation approach for personal healthcare. It simplifies the analysis due
to smartphones’ high computational abilities and image-recognition features. Shreshtha
et al. proposed a microcontroller-based solution to classify low (100 mg/dL or lower)
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and high blood glucose (125 mg/dL and higher) levels using ethanol and acetone as the
biomarkers [127]. The trained vector machine algorithm could perform the classification
with 97% accuracy. They also developed a wearable smart wristband platform consisting
of three MOS sensors, an Arduino-based Adafruit FLORA Microcontroller, GPS module,
LED light, rechargeable Li-ion battery, and a Bluetooth module. These components enabled
data collection, transmission to a smartphone app, and pushing the data into the cloud
for analysis. A cancer diagnosis device, SniffPhone, that allows patients to exhale into a
mouthpiece that is attachable to a smartphone and get instantaneous results is under de-
velopment. It consists of an array of nano-material-based chemical sensors and integrated
on-chip microfluidics and electronics [128]. Results are conveyed after a remote analysis of
the signals. A similar plan of action can be executed for other diseases, including diabetes.

The fact that exhaled breath is an indicator of the physiological and metabolic pro-
cesses of the human body consolidates the relevance of breath analysis for health and
disease diagnostics, but it also points towards the associated hurdles. Most of the cur-
rent findings are the results of open trials performed in a highly controlled environment.
The effect of confounding variables, such as diet, exposure to a certain atmosphere, prior
glycemic control, tissue complications, and physical activity need to be studied before com-
menting on the real-life applicability of any approach [10]. Diabetes monitoring through
the exhaled breath analysis is indeed complex, because it is an indirect methodology that
relies on monitoring the human body’s metabolic processes through the associated VOC
biomarkers instead of direct blood sampling. Besides the recently explored biofluids, respi-
ratory fluid can also assist in non-invasive glucose monitoring as it has rapid and stable
glucose exchange with plasma. There happens to be an increase in glucose concentration of
respiratory fluid in hyperglycemia. Exhaled breath condensate (EBC) glucose is estimated
to have a dilution factor of 1:10,000 from plasma glucose [129]. Glucose sensing through
EBC could be a breakthrough in non-invasive monitoring, but a few concerns, including
glucose dilution, sample stability, and subject variability, need to be alleviated [129].

A crucial step in breath analysis is breath sampling. Exhaled breath broadly consists
of mixed expiratory, late expiratory, and end-tidal phases.

• Mixed expiratory breath includes all the phases of breath and is prone to environmen-
tal, nose, and mouth contaminants.

• Removal of the estimated dead space from the breath results in the late expiratory
breath. It has a better concentration of endogenous VOCs.

• End-tidal breath has the highest level of exhaled CO2 and is the richest in endogenous
VOCs.

End-tidal breath is most preferred for breath analysis, but it does not encompass the
possibility of all biomarkers as some of the gas exchanges happen in the upper airways.
Therefore, the target breath biomarkers govern the choice of selecting the part of exhaled
breath for sampling. For example, nitric oxide, often used for clinical characterization of
asthma, originates from the airway. Hence, end-tidal breath only is inappropriate for its
monitoring [130].

Depending upon the breath-sampling technique, VOCs may dilute, leading to hurdles
in detection and sensing. Moisture can act as a cross-reactive agent, thus interfering with the
analysis. Here, pre-concentration comes to the rescue, but it also adds delay to the real-time
analysis. Thermal desorption tubes are most commonly used for pre-concentration [130].
The sorbent packed in the tube determines the range of volatiles that can be trapped, along
with the stability and reproducibility. The solid-phase microextraction (SPME) technique
uses a coated fiber for pre-concentration [130]. Since SPME follows an equilibrium-driven
approach, environmental factors, such as temperature, particle loading, and sample flow
rate influence its performance [131]. Needle trap is a solventless sampling method in which
sorbents inside needle-like devices are used as an extraction trap [132]. This technique is
known for its lower sampling time and volume, improved detection limits, stability, and
reproducibility [133].
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An exhaled breath flow rate also influences the sensor response, making direct analysis
tougher [8]. A study on online breath analysis for lung cancer included a rotameter in the
developed multisensory system to monitor and control the exhalation rate [134]. An offline
analysis is way more common, but it has a risk of delayed diagnosis. Furthermore, the
storage of breath for offline analysis is unreliable, owing to the possibility of degradation of
the sample. The concentration of VOCs gets altered after some time of storage, and the VOC
signature associated with the collection bags also disturbs the actual composition of the
sample. Additionally, storing the samples at a specific temperature (37 ◦C) is essential [135].
As is evident from the discussion, various aspects govern the success of breath analysis.

6. Conclusions

The low compliance towards invasive blood-glucose monitoring is pervasive. Up to
60% of people with T1DM and 67% with T2DM do not implement the required glucose-
monitoring schedule [5]. Inadequate blood-glucose monitoring leads to long-term health
consequences of diabetes. The development of feasible monitoring technologies is instru-
mental for adherence to the self-monitoring of blood glucose. Invasive testing yields precise
results. However, the risk of skin infections and the associated pain makes it unsuitable
for continuous glucose monitoring. Research on non-invasive blood glucose monitoring
has led to the development of various devices, easing diabetes management through
comfortable, minimally invasive/non-invasive continuous blood-glucose monitoring. Nev-
ertheless, they still suffer from issues such as lag time and the requirement of frequent
calibration. Breath analysis is a budding domain for non-invasive disease diagnosis and
monitoring. It is safe, painless, and allows repetitive sampling. However, the intricacies
of breath analysis need to be well-studied to enable reliable, accurate, and reproducible
monitoring. The foundation for this approach includes the correct identification of breath
biomarkers and associated metabolic pathways. E-noses are emerging as a solution to the
lack of identification of specific biomarkers, but their success depends on the diversity
and size of the reference library database. The next stage is breath sampling, which is a
major determiner of the performance of a breath analysis system. The targeted phase of the
exhaled breath is a cardinal point of concern. A sensing unit with proper limits of detection,
sensitivity, selectivity, size, stability, durability, response/recovery time, and cost is vital
for reliable analysis. Furthermore, the unit needs to be customized to sustain the effects of
exhaled breath variables, such as breath flow rate, humidity, and temperature. Metal oxide
semiconductor sensors are being extensively developed for breath analysis. Other materi-
als, such as CNTs, graphene, semiconductor chalcogenides, and conductive polymers are
also being explored. Besides the sensing material, the transduction mechanism also plays a
crucial role in the performance of a sensing system. Chemiresistive, electrochemical, optical,
and mass-sensitive sensors are some of the common categories employed in biosensing.
Depending on the characteristics of the chosen sensing technique, other components, like
a pre-concentration stage or humidity traps, must be included. Most studies have been
conducted using limited cohorts. Open-trial and controlled-environment-based research
results are insufficient to establish the supremacy of any proposed idea for breath analysis.
Blind trials and parallel observation of confounding factors are imperative. Additionally,
the adoption of standardization in breath-sampling, including both environmental factors
and the used methods, is necessary to ensure reproducibility and scale-up of research
efforts nationally and internationally. Joint efforts by researchers in the field of material sci-
ence, clinical research, biotechnology, electronics, and information technology are primarily
indispensable for the success of breath analysis as a non-invasive healthcare approach.
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