
biosensors

Communication

Distinguishing Amyloid β-Protein in a Mouse Model of
Alzheimer’s Disease by Label-Free Vibrational Imaging

Shaowei Li, Ziyi Luo, Renlong Zhang, Hao Xu, Ting Zhou, Liwei Liu and Junle Qu *

����������
�������

Citation: Li, S.; Luo, Z.; Zhang, R.;

Xu, H.; Zhou, T.; Liu, L.; Qu, J.

Distinguishing Amyloid β-Protein in

a Mouse Model of Alzheimer’s

Disease by Label-Free Vibrational

Imaging. Biosensors 2021, 11, 365.

https://doi.org/10.3390/

bios11100365

Received: 26 August 2021

Accepted: 27 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and the Ministry of Education,
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China;
lisw@szu.edu.cn (S.L.); luoziyi2020@email.szu.edu.cn (Z.L.); zhangrenlong2020@email.szu.edu.cn (R.Z.);
hxuhao@szu.edu.cn (H.X.); worserobot@gmail.com (T.Z.); liulw@szu.edu.cn (L.L.)
* Correspondence: jlqu@szu.edu.cn

Abstract: Due to the increase in the average age of humans, Alzheimer’s disease (AD) has become
one of the disorders with the highest incidence worldwide. Abnormal amyloid β protein (Aβ)
accumulation is believed to be the most common cause of AD. Therefore, distinguishing the lesion
areas can provide clues for AD diagnosis. Here, we present an optical spectroscopy and imaging
approach based on coherent anti-Stokes Raman scattering (CARS). Label-free vibrational imaging of
Aβ in a mouse model of AD was performed to distinguish the lesion areas by studying the spectra
of regions with and without Aβ plaques. Raman spectra in Aβ and non-Aβ regions exhibited a
specific difference in the intensity ratio of the wave peaks detected at 2850 and 2930 cm−1. In the
non-Aβ region, the ratio of the peak intensity at 2850 cm−1 to that at 2930 cm−1 was approximately 1,
whereas that in the Aβ region was 0.8. This label-free vibrational imaging may provide a new method
for the clinical diagnosis and basic research of AD.

Keywords: Raman scattering; nonlinear optical microscopy; Alzheimer’s disease; amyloid

1. Introduction

Dementia is a progressive neurodegenerative disease characterized by a decline in
memory, thinking, learning, and cognitive functions. Alzheimer’s disease (AD) is the
most common form of dementia, accounting for approximately 60–70% of the cases. The
pathological characteristic of AD is the abnormal deposition of the amyloid β protein (Aβ)
in the cortex and hippocampus. However, how Aβ plaques form and how they affect
the nervous system remain unclear. The current mainstream hypothesis regarding the
pathogenic mechanism of Aβ is that the metabolism of the amyloid precursor protein
(APP) and the subsequent condensation of Aβ are the major events driving AD. High
levels of Aβ subsequently lead to a series of downstream pathological events, including
the production of large intracellular neurofibrillary tangle (NFT) deposits, inflammation,
oxidative stress, excitotoxicity, loss of synaptic connections, and cell death, which contribute
to the clinical manifestations of AD [1–4]. Moreover, the underlying pathology of AD begins
10–20 years before the clinical symptoms appear [5]. Therefore, direct imaging of Aβ is
of great significance in the diagnosis and prevention of AD. Several techniques have
been developed to image Aβ plaques. For example, positron emission tomography (PET)
can be used to clinically image Aβ deposition in vivo using various Aβ tracers, such as
11 C-labeled Pittsburgh compound-B [6,7]. In addition, magnetic resonance imaging (MRI)
technology can also be used clinically to achieve non-invasive imaging of single plaques
in vivo [8]. However, MRI is limited by its low spatial resolution, and PET relies on tracers
and cannot achieve label-free imaging. In addition, several studies have shown that lipid
metabolism in the brain of patients with AD is closely related to the formation of Aβ
plaques [9,10].
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Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging label-free
vibrational imaging with chemical selection that has been widely applied in biology and
medical research [11–17]. Because CARS can obtain spectral information while achieving
unlabeled imaging, it is highly suitable for studying lipid metabolism and lipid distribution
in the brain as well as for the identification of abnormal accumulation of Aβ in AD.

In this paper, we present an optical spectroscopy and imaging approach that is based
on CARS imaging of lipid distribution by probing the intrinsic molecular vibrations. These
vibrations allow the distinction of Aβ regions from non-Aβ regions based on the differences
in the intensity ratio between 2850 and 2930 cm−1 in the CARS spectrum.

2. Materials and Methods
2.1. The CARS Microscope

Figure 1 provides a diagrammatic representation of the CARS microscope. The light
source is a femtosecond (fs) laser (Chameleon Discovery, Coherent Inc.) with two outputs.
One output generates a 1040 nm fs laser pulse (pulse width of 100 fs) with a repetition
rate of 80 MHz, serving as the Stokes beam for the CARS imaging. The other output is
tunable from 660 to 1320 nm (pulse width of 100 fs) and is used as the pump beam for
the CARS imaging. We tuned the pump beam to 800 nm (∆ω = 2850 cm−1) to match
the CH2 vibration in lipids. The Stokes beam (1040 nm) was collinearly combined with
the pump beam (800 nm) through a dichroic mirror and delivered to an upright laser
scanning confocal microscope (MPM-SCAN4, Thorlabs Inc., America). The fs pump and
Stokes laser beams were chirped using SF-57 glass rods with a length of 40.5 and 54 cm
to generate a 2.0 picosecond (ps) pump beam and a 1.8 ps Stokes beam for hyperspectral
CARS imaging, respectively, before they were combined with a dichroic mirror. The
Raman shift differences between the pump and Stokes beams were scanned by controlling
the time delay between the pump and Stokes pulses. A long-pass (680 nm) primary
dichroic mirror was used to reflect the signal. Another long-pass (570 nm) secondary
dichroic mirror was used to separate the signal to the CARS channel at 650 nm and to the
two-photon excited fluorescence (TPEF) channel. After the application of a band-pass filter
(650/10 nm, Thorlabs Inc., America), the CARS signal was detected using a photomultiplier
tube (H7422-50, Hamamatsu photonics) and the TPEF signal was detected using another
photomultiplier tube (H7422-40, Hamamatsu photonics). For CARS imaging, the output
power of the pump light is ~50 mW, and for Stokes light, it is ~100 mW. The system was
calibrated systematically. The depth of penetration is about 200 µm, which is measured in
live imaging, and the field of view under a 20X water immersion objective is 810 × 810 µm.
The spatial resolution is about 485 nm, and the spectral resolution is 23 cm−1.
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Figure 1. Schematic diagram of the CARS system. Ti: Sapphire Laser, titanium-doped sapphire solid-state laser with two 
outputs; HWP, half-wave plate; PBS, polarization beam splitter; CB, chirped block; BE, beam expander; TD, time delay; 
DM, dichroic mirror; SMP, scanning mirror pairs; SL, scan lens; TL, tube lens; PDM, primary dichroic mirror; OB, objective 
lens; SDM, secondary dichroic mirror; BPF, band-pass filter; PMT, photomultiplier. 
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In this study, Aβ plaques in the brain slice of APP/PS1 transgenic mice were, first, 

stained by a fluorescent amyloid-β probe, methoxy-X04 [18–21], which emits strong TPEF. 
Then, the sample was imaged using TPEF and CARS, and the images were presented in 
green and red pseudo colors, respectively. The TPEF, CARS, and their merged images are 
shown in Figure 2. In this study, 20 samples from five different AD mouse are tested, with 
each mouse providing four samples. The imaging area was located in the cortex of the 
mouse brain. Lipid droplets in the brain tissue are excited by the CARS process. A 
prominent blood vessel can be observed in the lower-left area. However, the Aβ plaques 
were not detected in the CARS image. The middle panel of Figure 2 corresponds to the 
TPEF image of a brain tissue slice stained with methoxy-X04. Two Aβ plaques are clearly 
visible, one of which is not in the current focal plane. The merged image of TPEF and 
CARS (right panel in Figure 2) confirmed the location of the non-Aβ and Aβ regions. 

CARS imaging generates contrast by probing the vibrational resonances in molecular 
bonds. In Raman spectroscopy, the spectrum is divided into three parts: the “fingerprint 
region,” from 400 to 1500 cm−1; the “silence region,” from 1500 to 2700 cm–1; the “C–H 
region,” from 2800 to 3100 cm–1. Most vibrational spectroscopy and microscopy 
approaches focus on the “C–H region” because the signal is stronger than that in the other 
regions. The C–H region contains strong CH2 and CH3 symmetrical and asymmetrical 
stretching modes. Lipids in each molecule typically contain long acyl chains with many 
C–H bonds. The analysis of the C–H region from 2800 to 3100 cm–1 allows the 
differentiation of molecular markers, such as lipids and proteins, based on the distinct 
ratio of the methylene CH2 to the methyl CH3 group. Moreover, the mouse brain tissue is 
rich in lipids and proteins that can produce strong CH2 and CH3 molecular vibration 
signals. The key aspect of multispectral CARS imaging is the acquisition of both highly 
spatially and spectrally resolved CARS images for subsequent analysis [22,23]. 

Figure 1. Schematic diagram of the CARS system. Ti: Sapphire Laser, titanium-doped sapphire solid-state laser with two
outputs; HWP, half-wave plate; PBS, polarization beam splitter; CB, chirped block; BE, beam expander; TD, time delay; DM,
dichroic mirror; SMP, scanning mirror pairs; SL, scan lens; TL, tube lens; PDM, primary dichroic mirror; OB, objective lens;
SDM, secondary dichroic mirror; BPF, band-pass filter; PMT, photomultiplier.

2.2. Sample Preparation

Twelve-month-old transgenic mice (APP/PS1) were obtained from the Medical An-
imal Laboratory Center of Guangdong Province (permit number 44007200079864). All
experiments were performed with approval of the Medical Department of Shenzhen
University. The mice were euthanized by an intraperitoneal injection of 1% sodium pen-
tobarbital (50 mg/kg, Sigma-Aldrich). Subsequently, 0.9% saline and 4% paraformalde-
hyde were perfused transcranially and chilled to 4 ◦C. Then, the brain was removed
and fixed at 4 ◦C in 4% paraformaldehyde for 24 h, followed by staining with methoxy-
X04(4,4′-[(2-methoxy-1,4-phenylene)di-(1E)-2,1-ethenediyl]bisphenol) (Xcess Biosciences
Inc., CA 92109) at 10 µmol/L and paraffin embedding. A rotary microtome was used to
cut the brain into five contiguous sections with a thickness of 6 µm.

3. Results

In this study, Aβ plaques in the brain slice of APP/PS1 transgenic mice were, first,
stained by a fluorescent amyloid-β probe, methoxy-X04 [18–21], which emits strong TPEF.
Then, the sample was imaged using TPEF and CARS, and the images were presented in
green and red pseudo colors, respectively. The TPEF, CARS, and their merged images
are shown in Figure 2. In this study, 20 samples from five different AD mouse are tested,
with each mouse providing four samples. The imaging area was located in the cortex
of the mouse brain. Lipid droplets in the brain tissue are excited by the CARS process.
A prominent blood vessel can be observed in the lower-left area. However, the Aβ plaques
were not detected in the CARS image. The middle panel of Figure 2 corresponds to the
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TPEF image of a brain tissue slice stained with methoxy-X04. Two Aβ plaques are clearly
visible, one of which is not in the current focal plane. The merged image of TPEF and
CARS (right panel in Figure 2) confirmed the location of the non-Aβ and Aβ regions.
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Figure 2. CARS and TPEF images of brain tissue from a mouse model of AD: (Left) CARS image acquired at 2850 cm–1; 
(middle) TPEF image excited at 800 nm; (right) merged image. The red and green boxes represent the non-Aβ and Aβ 
regions, as indicated by the TPEF image shown in the middle panel. Scale bar, 50 µm. 
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lipid metabolism affects the metabolism and deposition of Aβ, which leads to a series of 
negative effects and ultimately affects the pathogenesis of AD [9,10,24–32]. 
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Figure 2. CARS and TPEF images of brain tissue from a mouse model of AD: (Left) CARS image acquired at 2850 cm−1;
(middle) TPEF image excited at 800 nm; (right) merged image. The red and green boxes represent the non-Aβ and Aβ
regions, as indicated by the TPEF image shown in the middle panel. Scale bar, 50 µm.

CARS imaging generates contrast by probing the vibrational resonances in molecular
bonds. In Raman spectroscopy, the spectrum is divided into three parts: the “fingerprint
region,” from 400 to 1500 cm−1; the “silence region,” from 1500 to 2700 cm−1; the “C–H re-
gion,” from 2800 to 3100 cm−1. Most vibrational spectroscopy and microscopy approaches
focus on the “C–H region” because the signal is stronger than that in the other regions. The
C–H region contains strong CH2 and CH3 symmetrical and asymmetrical stretching modes.
Lipids in each molecule typically contain long acyl chains with many C–H bonds. The
analysis of the C–H region from 2800 to 3100 cm−1 allows the differentiation of molecular
markers, such as lipids and proteins, based on the distinct ratio of the methylene CH2 to the
methyl CH3 group. Moreover, the mouse brain tissue is rich in lipids and proteins that can
produce strong CH2 and CH3 molecular vibration signals. The key aspect of multispectral
CARS imaging is the acquisition of both highly spatially and spectrally resolved CARS
images for subsequent analysis [22,23].

Next, we acquired and analyzed the CARS spectra of the mouse brain tissue in the
non-Aβ and Aβ regions. To quantitatively analyze the differences in the spectra of the
Aβ region (red line) and non-Aβ region (blue line), we normalized all data. The statistical
results obtained after normalization are shown in Figure 3. The two areas exhibited peaks at
2850 and 2930 cm−1, respectively, corresponding to the vibrational mode of the methylene
CH2 and methyl CH3 groups. Interestingly, we found that the intensity ratios between
the peak at 2850 cm−1 and the one at 2930 cm−1 in the non-Aβ and Aβ region were quite
different, as shown in Figure 4. In the non-Aβ region, the peak intensity at 2850 cm−1

was always as high as that at 2930 cm−1. However, in the Aβ region, the peak intensity
at 2850 cm−1 was about four-fifths as strong as that at 2930 cm−1, indicating that the
symmetric stretching vibrations of CH2 in the Aβ-enrichment region were suppressed.
This observation suggests that the ratio of lipids to proteins in the Aβ-rich region is lower
than that in the non-Aβ-rich region. According to the results of previous research, abnormal
lipid metabolism affects the metabolism and deposition of Aβ, which leads to a series of
negative effects and ultimately affects the pathogenesis of AD [9,10,24–32].
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Figure 4. Standard deviation of I2850/I2930 in the non-Aβ and Aβ regions. Each region contained 20 
sets of data. Each set of data was collected from different slices in vitro. 
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Figure 4. Standard deviation of I2850/I2930 in the non-Aβ and Aβ regions. Each region contained
20 sets of data. Each set of data was collected from different slices in vitro.

Previous studies have reported the relevance of lipids and Aβ proteins in AD based
on coherent Raman scattering microscopy [33–35]. Lee et al. [34] studied AD brain sam-
ples using multimodal, multiphoton, nonlinear optical micro-spectroscopy. However,
the objective of CARS imaging and spectra is γ-aminobutyric acid (GABA), which is a
neurotransmitter that has been reported in many research papers, rather than the Aβ
protein itself. Ji et al. [33] reported that the Raman shift between normal proteins and the
Aβ protein is about 10 cm−1; based on this blue shift, his team used stimulated Raman
scattering microscopy to image the amyloid plaques in the brain tissue of an AD mouse
model. This method requires a coherent Raman scattering microscope with a very high
spectral resolution. Moreover, his team mainly studied the spectrum of the amide I band,
which is located in the fingerprint region.

Finally, to verify the feasibility of this method, another set of data was analyzed.
According to previous results, a home-built MATLAB procedure was used to calculate and



Biosensors 2021, 11, 365 6 of 8

process the hyperspectral CARS data; the results of this analysis are shown in Figure 5. The
intensity of each pixel in the CARS image at 2850 cm−1 was divided by the corresponding
CARS image at 2930 cm−1, and the result was shown using pseudo color (middle panel of
Figure 5). As compared with the TPEF image of the brain slice stained with methoxy-X04,
it is apparent that this method can be used to distinguish the non-Aβ region from the Aβ
region in the AD brain tissue without labeling.
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Figure 5. Workflow that can be used to verify the feasibility of distinguishing non-Aβ region from Aβ region in the AD
brain tissue without labeling. Individual CARS images are shown: (A) 2850 cm−1; (B) 2930 cm−1; (C) the result of the image
in A divided by the image in B, pseudo color in (C) stands for the peak ratio of each pixel. We can find an unusual area in
the middle which could be regarded as the Aβ region; (D) the TPEF image stained by Methoxy-X04, which is used to locate
the Aβ plaques and the Aβ region.

4. Conclusions

In this study, we developed an optical spectroscopy and imaging approach based on
CARS imaging of the Aβ protein to distinguish the non-Aβ region from the Aβ region in
the brain tissue of an AD mouse model.

Hyperspectral CARS images were obtained from spectral-focusing-based CARS mi-
croscopy. The spectrum of the C–H region contained strong CH2 and CH3 symmetrical and
asymmetrical stretching modes, which can be used as a tool to analyze the lipid and protein
components of biological tissues. Specifically, the ratio between the CH2 vibration mode at
2850 cm−1 and the CH3 vibration mode at 2930 cm−1 could be used to characterize the lipid
or protein components of biological tissues. Moreover, Aβ plaques in the cerebral cortex
could be imaged without labeling, and the imaging results are similar to those obtained by
labeling with the two-photon dye methoxy-X04. We found that this ratio was about 0.8 in
the region that contained the Aβ protein, which was confirmed by TPEF images stained by
methoxy-X04. In contrast, the average ratio was about 1.0 in the non-Aβ region. Therefore,
this approach is expected to provide a new method for the clinical diagnosis and basic
research of AD.

There are two future directions for this research. On the one hand, the Raman spectral
characteristics of amyloid in human brain slices should be studied and compared with
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the spectra in mice. The difficulty of this work lies in the fact that the components of
human brain are much more complex than the mouse model, requiring further research.
On the other hand, the Raman spectroscopic properties of amyloid in living mice should
be investigated, extending the study from in vitro to in vivo. Another interesting future
development of this method should be the use of various polynomial fitting methods to an-
alyze the total contribution of CH2, CH3, and non-resonant background in the spectrum of
the C–H region. We except that the results would reveal greater details of lipid metabolism,
especially cholesterol metabolism, in the AD brain tissue.
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