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Abstract: The continuous development of more accurate and selective bio- and chemo-sensors has led
to a growing use of sensor arrays in different fields, such as health monitoring, cell culture analysis,
bio-signals processing, or food quality tracking. The analysis and information extraction from the
amount of data provided by these sensor arrays is possible based on Machine Learning techniques
applied to sensor fusion. However, most of these computing solutions are implemented on costly
and bulky computers, limiting its use in in-situ scenarios outside complex laboratory facilities. This
work presents the application of machine learning techniques in food quality assessment using a
single Field Programmable Gate Array (FPGA) chip. The characteristics of low-cost, low power
consumption as well as low-size allow the application of the proposed solution even in space
constrained places, as in food manufacturing chains. As an example, the proposed system is tested
on an e-nose developed for beef classification and microbial population prediction.
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1. Introduction

The world population growth results in an increasing global meat consumption
(Figure 1). This tendency is especially marked in middle-income countries, where the
quality and safety of meat products have been a public health concern due to the spoilage
during distribution [1]. Additionally, the grade of acceptable spoilage is often subjectively
judged, since it may be culturally and/or economically influenced. Therefore, it would be
desirable the development of an objective, fast and low-cost method to determine if a meat
sample is suitable for its intake or not, ensuring the basic levels of quality and safety when
it reaches the final consumer.
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One of the most popular indicators [3] of meat spoilage is the Total Viable Count (TVC),
a quantitative estimation of the concentration of microorganisms in a sample, in this case of
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meat. Traditionally this indicator has been estimated using sophisticated methods as hyper-
spectral imaging [4,5], Fourier-Transform Infrared (FTIR) spectroscopy [6], or Polymerase
Chain Reaction (PCR) [7]. Nevertheless, in recent years there have been approaches that use
low-cost methods based on the detection of Volatile Organic Compounds (VOCs) emitted
in the biochemical processes occurring during the meat spoilage [8]. A convenient solution
is the VOC-reactive dyes, that change their color in presence of spoilage-related VOCs [9],
enabling a naked-eye visualization of the meat quality. Another low-cost solution that has
demonstrated to be successful in VOCs detection for TVC estimation are e-noses, i.e., an
array of chemical gas sensors with a sensorial fusion processing system based on Machine
Learning (ML) methods such as Principal Component Analysis (PCA) [10,11], Support
Vector Machines (SVM) [10], fuzzy logic [12], Artificial Neural Networks (ANN) [11,12],
k-Nearest Neighbors (k-NN) [13], or Information-Theoretic Ensemble Feature Selection
(ITEFS) [14].

Another point that should be considered in the development of a meat quality deter-
mination method is the device that is going to process the data and interface to the user,
since it is meant to be used along all the distribution chain: production centers, logistics
platforms, and markets. Focusing on the e-noses, there are two options for running the
aforementioned ML algorithms: cloud computing or edge computing. Although the first
one requires the device to have less computational resources, it also needs to be actively
connected to the Internet, with an extra battery consumption, limiting the places of opera-
tion, and with a risk of loss of data privacy. On the other hand, an edge device could be a
better solution since it eliminates the issues related to the internet connection at the cost of
a computationally stronger hardware.

There are various hardware options in which the ML algorithms can be run on the
edge, ranging from the general-purpose Central Processing Units (CPUs), that allow a
limited parallelism in their operation and are easy to program, to the Application-Specific
Integrated Circuits (ASICs), that their custom design makes them to achieve the best perfor-
mance. In a middle point, the Field-Programmable Gate Arrays (FPGAs) consist of a matrix
of Configurable Logic Blocks (CLBs) which interconnections can be reprogrammed to meet
desired application or functionality requirements after manufacturing. As FPGAs logic
architecture can be customized meeting requirements of specific applications, providing
good performance, these devices are becoming very popular for ML implementations in
recent years [15,16].

This project proposes a workflow to develop an edge-computing device for in-situ
food quality tracking using sensor fusion powered by ANN, paying particular attention
to the selection of the fixed-point numerical representation of data, network parameters
and the corresponding logic/arithmetic blocks architecture thus keeping hardware require-
ments low enabling its implementation in a low-cost FPGA. To validate this workflow,
an ANN model has been trained over a 12 beef cuts quality dataset [17] to estimate the
TVC using the readings of an e-nose composed of 11 Metal-Oxide-Semiconductor (MOS)
sensors (Figure 2). Once trained, the network has been implemented in a low-cost FPGA
using fixed-point representation, which features easily allow its location in any place along
the production-distribution chain. After the Introduction, the paper is organized as fol-
lows: Materials and Methods used in this work are detailed in Section 2, presenting the
dataset and describing the ML-based architecture selected for data processing and its main
characteristics in order to reduce its complexity, as well as the selection of the hardware
where the proposed model will be implemented; Section 3 shows the Results achieved
along the different stages of development of the model, from the high-level implementa-
tion as a computer software for model training, to its simulation in low-accuracy number
representation, and model mapping into the hardware. Finally, Section 4 summarizes the
main conclusions of this work.
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Figure 2. Developed system scheme. The readings of the e-nose feed the FPGA-implemented neural
network that allow the estimation of the TVC and the quality label.

2. Materials and Methods

With the objective of developing an edge-computing device for food quality tracking
using sensor fusion, this section presents the details of the dataset used, as well as the
network architecture characteristics. Then the training process is described, followed by the
FPGA implementation, with the details of fixed-point selection method, model retraining,
targeted FPGA, synthesis, and hardware implementation test.

2.1. Dataset

Figure 3 shows part of the dataset used in this work, available in [17]. It is composed
by 12 time-series’ of 2220 min long, corresponding to 12 beef cuts. Each time series contains
the TVC evolution during the spoilage process, the quality label and the 11-sensors e-nose
readings, all of them monitored every minute, thus having 2220 samples for each cut. The
beef cuts are the following: Round (Shank), Top Sirloin, Tenderloin, Flap Meat (Flank),
Striploin (Shortloin), Brisket, Clod/Chuck, Skirt Meat (Plate), Inside/Outside, Rib Eye,
Shin and Fat. The real TVC is the target variable for the neural model. It was acquired
using two different methods that were combined: the optical density estimation using
a spectrometer and the microbial population measure with a hemocytometer. Note that
the resolution of the TVC obtained (Figure 3) does not allow to detect changes every time
step, thus presenting a stepped behavior. The discrete quality label ranges from 1 to 4,
denoting “excellent” (label value 1), “good”, “acceptable” and “spoiled” (label value 4)
depending on the TVC values. The e-nose consists on an 11 MOS sensor array, namely
sensors MQ135, MQ136, MQ137, MQ138, MQ2, MQ3, MQ4, MQ5, MQ6, MQ8 and MQ9,
whose sensitivities are available in Table 1. These gas sensors are chemoresistive, meaning
that their detection principle is based on the change of sensor resistance when the sensible
gases come in contact with the sensing material.

Biosensors 2021, 11, 366 3 of 16 
 

 

Figure 2. Developed system scheme. The readings of the e-nose feed the FPGA-implemented neural 

network that allow the estimation of the TVC and the quality label. 

2. Materials and Methods 

With the objective of developing an edge-computing device for food quality tracking 

using sensor fusion, this section presents the details of the dataset used, as well as the 

network architecture characteristics. Then the training process is described, followed by 

the FPGA implementation, with the details of fixed-point selection method, model retrain-

ing, targeted FPGA, synthesis, and hardware implementation test. 

2.1. Dataset 

Figure 3 shows part of the dataset used in this work, available in [17]. It is composed 

by 12 time-series’ of 2220 min long, corresponding to 12 beef cuts. Each time series con-

tains the TVC evolution during the spoilage process, the quality label and the 11-sensors 

e-nose readings, all of them monitored every minute, thus having 2220 samples for each 

cut. The beef cuts are the following: Round (Shank), Top Sirloin, Tenderloin, Flap Meat 

(Flank), Striploin (Shortloin), Brisket, Clod/Chuck, Skirt Meat (Plate), Inside/Outside, Rib 

Eye, Shin and Fat. The real TVC is the target variable for the neural model. It was acquired 

using two different methods that were combined: the optical density estimation using a 

spectrometer and the microbial population measure with a hemocytometer. Note that the 

resolution of the TVC obtained (Figure 3) does not allow to detect changes every time step, 

thus presenting a stepped behavior. The discrete quality label ranges from 1 to 4, denoting 

“excellent” (label value 1), “good”, “acceptable” and “spoiled” (label value 4) depending 

on the TVC values. The e-nose consists on an 11 MOS sensor array, namely sensors 

MQ135, MQ136, MQ137, MQ138, MQ2, MQ3, MQ4, MQ5, MQ6, MQ8 and MQ9, whose 

sensitivities are available in Table 1. These gas sensors are chemoresistive, meaning that 

their detection principle is based on the change of sensor resistance when the sensible 

gases come in contact with the sensing material. 

 

Figure 3. E-nose signals for the Inside/Outside cut with the TVC and the quality label. Figure 3. E-nose signals for the Inside/Outside cut with the TVC and the quality label.



Biosensors 2021, 11, 366 4 of 16

Table 1. Main sensitivities of the e-nose sensors.

Sensor Main Sensitivity Sensor Main Sensitivity

MQ135
NH3, NOx, CO2,
alcohol, benzene,

smoke
MQ3 Alcohol

MQ136 H2S MQ4 Methane, propane,
butane

MQ137 NH3 MQ5 H2, LPG, methane,
CO, alcohol

MQ138
n-hexane, benzene,

NH3, alcohol, smoke,
CO

MQ6
Methane, butane,

propane, LPG and
natural gas

MQ2
Liquefied Petroleum
Gas (LPG), i-butane,
propane, methane,
alcohol, H2, smoke

MQ8 H2

MQ9
Methane, carbon

monoxide and
propane, LPG

To reduce the high noise levels, present in the sensor readings (Figure 3) and its
effect in the system performance, a Savitzky–Golay convolutional filter (window length 15,
polynomial order 5) has been applied to the readings of the MOS sensors in the whole
dataset. Savitzky-Golay convolutional filters have demonstrated its suitability in other
e-nose ML-based processing systems [18,19]. After the data filtering, each of the e-nose
sensor outputs and the TVC values have been normalized along all the dataset using the
following expression:

x′ =
x− xmin

xmax − xmin
(1)

where x is the variable to be normalized, xmin its minimum, xmax its maximum and x’ the
normalized variable.

2.2. Neural Network Architecture

The process of estimating the TVC value from the sensors’ readings provided by an
e-nose can be considered a regression modelling. Since the final target is to implement the
developed model on a low-cost small-size processing device, the selected model architec-
ture is a fully connected ANN, also known as Multi-Layer Perceptron (MLP). MLP archi-
tecture already widely has demonstrated its capability in e-nose data processing [20–22] at
a relatively low computational cost. In this work, the selected MLP architecture consists
of two hidden layers of 32 and 12 neurons with a total of 793 parameters (Figure 2). The
processors (neurons) used in is type of ML algorithm are characterized by the following
mathematical operation between layers:

y = f (Wx + b) (2)

where x is the input vector to a processors layer, W the weight matrix that modulates the
effects of this input vector in the layer output, b the bias vector, and y the layer output
vector. Function f (.) is the activation function, that provides the output of the layer
processors. Activation function is usually defined as non-linear, making possible modelling
more complex relations between inputs and outputs. Classical output functions in these
ANN models are the sigmoid and hyperbolic tangent functions (Figure 4a,b, respectively).
However, due the implementation of these functions requires high computational resources,
its replacement by simpler non-linear functions is mandatory for its implementation in
portable low-complexity computing devices. In this work the activation function selected
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is the Leaky Rectified Linear Unit (LReLU) (Figure 4d), a variant of the popular Rectified
Linear Unit (ReLU) (Figure 4c) defined by the following expression [23]:

LReLU(x) =
{

x if x > 0
0.01x if x ≤ 0

(3)

The choice of the LReLU instead of the ReLU prevents the ‘dying ReLU’ problem [24], that
limits the convergence of a ML model during training.
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2.3. Training and Validation Processes

In order to reduce the size of the ML model to be implemented in the selected process-
ing device, thus facilitating that it fits in the available resources, different neural models
will be developed for each of the 12 beef cuts available in the data set, keeping the same
basic architecture (number of layers and processors per layer), and fitting different weight
set values to each of the corresponding sub-datasets. This approach assumes that the
end-user will know the beef cut monitored in every moment. With the purpose of test and
validate the accuracy achieved by the models, 60% of the samples of each cut have been
randomly selected and used as a training set, while the rest are reserved as validation (20%)
and test (20%) sets.

Due to the resolution and wide range of numerical representation required in the
training of an ANN, this process is performed out of the target processing device (an FPGA).
For this task, models have been implemented using a 32-bit floating point numerical
representation and trained on an AMD Ryzen 5 3400G CPU at 3.7 GHz computer with a
NVIDIA Quadro P2000 GPU. The framework used is the Python-based PyTorch 1.8.1 [25]
using the Adam optimizer [26], and training during 50 epochs using a 3·10−4 learning rate
and a batch size of 1. Additionally, as it is a regression model, the Mean Square Error (MSE)
metric is used for cost estimation, whose definition is:

MSE
(
y, y′

)
=

1
N

N−1

∑
i=0

(
yi − y′i

)2 (4)

where y is the actual TVC (whose elements are denoted yi), y
′

is the estimated TVC (whose
elements are denoted yi

′) and N the number of samples.

2.4. Low-Cost FPGA System Implementation

Once trained, the neural model must be simplified for its implementation into the
selected low-cost portable device. Model simplification includes several considerations, as
the selection of a low-complexity non-linear activation function for neural processors, or the
numerical resolution providing a tradeoff between size of number representation/results
accuracy. For the implementation of the neural model in the FPGA the Vivado High-Level
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Synthesis (HLS) 2019.2 tool has been used, enabling the definition of the logic system to be
implemented from an algorithmic description through a high-level programming language
as C++. This tool supports the selection of different datatypes which can be applied to
represent the ANN parameters, data inputs and outputs, thus allowing the management
of the computational resources of the FPGA while controlling the accuracy loss in the
operations of the network. Due to the high complexity required by the implementation
of arithmetic operations using floating-point numerical representation compared to the
much simpler implementation in fixed-point format, the proposed system is based on a
fixed-point representation.

Besides, there is another consideration that allows a further model reduction. In the
Section 2.2, when the network architecture was presented, the LReLU was introduced as
the solution to the convergence problem known as ‘dying ReLU’. In the physical implemen-
tation of the network model, once trained, the LReLU has been replaced by the ReLU, since
its implementation is computationally simpler, removing the need of additional multiply
operations in the case of negative inputs to the non-linear function.

A complete diagram with the implementation steps and the tools used is drawn in
Figure 5 and a description of the workload of this process is included in Appendix A.
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2.4.1. Fixed-Point Datatype Selection

As shown in Figure 6, fixed-point datatypes are defined by two parameters: W is the
total number of bits required to represent a radix-10 number, and I is the number of bits
representing the integer part, thus denoting a specific fixed-point type as (W, I). Clearly,
W-I corresponds to the number of bits dedicated to representing the decimal part of the
number. Datatypes with a large number of bits have a direct impact in the FPGA resources
consumption, not only on the memory required to their storage but also in the arithmetic
structures which size depends on the length of their inputs. To select which fixed-point
representation is better for this application, HLS simulations of the implemented network
with different (W, I) pair candidates have been launched, with W ranging in the evens from
8 to 16 and I ranging from 2 to 4. An example of these simulations is presented in Figure 7,
where the estimation for the Inside-Outside cut TVC level given by the model is shown.
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To determine a suitable numerical representation for this problem, the MSE between
the outputs provided by the system in each (W, I) candidate representation and the actual
TVC curve have been computed, thus obtaining the error associated to each (W, I) pair.
Although datatypes with bigger W get a better performance, as shown in Figure 8, they
have bigger impact in the FPGA resources consumption, reducing the maximum size of
the network that can be implemented and slowing down its operation. To take this into
account, a figure-of-merit (FoM) has been defined as:

FoM = MSE·W (5)

where MSE is the average MSE along all the cuts and W the number of total bits of
the candidate representation. This FoM provides a balance between performance and
resources consumption, that could be used to choose the datatype which suits the best in
any regression problem algorithm. As it is presented in Figure 8, considering the proposed
FoM the best option is (W, I) = (10, 2).
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2.4.2. Model Re-Training

For a more adequate model fit, after training in floating-point number representation
and applying complexity reduction by means of the fixed-point adaptation of the models, a
re-training of 10 epochs has been launched for each of the reduced models using the same
hyperparameters as in the original training. In this case, the process adjusts the weights so
that they can be represented in the selected data type, (10, 2), thus optimizing the results of
the ANN once implemented in the FPGA.

2.4.3. FPGA Selection

The hardware selected in this work to map the developed MLP is a Xilinx Zynq 7020
System on-Chip (SoC) (XC7Z020). This device consists of a Programmable Logic (PL) that
includes 85 K programmable logic cells, 53.2 K Look-Up Tables (LUTs), 106.4 K Flip-Flops
(FFs), 4.9 Mb of Block Random Access Memory (BRAM) and 220 Digital Signal Processing
(DSP) slices of 18 × 25 Multiplier-Accumulator (MACCs) blocks. Additionally, the SoC
also includes a Processing System (PS) consisting in a dual-core ARM Cortex-A9 with a
maximum 667 MHz clock frequency and 512 MB RAM.

The development board used is a PYNQ-Z2 from TUL (Figure 9), specifically designed
to support the Python Productivity for Zynq (PYNQ) framework, an open-source project
from Xilinx based on Python that eases the use of Zynq-based platforms. In this project the
PYNQ 2.4 image has been used, based on Ubuntu 18.04.
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2.4.4. ANN Synthesis

Once the suitable fixed-point datatype has been selected and the parameters of the
models have been readjusted to comply the constraint of being representable in that format,
the ANN is ready to be mapped from a high-level C++ algorithmic description to its
physical implementation, by appropriately connecting the logic resources in the targeted
FPGA, a Xilinx XC7Z020.

The first step is to synthesize the ANN using the HLS tool, that allows including
directives in this process that enable the control of how the high-level algorithm is mapped
into the device hardware. Two of these directives are unroll and pipeline. Unroll directive
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allows the implementation of loops in the algorithm to run in parallel in the target hardware,
thus reducing the total time in their execution at the cost of a higher use of resources. On
the other hand, pipeline directive tries to force HLS to complete each loop iteration in
a given number of clock cycles (usually one). Since the same hardware is being reused
in each loop cycle, this directive reduces the time to complete the loop at a low increase
of resources consumption. For the ANN design of this work, whose layers have the
algorithmic description shown in Code 1, an unroll in the inner loops of each layer and
a pipeline in the external ones have been found to be the best option, highly reducing the
latency of the system, i.e., the inference time.

Code 1. Example of the high-level algorithmic description of a fully-connected layer operation (C++
implementation of Equation (2)).

ExtLoop: for(i = 0; i < OutDim; i++)
{
tmp = b[i];
IntLoop: for(j = 0; j < InDim; j++)
{
tmp + = W[j][i]*x[j];
}
y[i] = ReLU(tmp);
}

2.4.5. Synthesis, Implementation, and Exportation of the Complete System

Once the final synthesis directives have been applied and this process is completed,
the system is ready to be exported to a FPGA. For this, the Vivado HLS tool generates
an IP (Intellectual Property) module in a specific Hardware Description Language (HDL)
which models the synthetized system in terms of electronic signals that flow between the
different electronic components (registers, arithmetic/logic circuits). This description, close
to the electronic architecture of the final system, can be easily integrated by the Vivado
main tool as a component in the block design of the full architecture, that must include
some additional elements as the Zynq Processing System IP block (Figure 10). This module
describes the electronic interface required to provide the suitable channels from outside to
the FPGA, for input the signals that will be processed by the implemented ANN and output
its corresponding responses. The autoconnection feature of Vivado eases the connection of
the PS and ANN modules, creating another two auxiliary blocks: the reset module and the
peripherals interconnection module.
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Then, the complete system can be synthesized in a process that transforms the IP-
based design into a low-level description based on logic gates. The implementation process
then maps this gate-level description to the resources of the selected FPGA, optimizing the
location of the electronics in the available CLBs and their interconnection (routing) so that
the time delay between the input to the system of a stimuli vector and the output of the
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corresponding response is minimized. Finally, after the global synthesis and the implemen-
tation processes, the bitstream file that contains the information of the configuration can be
generated to be downloaded in the FPGA, thus building the tailored hardware design.

2.5. Hardware Interface

Once the designed ANN is physically implemented into the FPGA, a performance
test has been made to provide information about its features. For this, a Jupyter notebook
running in the CPU of the Zynq SoC interfaces to the neural network in the FPGA. Firstly,
the bitstream describing the ANN mapping is uploaded into the PYNQ-Z2 file system and
then it is loaded in the FPGA using the overlay module of the pynq Python package [27].
This module includes the drivers needed to control the designed IP, in this case the ANN,
using Memory-Mapped Input/Output (MMIO) to write and read in the IP ports from the
CPU available in the SoC. As the port drivers included in the overlay module do not support
fixed-point data transmission, a custom driver has been developed, that manually writes
the inputs and network parameters an reads the outputs, making the interaction with the
FPGA-implemented neural network from the Jupyter environment straight-forward: input
the stimuli data, read the estimated TVC, etc.

3. Results
3.1. ANN Synthesis Results

Applying the synthesis directives commented in the Section 2.4.4, the inference process
for a single input pattern requires 158 clock cycles. The minimum clock period for this
implementation is 11.06 ns, thus resulting in an inference time of 1.747 µs. Additionally,
Table 2 presents the FPGA resources occupation, showing how the developed system fits
smoothly in the PL of the Zynq 7020.

Table 2. FPGA resources consumption.

Resource Block RAM Digital Signal
Processing Flip-Flops Look-Up Tables

Total 98 55 7256 9771
Available 280 220 106,400 53,200

Utilization (%) 35 25 6 18

3.2. Regression Task

Figure 11 shows the results of testing the model developed using the Inside-Outside
data subset at the different implementation stages: the original-trained model, the HLS
simulation output of the (10, 2) format during the fixed-point selection, the results of the
retrained model with constraints inferring from PyTorch, its results in the HLS simulation,
and its implementation in the FPGA. As the neural network is designed to estimate the
TVC as a regression model, the MSE of each model in its five stages for the 12 beef cuts and
its average value (MSE) is presented in Table 3.
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Table 3. Mean Square Error in each stage of the models. All the values have a scale of 10−3.

Model

Cut

MeanInside
Outside Round Top

Sirloin Tenderloin Flap
Meat Striploin Rib

Eye
Skirt
Meat Brisket Clod

Chuck Shin Fat

Original
training 1 2.25 0.75 1.36 1.18 1.04 2.22 0.43 0.42 0.95 2.01 0.91 0.88 1.20

Fixed-
point

selection 2
2.33 0.96 1.41 1.18 1.45 2.51 0.52 0.53 1.09 2.09 1.06 1.01 1.35

Re-
training 1 2.07 0.85 1.42 1.16 0.96 1.93 0.43 0.44 1.05 2.03 0.78 0.88 1.17

HLS
Simulation 2 2.09 1.61 1.45 1.34 1.29 2.14 0.49 0.48 1.43 2.31 0.98 0.97 1.38

FPGA 2.09 1.61 1.45 1.34 1.29 2.14 0.49 0.48 1.43 2.31 0.98 0.97 1.38
1 Results obtained with PyTorch evaluation using floating-point datatypes. 2 Results obtained with an HLS simulation using fixed-point
datatypes.

As expected, the MSE increases in general in the HLS simulated models, which
includes fixed-point datatypes, compared to the high-level simulated models in PyTorch
with floating-point number representation. It is also remarkable that the HLS simulations
provide identical TVC estimation than physical implementation of the models, which
allows to establish the results expected in the FPGA implementation even prior to ending
the implementation workflow, saving development time. Finally, although the retraining
does not improve the implemented models compared to the HLS simulation during the
fixed-point selection by a slight difference, results are improved in the classification task,
so that re-training is justified in the model development.

3.3. Classification Task

As commented in Section 2, the dataset includes a four-category quality label, depend-
ing on the TVC range, using the following expression:

Label(TVC) =


1 if TVC < 3

2 if 3 ≤ TVC < 4
3 if 4 ≤ TVC < 5
4 if 5 ≤ TVC

(6)
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This makes the network can work not only as a regression model but also as a classifier.
Table 4 shows the classification metrics obtained in each model development stage for all
the cut samples and their average. Accuracy is defined as:

Accuracy
(
y, y′

)
=

1
N

N−1

∑
i=0

δ
(
yi, y′i

)
(7)

where y is the true labels vector (whose elements are denoted as yi), y′ the predicted labels
vector (whose elements are denoted as yi

′), N the number of samples and δ
(
yi, y′i

)
is the

Kronecker delta that is valued 1 if yi = y′i and 0 if not. The maximum value of the accuracy
is 1, when the classifier has perfectly matched all the samples; and value 0 indicates it has
not accurately predicted any.

Table 4. Classification metrics in each stage of the models. All the values are expressed in percentage (%).

Model Metric

Cut

MeanInside
Round Top

Sirloin Tenderloin Flap
Meat

Striploin Rib
Eye

Skirt
Meat Brisket Clod

Chuck Shin Fat
Outside

Original Accuracy 87.16 95.95 94.59 96.17 95.27 92.57 96.4 95.95 94.37 91.22 94.37 90.77 93.73
training 1 Macro F1 87.1 94.65 92.11 94.72 93.12 89.83 93.75 92.87 91.77 89.47 91.9 86.99 91.52

Fixed-
point Accuracy 84.68 93.24 94.14 97.07 90.54 91.89 93.47 95.5 94.37 90.32 94.14 90.54 92.49

selection 2 Macro F1 85.27 90.32 91.56 96.17 88.15 91.21 88.67 92.51 92.01 89.43 91.67 86.95 90.33

Retrain 1 Accuracy 87.61 94.82 92.12 96.17 94.82 93.69 93.47 96.4 94.59 89.41 95.5 94.37 93.58
Macro F1 87.92 92.71 87.47 94.44 92.04 91.31 88.51 93.79 92.46 86.83 93.01 91.76 91.02

HLS
Simulation 2

Accuracy 85.14 94.37 92.34 94.82 93.92 92.34 93.92 96.85 93.47 89.19 93.02 93.24 92.72
Macro F1 85.25 92.43 88.48 92.44 91.47 91.01 89.29 94.45 91.18 87.03 90.01 91.31 90.36

FPGA
Accuracy 85.14 94.37 92.34 94.82 93.92 92.34 93.92 96.85 93.47 89.19 93.02 93.24 92.72
Macro F1 85.25 92.43 88.48 92.44 91.47 91.01 89.29 94.45 91.18 87.03 90.01 91.31 90.36

1 Results obtained with PyTorch evaluation using floating-point datatypes. 2 Results obtained with an HLS simulation using fixed-point
datatypes.

The other metric shown in Table 3 is the Macro F1 score, given by:

Macro F1
(
y, y′

)
=

1
L

L−1

∑
l=0

F1
(
yl, y′l

)
(8)

where L is the number of labels, yl the subset of true labels belonging to the l label, yl
′ the

subset of predicted labels belonging to the l label, and F1
(
yl , y′l

)
is the F1 score, whose

expression is:

F1
(
yl, yl

′) = 2
Precisionl ·Recalll

Precisionl + Recalll
(9)

where precision is defined as:

Precisionl =
True Positivesl

True Positivesl + False Positivesl
(10)

and recall:
Recalll =

True Positivesl
True Positivesl + False Negativesl

(11)

The macro F1 score can be interpreted as the average along all the labels of the
weighted harmonic mean of the precision and the recall at each label, reaching the best
value at 1 and its worst at 0.

As shown in Figure 12 and Table 4, the model mean accuracy after the original training
with PyTorch is 93.73% and the mean macro F1 score is 91.52%, which are the values that a
computer would achieve for this architecture following the same training strategy. When
the parameters of these models are discretized using the (10, 2) datatype during the fixed-
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point selection, for its application in the HLS simulation, performance decreases reducing
the mean accuracy to 92.49% and the mean macro F1 score to 90.33%. This is in part
due to the loss of accuracy in the (10, 2) number representation format compared to the
floating-point values of the original training parameters. To address this issue, a retraining
process is carried out, improving the model accuracy of the final implementation, achieving
a 92.72% in mean accuracy and 90.36% in mean macro F1 score. In this way, the difference
in performance between the final implemented model on the low-cost FPGA and the
computer-based model is reduced to 1.01% in mean accuracy and 1.16% in mean macro
F1 score, negligible enough to consider the implementation of this type of algorithms on
low-cost FPGAs when in-situ applications are demanded.
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As Table 4 and Figure 12 show, the network retraining improves the performance in
the classification task, while it becomes worse in the regression task. This is because the re-
training improves the network performance, especially near the classes’ boundaries where
the classification errors are concentrated, keeping this improvement to the end model.

4. Conclusions

A low-cost FPGA-based Machine Learning tool has been developed for in-situ food
quality determination using e-nose VOCs detection to estimate the TVC. It is based on a
fully connected neural network that is implemented in edge-computing-oriented devices,
enabling through its application real-time quality tracking along all the food production
and distribution chain.

Compared to the traditional TVC determination methods, as PCR, FTIR or hyperspec-
tral imaging, its estimation through VOCs detection using a e-nose represents a low-cost
alternative that could be widely used in the industry. Besides, its implementation in an
embedded device enables the in-situ operation everywhere, removing the requirement of
internet connection that is necessary for cloud computing solutions. For this reason, special
attention has been paid in the implementation process, customizing the original model to
reduce its impact in the FPGA resources consumption, carefully selecting the fixed-point
datatype to represent the network and using a simpler activation function, thus enabling
its mapping into the resources of a low-cost and low-size FPGA. Besides, this thorough
implementation process combined with the selection of a small and relatively simple neural
architecture makes the edge-device to get results close to its analogous implementation in
bulk computers.

In this case, the model was trained to estimate the TVC of a determined beef cut using
the readings of an e-nose, using the data available in [17], but any other biosensor fusion
could be addressed using the same workflow. Firstly, the models were trained using a
high-level neural network framework, presenting a mean accuracy of 93.73%. After this,
the implementation process was started. As the targeted low-cost FPGA, the Xilinx Zynq
7020 (XC7Z020), reduced number of resources, the impact in the resources consumption of
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the neural architecture must be controlled. To enable this, the representation of the neural
network with fixed-point datatypes has been considered. After a fixed-point selection
process using an adequate figure-of-merit (Equation (5)), the (10, 2) datatype, with 10 bits,
in total of which two were dedicated to the integer part, is chosen, which made the models
score a 92.49% in mean accuracy, slightly reducing the performance with respect to the
original trained models. In order to reduce this performance loss, due to the impact of
the difference of the floating-point trained weights with their nearest representation using
(10, 2), a retraining process was launched, in which they were constrained to be repre-
sentable in the selected datatype. Using the retrained parameters, the (10, 2)-implemented
models presented 92.72% in mean accuracy, slightly improving the early-implemented
model during the datatype selection process. Finally, the implementation process was
completed, achieving all the necessary steps to generate the bitstream file, which builds
the neural architecture in the FPGA, where the model performance was validated using a
custom driver finding the same performance as in the HLS simulation.

It is clear that the results may be improved by targeting a bigger FPGA, as one of
the Zynq Ultrascale+ series, which would allow to implement larger and more complex
neural architectures or more robust Machine Learning algorithms, while maintaining the
portability and low-cost objectives.
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Appendix A

The authors would like to include some lines to give the reader an idea of how much
work is needed to develop the system presented in this work. The first training and the
retraining with the constrained parameters are completed with PyTorch, which eases the
implementation of the neural networks in few lines of code.

The hardest part of the project is the C++ implementation of the neural architecture,
which must render the PyTorch version. This task has been achieved manually using layers
as the described in Code 1. Since it is the input for the HLS tool, enabling its synthesis and
future implementation, the usage of libraries is not well-supported, thus a pure C/C++
implementation is mandatory. Additionally, a testbench program must be also developed
to run the HLS simulations, where the evaluation of the dataset is included, thus evaluating
its performance when implemented. Once the C/C++ version of the network and its
testbench are developed, the HLS simulations can be launched automatically from Python
parsing the C/C++ codes and using Tool Command Language (Tcl) scripts.

After the simulation, the next step in the HLS workflow is the synthesis, where the
Vivado HLS Graphic User’s Interface (GUI) is especially helpful since it creates a time chart

https://github.com/eneriz-daniel/MeatNet
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of the operations sequence after each synthesis, thus enabling the visualization of points
of improvement that can be addressed with synthesis directives. This must be conducted
manually and carefully. A good design synthesized using HLS is marked to have a good
time analysis that had motivated the synthesis directives.

Once the HLS system is synthesized, the IP export can be launched, which is done
automatically. Then its integration in the Vivado main tool is relatively simple since the
automatic interconnection feature of this program eases the work to get a block design
as the displayed in Figure 10. After this, the complete synthesis, implementation and
bitstream generation are launched, which do not require any supervision.

Finally, there is the driver to interface the FPGA implemented system and the SoC
CPU. As commented in Section 2.5, although the pynq package should include drivers that
automatically detect the ports in an integrated design, they do not support the usage of
fixed-point datatypes. To address this problem, we have developed a custom driver that
manages this kind of representation, allowing to easily load of parameters and infer results.

As a summary and with the intention of illustrate better the balance between the
automatic and manual task, the authors estimate that 60% of the time invested in the
development of this project was spent in manual tasks, as coding the implementations of
the network or developing the interface driver, while the remaining 40% was dedicated
to the supervision of the automatic tasks, as the HLS simulation and synthesis or the
implementation process of the complete system in the Vivado main tool.
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