Supplementary data

Recyclable label-free SERS-based immunoassay of PSA in human serum mediated by enhanced photocatalysis arising from Ag nanoparticles and external magnetic field

Yuanyuan Du^a, Hongmei Liu^b, Ying Chen^a, Yiran Tian^a, Xiaoling Zhang^c, Chenjie Gu^a, Tao Jiang^{a,*}, Jun Zhou^a

^a Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China

^b Institute of Solid State Physics, Shanxi Datong University, Datong 037009, Shanxi, P.

R. China

^c Department of Neurology, Ningbo Medical Treatment Centre Lihuili Hospital,

Ningbo 315000, Zhejiang, P. R. China

E-mail: jiangtao@nbu.edu.cn (T Jiang)

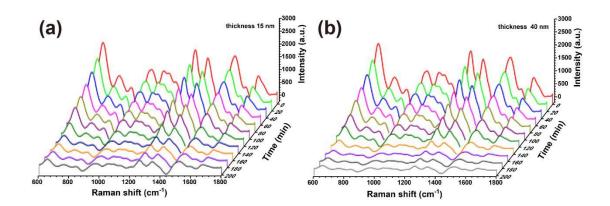
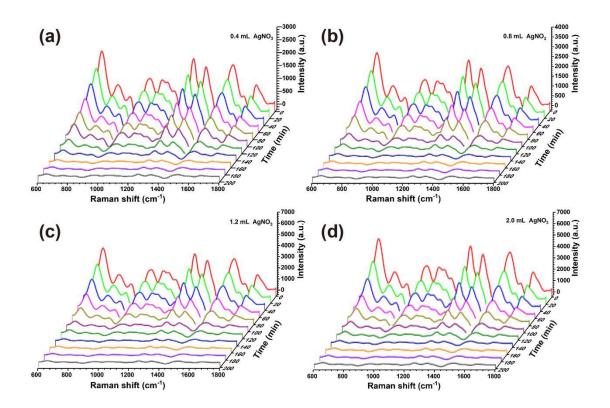



Fig. S1. SERS spectral change of PSA on Fe₃O₄@TiO₂@Ag MPs with (a) 15 and (b) 40 nm TiO₂ shell during UV light irradiation.

Fig. S2. SERS spectral change of PSA on Fe₃O₄@TiO₂@Ag MPs synthesized with (a) 0.4, (b) 0.8, (c) 1.2, and (d) 2.0 mL of AgNO₃ during UV light irradiation without magnetic field.

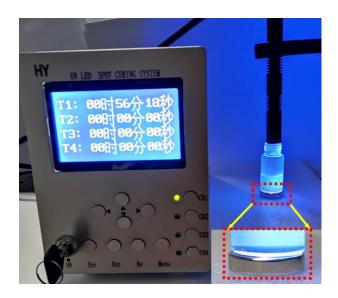


Fig. S3. A photogram of photocatalysis reaction.