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Abstract: (1) Background: An electronic nose applies a sensor array to detect volatile biomarkers
in exhaled breath to diagnose diseases. The overall diagnostic accuracy remains unknown. The
objective of this review was to provide an estimate of the diagnostic accuracy of sensor-based breath
tests for the diagnosis of diseases. (2) Methods: We searched the PubMed and Web of Science
databases for studies published between 1 January 2010 and 14 October 2021. The search was limited
to human studies published in the English language. Clinical trials were not included in this review.
(3) Results: Of the 2418 records identified, 44 publications were eligible, and 5728 patients were
included in the final analyses. The pooled sensitivity was 90.0% (95% CI, 86.3–92.8%, I2 = 47.7%),
the specificity was 88.4% (95% CI, 87.1–89.5%, I2 = 81.4%), and the pooled area under the curve was
0.93 (95% CI 0.91–0.95). (4) Conclusion: The findings of our review suggest that a standardized report
of diagnostic accuracy and a report of the accuracy in a test set are needed. Sensor array systems of
electronic noses have the potential for noninvasiveness at the point-of-care in hospitals. Nevertheless,
the procedure for reporting the accuracy of a diagnostic test must be standardized.

Keywords: volatile organic compound; electronic nose; sensors; breath test; breathomics

1. Introduction

Human exhaled breath contains numerous volatile metabolites produced during
diseases’ physiological and pathological processes that can be used as volatile biomarkers
for diagnosis [1]. Breathomics is an emerging science to diagnose diseases by analyzing
volatile organic compounds (VOCs) produced by changes in metabolic processes caused
by disease [1]. The electronic nose (E-nose) and gas chromatography-mass spectrometry
(GC-MS) are two methods to analyze these VOCs. In contrast to the E-nose, GC-MS allows
us to explore possible biological pathways and identify specific VOCs associated with the
pathological changes of the diseases. The E-nose aims to develop point-of-care diagnostic
breath tests [2]. The E-nose uses a nonselective sensor array to identify the pattern of VOCs
in exhaled breath. When VOCs from a breath sample is presented to the sensor array, the
E-nose system processes the response signals of sensor arrays and uses machine learning
techniques to discriminate the VOCs of patients from healthy subjects and provides the
most likely diagnosis based on smell [3]. Currently, the E-nose has been implemented in
the diagnosis of lung cancer [4], breast cancer [5], colorectal cancer [6], ovarian cancer [7],
gastric cancer [8], head-and-neck cancer [9], chronic obstructive lung disease (COPD) [10],
interstitial lung disease [11], liver cirrhosis [12], ventilator-associated pneumonia [13], and
Coronavirus Disease 2019 (COVID-19) [14]. In artificial intelligence (AI), the development
of electronic nose systems is an emerging science that can provide real-time analysis

Biosensors 2021, 11, 469. https://doi.org/10.3390/bios11110469 https://www.mdpi.com/journal/biosensors

https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0001-5298-2462
https://doi.org/10.3390/bios11110469
https://doi.org/10.3390/bios11110469
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bios11110469
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios11110469?type=check_update&version=1


Biosensors 2021, 11, 469 2 of 14

and assist clinical decisions. There are two major types of sensors: (1) nanomaterial-
based sensors, including single-walled carbon nanotubes (CNTs), monolayer capped metal
nanoparticle (MCNP) films and metal oxide (MO) sensors, and (2) electroacoustic sensors
that include quartz microbalance (QMB) and surface acoustic wave (SAW) sensors [15].

The current knowledge gap on the application of E-noses to clinical diagnosis remains
uncertain. Due to the advancement of material sciences, many types of E-nose sensors
have been developed in recent years [16]. Although many types of sensors have been
designed to detect more diseases in recent years, E-noses have not yet been applied in
clinical practice. An updated systemic review and meta-analysis are necessary to provide
quantitative and qualitative estimates of the accuracy of the E-nose in actual patients.

The specific aims of this review were to (1) summarize the diagnostic accuracy of
sensor-based exhaled breath tests for clinical diagnoses and (2) compare the accuracy of
different types of sensors. To achieve these aims, we performed a systematic review of the
published evidence regarding the use of the sensors in breath tests for clinical diagnosis.

2. Materials and Methods

This meta-analysis was conducted following the PRISMA 2020 guidelines for reporting
systematic reviews [17]. The review included only studies that analyzed VOCs in the
exhaled breath of human subjects in hospitals. Studies that involved cell lines or animal
studies were excluded. All analyses were based on previously published studies, and thus,
no ethical approval or patient consent was required.

2.1. Eligibility Criteria

Studies were included if they met the following criteria: (1) the study analyzed
VOCs within exhaled breath; (2) the study was an observational study, with a cross-
sectional, case-control, or prospective design; and (3) the study’s population consisted of
patients or healthy controls enrolled from hospitals. The exclusion criteria were as follows:
(1) in vitro experiments; (2) animal studies; (3) studies in which VOCs were analyzed
not in exhaled breath but in breath condensate or tissue, including urine, blood, stool, or
other biofluids; (4) reports not published in the English language; (5) studies of labora-
tory testing of sensor prototypes that were not applied in a clinical setting; (6) duplicate
publications; (7) letters or review articles; and (8) studies that did not provide sufficient
information on case number, control number, sensitivity, and specificity to construct the
2 × 2 contingency table.

2.2. Information Sources

We selected related studies published between 1 January 2000 and 14 October 2021 by
searching PubMed and Web of Science. We also searched documents that cited any of the
initially included studies as well as the references of the initially included studies.

2.3. Search Strategy

We used the following combined text in Web of Science: (ALL = (breath analysis
OR breath test)) AND ALL = (sensor). The complete search used for PubMed was:
Search: (breath analysis OR breath test) AND (sensor) Filters: from 2010–2022 ((“breath
tests”[MeSH Terms] OR (“breath”[All Fields] AND “tests”[All Fields]) OR “breath tests”[All
Fields] OR (“breath”[All Fields] AND “analysis”[All Fields]) OR “breath analysis”[All
Fields] OR (“breath tests”[MeSH Terms] OR (“breath”[All Fields] AND “tests”[All Fields])
OR “breath tests”[All Fields] OR (“breath”[All Fields] AND “test”[All Fields]) OR “breath
test”[All Fields])) AND (“sensor”[All Fields] OR “sensors”[All Fields] OR “sensoric”[All
Fields] OR “sensorics”[All Fields] OR “sensoring”[All Fields] OR “sensorization”[All
Fields] OR “sensorized”[All Fields] OR “sensors”[All Fields])) AND (2010:2022[pdat]).
Furthermore, the reference lists of relevant articles were manually examined to determine
additional potentially related studies. The searches were carried out independently by
two investigators (H.-Y.Y. and R.C.T.). Later, we searched documents that cited any of
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the initially included studies as well as the references of the initially included studies.
However, no extra articles that fulfilled the inclusion criteria were found in these searches.
Full details of the search strategy are provided in Figure 1.
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Figure 1. PRISMA flow chart of literature search.

2.4. Selection Process

Three investigators (R.-C.T., W.-C.C.) independently reviewed the study titles and
abstracts at first and discussed the inconsistencies until consensus was obtained. Disagree-
ments were resolved by consensus and discussion with the corresponding author (H.-Y.Y.).
We contacted the corresponding author if further information was needed. If no response
was received, the study was excluded from the meta-analysis.

2.5. Data Items

We extracted the following study characteristics from each eligible study: the name
of the first author, publication year, country, disease, number of participants, and type of
sensor. Each investigator also recorded or calculated the number of false positives (FPs),
true positives (TPs), false negatives (FNs), and true negatives (TNs). For studies that
reported the results of different machine learning algorithms, we selected the best results
for the meta-analysis. For studies with multiple comparison groups (i.e., cancer, benign
disease, and healthy controls), we derived data from the primary disease and healthy
controls.
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2.6. Quality Assessment

We used a modified Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)
tool to assess the quality of the included studies. QUADAS-2 consists of four domains,
including patient selection, index test, reference standard, and flow of patients through the
study [18]. Two reviewers (H.-Y.Y. and W.-C.C.) independently rated all included studies.
We used the QUADAS-2 sheet built in the RevMan 5.3 software of Cochrane to provide a
methodological quality summary [19].

2.7. Statistical Analysis

We obtained the numbers of FPs, TPs, FNs, and TNs to calculate the pooled point esti-
mates of sensitivity, specificity, and summary ROC curve of breath tests [20]. ROC values
of 0.7–0.8, 0.8–0.9, and 0.9–1 are regarded as good, very good, and excellent diagnostic
accuracy, respectively [21]. Statistical heterogeneity caused by non-threshold effects was
tested by the Q test and I2 test. An I2 value greater than 50% was considered to indicate
significant heterogeneity [22]. If considerable heterogeneity could not be eliminated, a
random-effects model was used [23]. We generated funnel plots to evaluate small study
effects and applied Egger’s test to assess funnel plot asymmetry [24]. Because simple
pooling of sensitivity and specificity is usually inappropriate, as this approach ignores
threshold differences, we also calculated the diagnostic odds ratio (DOR):

DOR =
TP
FP

/
FN
TN

(1)

The DOR is not prevalence dependent and offers considerable advantages in a meta-
analysis of diagnostic studies with increased precision. The value of a DOR ranges from
0 to infinity, with higher values indicating better discriminatory test performance [25].
Because the accuracy in the test set is usually lower than that in the overall dataset, we
compared the accuracy from the overall dataset and test set.

2.8. Sensitivity Analysis

We conducted sensitivity analyses to determine if there was an undue influence of
publication bias on the pooled estimates of accuracy. We deleted studies when the number
of FNs or FPs was less than or equal to zero or one, which resulted in a DOR higher
than 300. We also restricted the studies to low risk of bias, in which there was less than
or equal to one high-risk QUADAS-2 domain, to see the influence of bias from patient
selection, index test, reference standard, and flow of patients through the study.

2.9. Subgroup Analysis

Subgroup analysis was performed to explore the sources of heterogeneity according to
the characteristics of the included articles. We conducted a subgroup analysis to compare
the DOR of different types of sensors.

We performed the meta-analysis with the R packages of MADA, META, and Metafore
and Review Manager 5 software. A two-tailed p-value less than 0.05 was considered
statistically significant.

3. Results

The review identified 44 relevant publications and 5728 subjects (Figure 1). The
number of subjects included in those studies ranged from 25 to 1167 (median 82). Within
included studies, aneurysm (n = 1), appendicitis (n = 1), asthma (n = 1), breast cancer
(n = 2), bronchial and laryngeal cancer (n = 1), colorectal cancer (n = 1), chronic obstructive
pulmonary disease (COPD) (n = 1), COPD and lung cancer (n = 1), cutaneous leishmaniasis
(n = 1), echinococcosis (n = 1), epilepsy (n = 1), gastric cancer (n = 3), hemodialysis (n = 1),
head and neck cancer (n = 2), head-and-neck cancer and lung cancer (n = 1), heart failure
(n = 1), interstitial lung disease (n = 1), liver cirrhosis (n = 2), lung cancer (n = 7), multiple
sclerosis (n = 2), ovarian cancer (n = 2), Parkinson’s disease (n = 1), pneumoconiosis (n = 1),
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preeclampsia (n = 1), rhinosinusitis (n = 1), COVID-19 (n = 3), small airway dysfunction
(n = 1), and ventilator-associated pneumonia (n = 2) were studied. The most common type
of sensor was metal oxide (n = 11), followed by carbon nanotubes (n = 9), gold nanoparticles
and carbon nanotubes (n = 7), gold nanoparticles (n = 6), quartz microbalances (n = 5),
metal nanoparticles (n = 2), organic polymers (n = 1), polycyclic aromatic hydrocarbons
and single-wall carbon nanotubes (n = 1), and WO3 nanowires (n = 1) (Table 1).

Table 1. The table displays for each included study.

Study Disease Sensor Case Control Sensitivity Specificity

Mommers [26], 2020 Aneurysm and
recurrent hernia Metal-oxide 64 a 74 0.81 0.73

Wong [27], 2019 Appendicitis Conductive polymer 5 45 0.8 0.8

Montuschi [28], 2010 Asthma Quartz microbalances 30 21 0.87 0.95

Barash [29], 2015 Breast cancer Gold nanoparticles and
carbon nanotubes 169 82 0.88 0.83

Yang [5], 2021 Breast cancer Carbon nanotubes 70 b 18 a 0.86 b 0.97 b

Fielding [30], 2020 Bronchial and
laryngeal cancer Carbon nanotubes 42 13 0.95 0.69

Amal [6], 2016 Colorectal cancer Gold nanoparticles and
carbon nanotubes 20 b 36 b 0.94 b 0.91 b

Shafiek [31], 2015 COPD Carbon nanotubes 124 30 0.69 0.75

Binson [10], 2021 COPD and lung cancer Metal-oxide 70 144 0.81 0.94

Welearegay [32], 2018 Cutaneous
leishmaniasis Metal nanoparticles 28 a 28 0.96 1

Welearegay [33], 2019 Echinococcosis Metal nanoparticles 36 40 0.97 0.98

van Dartel [34], 2020 Epilepsy Metal-oxide 74 110 0.76 0.67

Broza [8], 2019 Gastric cancer Gold nanoparticles 102 1065 0.82 0.79

Xu [35], 2013 Gastric cancer Gold nanoparticles and
carbon nanotubes 37 93 0.89 0.9

Leja [36], 2021 Gastric cancer Gold nanoparticles 47 105 0.92 0.86

Umapathy [37], 2019 Haemodialysis Metal-oxide 21 17 0.86 0.29

Gruber [38], 2014 Head and neck cancer Nanomaterial-based sensor 22 19 0.77 0.9

Leunis [39], 2014 Head and neck cancer Metal-oxide 36 23 0.9 0.8

Hakim [9], 2011 Head-and-neck cancer
and lung cancer Gold nanoparticles 36 a 52 1 0.92

Finamore [40], 2018 Heart failure Quartz microbalances 30 b 39 b 0.8 b 0.82 b

Moor [11], 2021 Interstitial lung disease Metal-oxide 322 48 1 1

De Vincentis [12], 2016 Liver cirrhosis Quartz microbalances 58 56 1 0.98

Zaim [41], 2021 Liver cirrhosis WO3 nanowires 22 32 0.97 1

Gasparri [42], 2016 Lung cancer Quartz microbalances 72 74 0.88 1

Huang [4], 2018 Lung cancer Carbon nanotubes 56 188 0.92 0.93

Hubers [43], 2014 Lung cancer Carbon nanotubes 38 39 0.87 0.43

Kononov [44], 2020 Lung cancer Metal-oxide 19 b 17 b 0.95 b 1 b

Rocco [45], 2016 Lung cancer Quartz microbalances 23 77 0.86 0.95

Shlomi [46], 2017 Lung cancer Gold nanoparticles and
carbon nanotubes 16 30 0.75 0.93

Tan [47], 2016 Lung cancer Metal-oxide 12 13 0.83 0.88
Broza et al. [48], 2017 Multiple sclerosis Gold nanoparticles 128 58 0.76 0.81

Nakhleh et al. [49], 2015 Parkinson’s disease Gold nanoparticles and
carbon nanotubes 16 37 0.81 0.76

Ionescu et al. [50], 2011 Multiple sclerosis
Polycyclic aromatic
hydrocarbons and single-wall
carbon nanotubes

34 17 0.85 0.71
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Table 1. Cont.

Study Disease Sensor Case Control Sensitivity Specificity

Amal et al. [51], 2015 Ovarian cancer Gold nanoparticles and
carbon nanotubes 48 48 0.85 0.65

Raspagliesi et al. [7], 2020 Ovarian cancer Metal-oxide 86 114 0.98 0.95

Yang et al. [52], 2018 Pneumoconiosis Carbon nanotubes 34 64 0.68 0.84

Nakhleh et al. [53], 2016 Preeclampsia Gold nanoparticles 31 31 0.92 0.91

Broza et al. [54], 2018 Rhinosinusitis Gold nanoparticles and
carbon nanotubes 17 30 0.76 0.8

Zamora-Mendoza et al.
[55], 2022 SARS-CoV-2 Carbon nanotubes 42 30 0.97 1

Shan et al. [14], 2020 SARS-CoV-2 Gold nanoparticles 41 57 1 0.81

Wintjens et al. [56], 2020 SARS-CoV-2 Metal-oxide 57 162 0.86 0.54

Tsai et al. [57], 2021 Small airway
dysfunction Carbon nanotubes 12 60 0.92 0.95

Chen et al. [13], 2020 Ventilator-associated
pneumonia Carbon nanotubes 33 26 0.72 0.77

Schnabel et al. [58], 2015 Ventilator-associated
pneumonia Metal-oxide 33 53 0.88 0.66

a Included data from the model for two disease outcomes. b Data derived from a test database.

3.1. Pooled Sensitivity, Specificity, ROC and DOR

The sensitivity of breath tests by sensor arrays ranged from 67.6% to 100%, whereas
the specificity ranged from 29.4% to 100%. The pooled sensitivity was 90.0% (95% CI,
86.3–92.8%, I2 = 47.7%), the specificity was 88.4% (95% CI, 87.1–89.5%, I2 = 81.4%), the
pooled area under the curve of 0.93 (95% CI 0.91–0.95) (Figure 2), and the pooled DOR
was 40.7 (95% CI 24.2–68.5, I2 = 77.0%) (Figure 3). The funnel plot asymmetry and linear
regression test (p value < 0.05) suggested potential publication bias (Figure 4).
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3.2. Quality Assessment

The assessment of biases and applicability to outcomes utilizing QUADAS-2 are
detailed in Figure 5. Major sources of bias were patient selection, followed by failing to
report the reference standard, and flow and timing. The patient selection also became the
major applicability concern for the E-nose test.
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3.3. Sensitivity Analysis

After excluding 14 studies that reported that the number of false negatives or false
positives was less than or equal to zero or one, the funnel plot was symmetric without
publication bias (linear regression test of funnel plot asymmetry, p = 0.07), suggesting
that the influence of these studies on the pooled results was acceptable, and the pooled
results were robust to some extent. The pooled sensitivity was 83.4% (95% CI 80.3–86.1%,
I2 = 38.7%), pooled specificity was 82.3% (95% CI 76.8–86.7%, I2 = 83.4%), pooled DOR was
19.3 (95% CI 13.6–27.4, I2 = 61.7%), and pooled area under the curve was 0.91 (95% CI 0.89–0.93).
When restricting the analysis to studies considered to be at low risk of bias (n = 27), the
pooled sensitivity was 90.8% (95% CI 86.0–94.0%, I2 = 56.5%), pooled specificity was 89.4%
(95% CI 87.9–90.8%, I2 = 81.4%), and pooled area under the curve was 0.93 (95% CI 0.91–0.96).
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3.4. Subgroup Analysis

We compared the accuracy of different types of sensors. Metal nanoparticle sensors
had the highest DOR, sensitivity, and specificity (Table 2) (Figure 6).
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Table 2. Subgroup analysis based on the type of sensor.

Type 1 Sensitivity (95% CI) I2 Specificity (95% CI) I2

Carbon nanotube (n = 8) 0.86 (0.75, 0.93) 69.4% 0.86 (0.71, 0.94) 82.1%
Conductive polymer (n = 1) 0.80 (0.31, 0.97) NA 0.80 (0.66, 0.89) NA
Gold nanoparticles (n = 6) 0.94 (0.80, 0.98) 39.8% 0.83 (0.78, 0.88) 48.5%
Gold nanoparticles and carbon nanotube (n = 6) 0.86 (0.82, 0.90) 0.0% 0.87 (0.82, 0.91) 32.5%
Metal-oxide (n = 10) 0.91 (0.81, 0.96) 35.2% 0.81 (0.63, 0.91) 89.5%
Metal nanoparticles (n = 2) 0.97 (0.88, 099) 0.0% 0.99 (0.90, 1.00) 0.0%
Nanomaterial-based (n = 1) 0.77 (0.56, 0.90) NA 0.89 (0.66, 0.97) NA
Polycyclic aromatic hydrocarbons and single wall carbon
nanotubes (n = 1) 0.85 (0.69, 0.94) NA 0.71 (0.46, 0.87) NA

Quartz microbalances (n = 4) 0.93 (0.81, 0.97) 0.0% 0.98 (0.93, 0.99) 0.0%
WO3 nanowires (n = 1) 0.97 (0.80, 1.00) NA 1.00 (0.00–1.00) NA

1 The type of sensor is based on the classification provided in the literature.

4. Discussion
4.1. Summary of Main Results

This study provided evidence that the electronic nose analysis of exhaled breath has
high accuracy in detecting diseases in actual patients. To the best of our limited knowledge,
this is the first study to provide an overall estimate of the accuracy of the E-nose in clinical
practice.

4.2. Strengths of the Review

This is the first study to provide a comprehensive review and pooled estimates of the
diagnostic accuracy of E-noses in a clinical setting. This review provides quantitative esti-
mates of the accuracy of different sensors, which will provide a basis for future researchers
to choose suitable sensors and estimate the required sample size. There was moderate
heterogeneity in the pooled sensitivity (I2 = 47.7%, p < 0.05) and high heterogeneity in
specificity (I2 = 81.4%, p < 0.05). After we ruled out studies that reported extraordinarily
high-accuracy studies to obtain a more reliable accuracy in clinical breath tests, the hetero-
geneity was improved and showed no publication bias. Because the preparation of breath
tests, collection of breath, storage of breath samples, and preprocessing sensor array data
will influence the results of breath tests [16], current studies lack the standardization proce-
dures of breath collection and machine learning analysis, which might cause heterogeneity
from unknown sources. We suggested that a depository of analytical procedures before the
implementation of statistical modeling might be essential to prevent heterogeneity in the
diagnostic accuracy of breath tests.

4.3. Applicability of Findings to the Review Question

The current state of knowledge on the application of E-noses to clinical diagnosis
remains uncertain. Although many types of sensors have been developed for many
diseases, the accuracy of the E-nose is unclear because of the study design, patient selection,
and lack of a standardized way to report the diagnostic accuracy. Ideally, a study should
enroll a consecutive or random sample of eligible patients with the suspected disease to
prevent the potential for bias [18]. However, in the clinical setting, when the prevalence
of the disease is not high, researchers usually prefer to conduct a case-control study that
enrolled participants with known disease and a control group without the condition that
may increase the overall diagnostic accuracy [59]. If the disease prevalence of the research
subjects included in the study is different from the target population, this will affect the
applicability of the E-nose in the target population [18].

4.4. Limitations

Different studies used different machine learning algorithms, and the optimization
procedure was not reported in most studies. The influence of accuracy might be affected
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by the type of sensor and statistical analyses. Furthermore, the limited sample size of the
test sets may decrease the reported accuracy. Few studies had an independent test set to
validate the test. This systematic review does not include studies with external validation
tests; the pooled estimates of diagnostic accuracy from these studies cannot be generalized
to other populations. We suggest that multicenter clinical studies among target populations
with appropriate sample sizes and an independent validation set in different hospitals are
crucial before an E-nose can be used in clinical applications.

4.5. Future Direction

There are several timings of breath tests in clinical practice. First, for patients who
present with common nonspecific symptoms that could be an early indication of cancer,
an exhaled breath test could act as a screening test. Second, for patients with suspected
symptoms of diseases requiring further investigation, an E-nose can become a noninvasive
point of care method before specialized investigations. Third, patients can receive therapy
to detect disease recurrence. Current studies are focused on the first application. We
suggest future studies for the second and third timings. Longitudinal studies are needed in
the future to determine whether the electronic nose can be used to detect the recurrence
of diseases.

The reproducibility of the results and reliability of instruments are future directions.
Because E-nose studies are from diverse research fields, many researchers do not know
how to provide essential items for reporting diagnostic accuracy studies. We recommend
that future studies include clinical epidemiologists before implementing new breath tests
to strengthen the study design, minimize the risk of bias and make the results more
reliable. An E-nose is not capable of independently making a clinical diagnosis at this
time. Physicians’ clinical diagnosis based on clinical symptoms, signs, laboratory tests, and
pathological reports remain an essential requirement before starting therapy or surgery in
the current stage.

A standard breath test must control the flow rate and humidity and collect alveolar
air that contains the metabolites from the alveolar-capillary membrane and released into
the alveolar space [52]. To improve the efficiency of the electronic nose breath test, we
suggest that future research can continue to optimize the breath collection device, which
can automatically control the flow rate and humidity and monitor the CO2 concentration
to collect alveolar air containing volatile biomarkers.

5. Conclusions

Based on our meta-analysis, metal oxide sensors have good accuracy and may be-
come important chip materials for electronic nose systems in the future. We encourage
researchers currently using metal oxide sensors to conduct clinical trials to verify accuracy.
In a breathomic study, case-control studies are suitable for exploring volatile biomarkers.
However, in E-nose studies for diagnostic or screening purposes, studies that make inap-
propriate exclusions may result in an overestimation of diagnostic accuracy. The study
ideally should enroll a consecutive or random sample of eligible patients with the suspected
disease to prevent the potential for bias [18]. Machine learning techniques have gradually
been applied in the medical field to establish a prediction model. However, many machine
learning studies reported only the best accuracy value without showing details for readers
to evaluate the reliability of test results. We suggest that studies should report the accuracy
of the test set or an independent validation set. Researchers should not only show the best
results with the highest accuracy; instead, a study should clearly explain all the procedures
and conservatively estimate the accuracy for physicians in making clinical decisions [13].
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