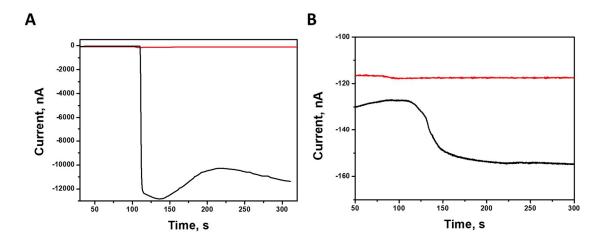
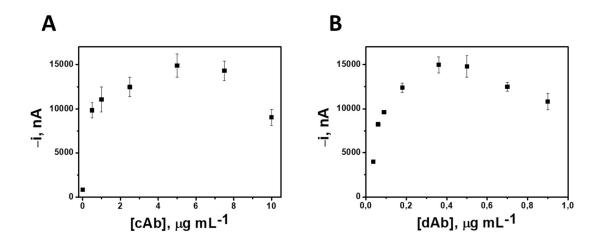

Supplementary Materials


Magnetic Bead-Based Electrochemical Immunoassays On-Drop and On-Chip for Procalcitonin Determination: Disposable Tools for Clinical Sepsis Diagnosis

Águeda Molinero-Fernández ^{1,†}, María Moreno-Guzmán ^{2,†}, Miguel Ángel López ^{1,3,*} and Alberto Escarpa ^{1,3,*}


- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain; agueda.molinero@edu.uah.es
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Universidad Complutense de Madrid, Avenida Complutense, s/n, 28040 Madrid, Spain; marimore@ucm.es
- ³ Chemical Research Institute "Andres M. Del Rio", Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
- * Correspondence: miguelan.lopez@uah.es (M.Á.L); alberto.escarpa@uah.es (A.E)
- † Both authors contributed equally to this work.

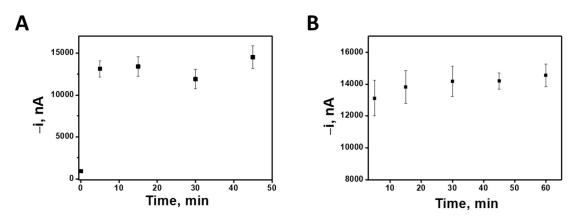

Figure S1. Electrochemical devices for immunoassay electrochemical detection: A) disponsable SPE-C for *on-drop* approach and B) EMC-Au for *on-chip* approach.

Figure S2. Amperometric detection of the mediated reduction of H_2O_2 with HQ using *on-drop* (A) and *on-chip* (B) approaches in the **absence** and **presence** of PCT; [PCT] = 100 ng mL⁻¹ (A), 0.5 ng mL⁻¹ (B).

Figure S3. Current signals obtained for different concentrations of capture antibody (cAb) (A) and detection antibody (dAb) (B) using the *on-drop* SPE-C approach. Conditions: incubation time = minutes each stage; PCT concentration 1000 ng mL⁻¹.

Figure S4. Current signals obtained for different incubation times in the immobilization of capture antibody (cAb) (A) and binding of detection antibody (dAb) (B) using the *on-drop* SPE-C approach. Conditions: cAb = $5 \mu g \, mL^{-1}$; dAb = $0.36 \mu g \, mL^{-1}$; PCT concentration $1000 \, ng \, mL^{-1}$.