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Abstract: Half of the global agricultural fresh produce is lost, mainly because of rots that are caused by
various pathogenic fungi. In this study, a complementary metal-oxide-semiconductor (CMOS)-based
biosensor was developed, which integrates specific DNA strands that allow the detection of
enoyl-CoA-hydratase/isomerase, which is a quiescent marker of Colletotrichum gloeosporioides fungi.
The developed biosensor mechanism is based on the metal-enhanced fluorescence (MEF) phenomenon,
which is amplified by depositing silver onto a glass surface. A surface DNA strand is then immobilized
on the surface, and in the presence of the target mRNA within the sample, the reporter DNA strand
that is linked to horseradish peroxidase (HRP) enzyme will also bind to it. The light signal
that is later produced from the HRP enzyme and its substrate is enhanced and detected by the
coupled CMOS sensor. Several parameters that affect the silver-deposition procedure were examined,
including silver solution temperature and volume, heating mode, and the tank material. Moreover,
the effect of blocking treatment (skim milk or bovine serum albumin (BSA)) on the silver-layer stability
and nonspecific DNA absorption was tested. Most importantly, the effect of the deposition reaction
duration on the silver-layer formation and the MEF amplification was also investigated. In the study
findings a preferred silver-deposition reaction duration was identified as 5–8 min, which increased
the deposition of silver on the glass surface up to 13-times, and also resulted in the amplification of
the MEF phenomenon with a maximum light signal of 50 relative light units (RLU). It was found that
MEF can be amplified by a customized silver-deposition procedure that results in increased detection
sensitivity. The implementation of the improved conditions increased the biosensor sensitivity to
3.3 nM (4500 RLU) with a higher detected light signal as compared to the initial protocol (400 RLU).
Moreover, the light signal was amplified 18.75-, 11.11-, 5.5-, 11.25-, and 3.75-times in the improved
protocol for all the tested concentrations of the target DNA strand of 1000, 100, 10, 3.3, and 2 nM,
respectively. The developed biosensor system may allow the detection of the pathogenic fungus in
postharvest produce and determine its pathogenicity state.

Keywords: pathogenic fungus; Colletotrichum gloeosporioides; metal-enhanced fluorescence;
silver deposition; CMOS biosensor; postharvest system

1. Introduction

Worldwide, one billion people suffer from malnutrition due to lack of food supplies, and two
billion people suffer from a lack of essential nutrients and vitamins in their diet [1]. Over the past
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few years, remarkable progress has been made in increasing the production of food as an approach
for food security. However, there is still an unmet need to reduce food losses [2]. According to
studies that were conducted by various international and national organizations, mostly led by the
Food and Agriculture Organization of the United Nations (FAO), an estimation of one-third of all the
food and almost half of all the fruit and vegetables that are produced on the planet, are lost and not
consumed [3]. Moreover, half of the harvested food (1.3 billion tons a year) is lost mostly because
of rots that are caused by pathogenic fungi [4]. Reducing the rate of food loss is one of the possible
solutions to achieving food security [5]. In addition, the growth in the world population implies
additional challenges. The U.N. predicts that the world global population will reach 9.7 billion people
by 2050, compared to 7.3 billion people in 2015. Countries around the world are currently focused on
efforts to increase their food supply in order to meet the growing demand [6]. Moreover, pathogenic
fungi produce toxic compounds that are later consumed and may cause health problems in animals
and humans [7]. Therefore, for both food safety and security, it is important to monitor the presence of
pathogenic fungi in harvested produce.

Various genera of pathogenic fungi may cause decay in harvested fresh produce [8–10]. The fungi
usually remain quiescent in immature fruit and only switch to their pathogenic state after ripening.
Such quiescent infections are microscopic, and without external signs that can be visually detected
during the supply chain [11–13]. Thus, there is a need to develop sensing platforms that will be able to
detect fungal infections in both their quiescent and pathogenic states. Colletotrichum gloeosporioides
(C. gloeosporioides) is one of the most common pathogenic fungi in harvested fruit such as mango,
avocado, and strawberry, with 470 well-known host genera [14]. C. gloeosporioides has three identified
states, including penetration (appressoria), latent stage (quiescence), and pathogenic (necrotrophic)
state [13]. After fruit ripening, C. gloeosporioides switches from the quiescent state to the pathogenic
state that causes anthracnose disease in the fruit [14]. Interestingly, during the quiescent state, most
of the transcripts are down-regulated, while specific transcripts are upregulated in C. gloeosporioides
in the pathogenic state, which can be used as markers. Conventional technologies already exist for
the detection of the pathogenic fungus in harvested produce, such as polymerase chain reaction
(PCR) and enzyme-linked immunosorbent assay (ELISA) [15]. These technologies provide reliable
and sensitive results; however, they are costly and require complicated measurement processes that
makes them less suitable for use in agricultural applications. Therefore, practical solutions are still
lacking and are required in order to allow real-time monitoring of pathogenic fungi and potential
decay development in fruits and vegetables during the supply chain, retail, and consumer storage.

Several biosensing approaches are currently being investigated in order to monitor pathogens in
plants [16]. A preferred approach for detecting pathogenic fungus may be a biosensor for RNA detection.
A biosensor is a self-contained bionic integrated device that includes a biological recognition element
(enzyme, antibody, receptors, and microorganisms), which can respond in a concentration-dependent
manner to monitor a biochemical species. Biosensor platforms offer advantages when compared to
conventional analytical methods—they are miniaturized and portable, which permits their use as
on-site devices, they are also often cheap, simple to use, and do not require any sample preparation.
Various sensing technologies were tested for DNA detection, including optical [17], mass balance [18,19],
and quartz crystal microbalance [20,21]. Technological advances have led to the development of
miniaturized and sensitive photodetectors termed complementary metal-oxide-semiconductor (CMOS)
sensors [22]. CMOS circuits can be found in multiple electronic components, including microprocessors,
batteries, and digital camera image sensors. A CMOS image sensor usually contains an electronic
rolling shutter that eliminates the need for a mechanical shutter except in certain cases, and each bucket
can be read independently to the output. These advantages allow CMOS image sensors to be used in
some of the highest-specification industrial control devices and the finest cameras [23]. CMOS-based
biosensors were developed for the detection of bacteria [24,25], water, and air toxicants [26,27], coupled
with PCR [28,29], and used in food safety [30–34]. Only a few CMOS-based biosensor platforms were
developed for use in agriculture applications [35,36].
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In this study, a complementary CMOS-based biosensor was developed, which integrates specific
DNA strands that allow the detection of enoyl-CoA-hydratase/isomerase, which is a quiescent marker
of C. gloeosporioides fungi. The developed biosensor mechanism is based on the metal-enhanced
fluorescence (MEF) phenomenon, which is amplified by depositing silver onto a glass surface [37].
A surface DNA strand is then immobilized on the surface, and in the presence of the target mRNA
within the sample, the reporter DNA strand that is linked to horseradish peroxidase (HRP) enzyme
will also bind to it. The light signal that is later produced from the HRP enzyme and its substrate is
enhanced and detected by the coupled CMOS sensor. Several parameters that affect the silver-deposition
procedure were examined, including silver solution temperature and volume, heating mode, and the
tank material. Moreover, the effect of blocking treatment (skim milk or bovine serum albumin (BSA))
on the silver-layer stability and nonspecific DNA absorption was tested. Importantly, the effect of the
deposition reaction duration on the silver-layer formation and MEF amplification was also investigated.
The developed biosensor system may allow the detection of the pathogenic fungi even at their quiescent
state in postharvest produce and determine its pathogenicity state.

2. Materials and Methods

2.1. Materials

Hydrochloric acid (HCl) 37% (#953503), hydrogen peroxide (H2O2) (#2186-1), and sulfuric
acid (H2SO4) (#9681-03) were purchased from John Townsend (J.T.) Baker (Phillipsburg,
NY, USA). Methyl alcohol (#6712) was purchased from Macron (Center Valley, PA, USA).
3-glycidoxypropyltrimethoxysilane (GPTMS), silane (#440,167), Tris-EDTA (#101,903,432), skim milk
powder (#70,166), and bovine serum albumin (BSA) (#A7906) were purchased from Sigma-Aldrich
(Rehovot, Israel). Clarity™ western ECL substrate and peroxide + luminol (#1705061) was
purchased from Bio-Rad (Rishon Le Zion, Israel). Silver nitrate coating: D-Glucose (#FG/0500/60),
silver nitrate (#7761-88-8), and sodium hydroxide (#FS/4880/60) were purchased from Fisher
Chemical (Fair Lawn, NJ, USA). Ammonium hydroxide (#033285.1) was purchased from Alfa Aesar
(Lancashire, UK). DNA strands: The surface strand (5′-ATG CAC CGT AGC GAC CAG AG-3′-SH) and
the target strand of the quiescent marker (Cgl_00014454, enoyl-coA-hydratase/isomerase—5′-CCC AAG
CTC ATA GGA CTG TCT AAG GCG AGC CAC GTC ACG ACC ACT GGA GAC GTG TAT CCC GTC
ACC GAT CCA CTC GTC AAT GGG CTG TTC TCA AAG TTG CTT CCC ACG CCT CAA CAC ACA
GTC-3′) were purchased from HyLabs (Rehovot, Israel). The reporter strand (horseradish peroxidase
(HRP)—5′-TGA GGC GTG GGA AGC AAC-3′) of reverse complementary of the quiescent marker
(Cgl_00014454, enoyl-coA-hydratase/isomerase) was purchased from Eurogentec (Seraing, Belgium).

2.2. Surface Activation and Silver-Deposition Procedure

The biosensor surface was formed on 350 µL flat bottom glass tubes (CSI, # I025-630). The glass
tubes were firstly cleaned by incubation in MeOH: HCl solution (ratio 1:1 (v/v)) at room temperature
for 20 min and then placed in a sonication bath (JK-OCD30A, MRC, Holon, Israel) dipped in deionized
water (DI) for 20 min. The cleaning step was conducted in order to clean any inorganic and organic
surface contaminants. After cleaning, the glass tubes were further activated by incubation in piranha
solution (H2O2: H2SO4 (3:7)) at 90 ◦C for 60 min, in order to improve the surface hydrophilicity by
hydroxylation. The tubes were then rinsed with DI and dried with N2. In the next silanization step,
the glass tubes were incubated in 3-glycidoxypropyltrimethoxysilane at 60 ◦C for 60 min. After that,
the silanized glass tubes were rinsed with DI water and dried. Then, the silver liquid deposition
proceeded as previously described [37], based on the Tollens’ reagent, which is a colorless solution
of a diamminesilver(I) complex that is created by a mixture of silver nitrate, ammonia, and alkaline.
Next, 500 µL fresh 5% (w/v) NaOH solution was added into a fast-stirring silver nitrate solution (0.22 g
in 26 mL of DI). The NaOH–silver nitrate solution was continuously mixed until the formation of
dark-brownish precipitates was visible, then, less than 1 mL of ammonium hydroxide was added to
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the deposition solution until the precipitates were dissolved. The clear solution was cooled to 5 ◦C
by placing it in an ice bath. After, the glass tubes were placed into the silver deposition solution,
and a fresh D-glucose solution (0.35 g in 4 mL of DI) was added, while the mixture was stirred for
2 min. Then, the solution was warmed to 30 ◦C. The glass tubes were incubated inside the silver
deposition solution until a silver layer was formed on the glass surface. The tubes were then washed
with DI and dried. The efficiency of the silver deposition on the glass tube surfaces was evaluated
by spectrophotometry. The silver-deposited glass tubes were then placed in 1.2 mL plastic cuvettes
(Srastedt, Germany) that were modified by creating a hole to hold the tested tubes and by cutting the
sides of the cuvette for better light propagation. The optical density of the silver-deposited glass tubes
was determined by an Ultrospec 2100 pro spectrometer (Amersham Biosciences) at 420 nm.

2.3. DNA Immobilization

The silanized glass tubes, after silver deposition, were then used for the immobilization of the
surface DNA strand. The tubes were incubated in a 20 µL 1 µM surface-DNA-strand solution diluted
with Tris-EDTA buffer for 1 h at room temperature in the dark. After the immobilization step of
the surface DNA strand, the biofunctionalized glass tubes were washed with Tris-EDTA buffer and
incubated in a blocking agent solution (skim milk or BSA). The blocked glass tubes were then exposed
to 20 µL 1 µM of target- and reporter DNA strands. Conventional PCR proceeded with a Veriti
96-well thermal cycler (Applied Biosystems) by applying one thermal program cycle (60 s at 90 ◦C,
then 30 s at 75 ◦C, then 30 s at 65 ◦C, and finally 30 s at 53 ◦C). The DNA quality and quantity were then
measured by spectrophotometry (NanoDrop 1000 Spectrophotometer, Thermo Scientific, Wilmington,
DE, USA). After, the exposed glass tubes were washed with Tris-EDTA buffer and placed on the CMOS
sensor or in IVIS (IVIS-100, Perkin Elmer, Waltham, MA, USA) for the monitoring of the light signal.

2.4. CMOS-Based Biosensor-System Setup

After exposure to the DNA strands, the treated glass tubes were placed onto the CMOS sensor to
monitor the light signal. The coupling with a CMOS sensor enables a setup design of the biosensor
system that is suitable to be operated directly in the field (Figures 1 and 2). The CMOS sensor
(ULS 24 solution kit by Anitoa (Palo Alto, CA, USA)) was then placed in a light-tight box to prevent
any possible interference from the surrounding light. The 0.18 µm CMOS imager has an ultra-low-light
sensitivity, with a detection threshold of ~3.0 × 10−6 lux, low dark current (high SnR > 13dB at detection
threshold), 12-bit analog-to-digital converter (ADC), integration time of 100 µs–100 s (controlled by the
software), wide dynamic range (~85 dB), and a digital interface through serial peripheral interface (SPI).
The CMOS imager size is 4.9 mm × 4.8 mm, with a sensing area of 3.6 mm × 3.6 mm [38]. Specific
software was developed by Anitoa company to collect and analyze the light signal data in real-time.
The enzymatic reaction of the HRP enzyme was activated by the deposition of a 20 µL substrate solution
((1:1) luminol: H2O2 (v/v)), while the glass tubes were still placed above the CMOS sensor. In addition,
a home-made holder from Styrofoam was integrated with the CMOS-based biosensor system setup,
which prevented the movement of the glass tube during the measurement process. The light signal
was directly monitored and detected by the CMOS sensor.
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points for further silver deposition; (2e) immobilization of surface DNA strands; (2f) blocking agent 

(skim milk or bovine serum albumin (BSA)). (3) The measurement process where the surface DNA 
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to the reporter strand that is linked to HRP; (3c) the strands specifically anneal into one complex; (3d) 

addition of substrate ((1:1) luminol: H2O2 (v/v)) produces a measurable light signal. 

Figure 1. Schematic presentation of the CMOS-based biosensor. (1) Different sections of the
complementary metal-oxide-semiconductor (CMOS)-based biosensor platform: (1a) heating element
for the silver-deposition reaction; (1b) silver reaction solution that is used to polymerize the silver
layer above the glass surface; (1c) reaction tank where the polymerization reaction occurs; (1d) glass
tube where the deposition and measurement processes occur; (1e) silver surface nanolayer with
immobilized surface DNA strands; (1f) horseradish peroxidase (HRP) enzymatic reaction produces a
measurable light signal, amplified with metal-enhanced phenomenon (MEF); (1g) CMOS photodetector
that is coupled near the light signal from positive samples and transforms it into measurable
electrical current. (2) The DNA immobilization process onto the glass surface: (2a) unmodified
glass surface; (2b) activation with piranha solution; (2c) silanization; (2d) nucleation points for further
silver deposition; (2e) immobilization of surface DNA strands; (2f) blocking agent (skim milk or bovine
serum albumin (BSA)). (3) The measurement process where the surface DNA strand is immobilized
onto the silver-deposited glass: (3a) exposure to the target strand; (3b) exposure to the reporter strand
that is linked to HRP; (3c) the strands specifically anneal into one complex; (3d) addition of substrate
((1:1) luminol: H2O2 (v/v)) produces a measurable light signal.
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Figure 2. Picture of the CMOS-based biosensor system setup. (A) the enzymatic reaction of the
horseradish peroxidase (HRP) enzyme was activated by the deposition of a 20 µL substrate solution
((1:1) luminol: H2O2 (v/v)), (B) while the glass tubes were still placed above the CMOS sensor.
(C) A home-made holder from Styrofoam was integrated with the CMOS-based biosensor system setup,
which prevents the movement of the glass tube during the measurement process. The light signal was
directly monitored and detected by the CMOS sensor.

2.5. Parameters that Influence the Silver-Deposition Procedure Efficiency

Various parameters that influence the silver-deposition procedure were examined. First, the effect
of the reaction temperature was examined by incubating the glass tubes in the 26 mL silver solution for
9 min at two different temperatures of 30 ◦C or 35 ◦C. Second, the effect of the heating mode was tested,
by heating the glass tubes to 35 ◦C either on a heating plate (MHK-4D, Fried Electric, Israel) or in
a water bath (Pura 10, Julabo, Germany). Third, the effect of the silver solution volume was tested;
three solution volumes of 4, 15, and 26 mL were used. Fourth, the effect of a blocking agent was
examined, the modified glass tubes were incubated for 1 h in 4 mL of two different blocking-agent
solutions (1, 2, 3, 4, and 5% (w/v)) skim milk or (1, 2, 3, and 4% (w/v)) BSA diluted in PBS (0.05% (v/v)
Tween 20) (PBST)). As a control, the modified tubes were incubated with PBST only. Then, the glass
tubes were rinsed ten times with 1 mL PBST, and after each washing step, the stability of the silver
layer was tested. Then, the effect of the blocking procedure on the nonspecific DNA absorption on the
glass surface was tested. The glass tubes without immobilized DNA were blocked either with BSA
(1, 2, or 3% (w/v)) or skim milk (1, 2, 3, or 4% (w/v)), and then incubated for 1 h with the reporter DNA
strand. Alternatively, the glass tubes with the immobilized surface DNA strand were blocked with
the same BSA or skim milk concentrations, and then exposed to the target and reporter DNA strands.
Lastly, the effect of the deposition time on the MEF phenomenon was examined. The silver layer on
the glass tubes was polymerized using optimum immobilization conditions (heating 4 mL of the silver
deposition solution in a water bath at 35 ◦C) for different silver-deposition reaction durations (1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, and 12 min). Then, the glass tubes were rinsed, treated with a blocking agent
of 1% (w/v) skim milk, and exposed to the target and reporter DNA strands. In addition, scanning
electron microscopy (SEM) characterization was conducted on the effect of the deposition time on the
formation of silver nano-islands. The surface morphology was characterized by an SEM model MIRA3
from TESCAN (Brno-Kohoutovice, Czech Republic), at a 5 kV accelerating voltage. Before imaging,
a thin layer of palladium gold was deposited onto the samples in order to render them electrically
conductive and to avoid potential surface charging by the electron beam.

2.6. Sensitivity and Reproducibility of the System

The detection sensitivity was tested for different concentrations of the quiescent marker of
Colletotrichum gloeosporioides, a specific sequence of enoyl-CoA-hydratase/isomerase (Cgl_00014454).
The sensitivity of the CMOS-based biosensor system was examined by comparing both the initial and
the improved silver-deposition procedures. The initial procedure included a 24-mL silver reaction
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solution heated at 35 ◦C on the heater plate for 9 min. While in the improved protocol the 4-mL silver
reaction solution was heated at 35 ◦C in a water bath for 5 min. Then, in both cases, the glass tubes were
immobilized with 20 µL 1 µM of surface DNA strands diluted with Tris-EDTA buffer and incubated for
1 h at room temperature in the dark. After washing, the tubes were then treated with a blocking agent
solution of 1% (w/v) skim milk. Next, the glass tubes were incubated with 20 µL of different target DNA
strand solution concentrations (0.2, 0.25, 0.3, 0.5, 1, 10, and 100 nM). The glass tubes were then exposed
to 20 µL 1 µM of reporter DNA strands, and conventional PCR proceeded. Then, the glass tubes
were rinsed, dried, and placed onto the CMOS sensor for light-signal measurement, after the addition
of 20 µL substrate solution ((1:1) luminol: H2O2 (v/v)). In order to test the system reproducibility,
30 separate biosensor setups were examined for each tested parameter. Two-way repeated-measures
analysis of variance (ANOVA) was employed for the evaluation of the dispersion between different
tested parameters.

3. Results and Discussion

3.1. Effect of Different Deposition Conditions on the Efficiency of the Silver-Layer Formation

The formation of a silver layer on a glass surface has been well-known for several decades
and described in multiple studies [39–44] and patents [45–47] by applying various techniques.
The most-common silver-deposition reaction is based on Tollens’ reagent, which is a colorless solution of
a diamminesilver(I) complex that is created by a mixture of silver nitrate, ammonia, and alkaline [48–53].
The silver-layer formation is highly influenced by the various conditions of the deposition procedure.
The effects of different parameters on the efficiency of the silver-layer formation were examined,
including silver solution temperature and volume, heating mode, and tank material (Figure 3).
The optical density (OD) at 420 nm was compared as an indication of the silver-layer formation.
Higher optical density values are equivalent to increased silver that is deposited on the glass surface.
From the results, generally, the silver-deposition procedure was more efficient in the cases of lower
deposition solution volumes and by heating the deposition solution with a water bath as the heating
source to a higher temperature. Two silver solution temperatures were tested, and a temperature
of 35 ◦C (OD420 nm = 0.638) showed an increased optical density as compared to a temperature
of 30 ◦C (OD420 nm = 0.254), indicating a 2.5-times increased deposition of silver. Among the two
tested heat sources, a 2.3-times increased amount of silver was deposited in the case of a water bath
(OD420 nm = 0.961) as a heating source as compared to the plate heater (OD420 nm = 0.423). Moreover,
three different silver deposition solution volumes were examined of 4, 15, and 26 mL. Among the
tested solution volumes, 4 mL (plastic: OD420 nm = 1.945 and glass: OD420 nm = 2.354) showed a
1.76-times and 2.35-times increased deposition of silver, as compared to 15 mL (OD420 nm = 1.340) and
26 mL (OD420 nm = 1.000), respectively. A possible explanation may be centered around the solution
temperature because the silver-deposition procedure is highly dependent on the solution temperature.
Higher silver deposition solution volumes require a longer heating time; therefore, in a constant
deposition time of 9 min, higher solution volumes may result in less deposition of silver. In addition,
in the case of a 4-mL silver deposition solution, more silver was deposited when the tank material
was glass (OD420 nm = 2.354), as compared to plastic (OD420 nm = 1.945). A possible reason may be
the difference in the thermal conductivity coefficients (TCC (between the glass (1.82 (Btu/(h ft ◦F))
and the polypropylene plastic (0.69 (Btu/(h ft ◦F))). The higher TCC of glass may result in faster
heating of the silver deposition solution, and therefore, may also result in a more-efficient silver
deposition process [54]. To conclude, the deposition of silver was more efficient with a lower deposition
solution volume of 4 mL in a glass tank, and by heating the deposition solution with a water bath to a
temperature of 35 ◦C.
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Figure 3. Effect of different deposition conditions on the efficiency of the silver-layer formation. Various
parameters were examined including silver solution temperature and volume, heating mode, and the
tank material. The silver-deposition reaction duration was 9 min in all the tested parameters.

3.2. Effect of Blocking Treatment on the Silver-Layer Stability

A silver layer on a glass surface is susceptible to oxidation [55] as well as to degradation by
moisture [56]. Coatings of different materials were previously tested in order to increase the stability
of a formed silver layer [57–62]. The influence of blocking agent treatment on the stability of the silver
layer was also examined. Two blocking agents including skim milk (1, 2, 3, 4 and 5% (w/v)) and bovine
serum albumin (BSA) (1, 2, 3 and 4% (w/v)) were tested (Figure 4). After the modified glass tubes
were treated with different concentrations of the blocking agent solutions, they were rinsed ten times,
and the OD420 nm was detected after each washing step as a measure of the silver-layer stability.
From the results, generally for both blocking agents in all the tested concentrations, an increase in the
silver-layer stability was identified. In the cases of untreated surfaces (Figure 4A,B at 0%), the repeated
washing steps caused a 5-times reduction of the silver layer, which was indicated by the reducing
patterns of the OD420 nm values from 1 to 0.2. The washing scraped down the already-existing silver
layer that was deposited on the glass surface. While, in the cases of the treated surfaces with both
blocking agents at all the tested concentrations, the OD420 nm values were consistent after the second
washing step, remaining constant between 0.7 to 0.9 in the case of skim milk and 0.7 to 0.75 in the
case of BSA. These results indicate that the treatment of a blocking agent protected and increased the
silver-layer stability by 4.5-times (0.9/0.2) and 3.75-times (0.75/0.2) in the cases of skim milk and BSA,
respectively. This phenomenon can be explained by the absorption of the blocker agent molecules above
the deposited silver layer, either on the glass, silver, or surface edges. Moreover, the addition of a blocker
agent layer may assist to stabilize the silver layer by creating additional connection forces between
the fixed metal and glass surface. The creation of such a blocking agent layer can be observed in the
results by the decreasing pattern of the OD420 nm values after the blocking treatment step. In addition,
in the comparison between the two blocking agents, the skim milk treatment (OD420 nm = 0.7–0.9)
protected more on the silver layer than the BSA treatment (OD420 nm = 0.7–0.75), meaning that, in the
case of the BSA treatment, more silver was scraped down from the deposited layer. Interestingly,
a decreasing pattern was also identified among the increasing concentrations of skim milk treatment.
Higher concentrations of skim milk resulted in lower OD420 nm values (skim milk (w/v) 1%, 0.9; 2%,
0.8; 3%, 0.75; 4%, 0.7; and 5%, 0.7), indicating less silver-layer stability, which can be explained by its
nature to aggregate, therefore it may cause the removal of the silver. To conclude, the treatment of the
blocking agent after silver deposition shows a protective effect over the washing steps, which may
increase the silver-layer stability.
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((A) skim milk and (B) bovine serum albumin (BSA)) on the silver-layer stability was examined.

3.3. Effect of the Blocking Step on the Nonspecific DNA Absorption

The influence of the blocking treatment on the nonspecific DNA absorption was also tested
(Figure 5). The main aim of this examination step was to identify the preferred blocking agent
to treat the silver-deposited glass surface, which prevents nonspecific DNA binding as well as
improves the efficiency of DNA hybridization. It is challenging to theoretically select the preferred
blocking agent, therefore, an empirical examination for screening was conducted. Two blocking
agents were tested including skim milk (1, 2, 3, and 4% (w/v)) and BSA (1, 2, and 3% (w/v)).
The silver-deposited glass surface without immobilized surface DNA strand was then incubated
with the different blocking solutions. Then, the tubes were exposed to 20 µL 1 µM of the reporter
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DNA strand for 1 h. After washing and addition of HRP substrate (H2O2 + luminol) the light signal
was detected (Figure 5A). From the results, generally the nonspecific DNA absorption was higher in
the case of unblocked (untreated) silver-deposited glass surface as compared to the blocked surface,
which can be seen by the higher light signal detected. For all the tested concentrations of the two
blocking agents, skim milk and BSA, the blocked (treated) silver-deposited glass tubes (~500 relative
light units (RLU)) showed 16-times lower light-signal levels than the unblocked glass tubes (~8000 RLU).
The nonspecific DNA absorption that was characterized in the unblocked silver-deposited glass surface
may result in increased levels of false-positive response during further measurements. Therefore, the
blocking treatment of silver-deposited glass surface is essential in order to allow for a correct biosensor
performance in cases of DNA detection. Moreover, the effect of the blocking treatment on the annealing
process of mRNAs was examined. The silver-deposited glass surface with immobilized 20 µL 1 µM
surface DNA strand was then incubated with the different blocking solutions. Then, the tubes were
exposed to 20 µL 1 µM of the reporter DNA strand for 1 h with or without 20 µL 1 µM of the target
DNA strand. After washing and addition of HRP substrate (H2O2 + luminol) the light signal was
detected (Figure 5B). The blocking solutions at the tested concentrations not only did not cause any
disturbance to the annealing process, but it also increased the efficiency of the annealing process by
4.38-times (with target DNA: 1500–1750 RLU vs. without target DNA: 400–500 RLU). To conclude,
the patterns of the uniform results indicate that the blocking treatment at all the tested concentrations
resulted in a similar blocking-layer formation that reduced the nonspecific DNA absorption to the
silver-deposited glass surface and did not cause any disturbance to the annealing process of mRNAs.
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Figure 5. Effect of the blocking step on the DNA nonspecific absorption on the glass surface.
The blocking treatment was conducted on the silver-modified glass surfaces, with either bovine
serum albumin (BSA) or skim milk. Then, the light signal was compared with the untreated (without
blocking agent) glass tubes. After the blocking step, all the tubes were incubated for 1 h with 20 µL 1 µM
of the reporter DNA strand linked to horseradish peroxidase (HRP). The light signal was measured
after washing, by adding a mixture of 1:1 (v/v) H2O2 + luminol solution (HRP substrate). (A) Glass
tubes without immobilized surface DNA. (B) The effect of the blocking step on the annealing processes
was examined by conducting the blocking treatment on glass tubes with immobilized 20 µL 1 µM
surface DNA strand. Then, they were exposed to the reporter strand (DNA-HRP) with or without
20 µL 1 µM of the target DNA strand. After the annealing process, the glass tubes were washed, and
the light signal was measured by adding the H2O2 + luminol solution (HRP substrate).

3.4. Effect of the Deposition-Reaction Duration on the Silver-Layer Formation and the Metal-Enhanced
Fluorescence (MEF) Amplification

The developed biosensor platform is based on the MEF phenomenon, which was amplified
by the deposition of a silver layer onto a glass surface [63]. The silver-deposition procedure is a
kinetic reaction and the formation of a silver layer is highly dependent on the deposition reaction
duration [64,65]. The MEF phenomenon is utilized in various biosensor platforms in order to increase
their sensitivity and performance [66] and also in cases of RNA detection [67]. The design of micro-
and nano-metal surface details are used in order to enhance or quench fluorescence signals [65]. MEF is
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described as the interaction of fluorophores with a metallic surface within a 5–90 nm distance and
has enhancing effects on optical properties such as quantum yield, photostability, and lifetime of
fluorophores [68]. The effect of the silver-deposition reaction duration on the silver-layer formation
was examined, and most importantly its effect on the MEF amplification (Figure 6). Except for the
reaction duration, the rest of the procedure parameters remained constant, as well as the concentration
of the reporter DNA linked to the HRP enzyme (100 nM). Over a silver-deposition reaction duration
ranging between 0 and 12 min, both the OD420 nm and the RLU signals were monitored. Generally,
with a distance lower than 10 nm [69] between the silver-deposited glass surface and the light photons
that are generated from the HRP enzyme reaction with its substrate, a plasmons transfer occurs
that increases the light signal, which is later detected by the CMOS sensor. After excessive silver
deposition, when the silver dots form a silver layer, the plasmons scatter and reduce the light signal [70].
From the results, it is clear that in a longer deposition reaction duration, more silver was deposited on
the glass surface. The OD420 nm values increased by 20-times over the increasing reaction duration from
0.05 (t = 0) and up to 1 (t = 12 min) (Figure 6A). A previous study also reported that by increasing the
deposition reaction duration a more uniform silver layer was formed [71]. While, as expected, the RLU
values showed an increasing pattern that then shifted into a decreasing pattern. The RLU values firstly
increased from 0 (t = 0) to 50 RLU (t = 5–8 min), and then reduced to 5 RLU (t = 12 min) (Figure 6B).
In a silver-deposition reaction duration of up to 8 min, the plasmons from the active optical molecules
transferred to the silver nano-dots on the glass tube surface and stimulated the light signal response,
resulting in the increasing RLU values (Figure 6C), whereas, afterward in the silver-deposition reaction
duration between 9 and 12 min, the glass surface was covered with a uniform (monolith) silver layer,
which caused the scattering of plasmons, and instead of producing light induction they scattered on
the silver surface, resulting in the decreasing RLU values (Figure 6D). The identification of this shift in
the MEF phenomenon is highly important for the enhancement of the light signal that is later detected
by the CMOS sensor. It is needed to identify the exact preferred silver-deposition reaction duration,
in order to allow for the increase in the number of silver nano-dots, while still prevent the creation of a
monolith silver layer because further increase of the silver-deposition reaction duration will result in
the reduction of the number of separate (isolated) silver nano-dots, and therefore, it will reduce the
MEF light signal enhancement effect. Over the tested silver-deposition reaction duration, a steady-state
period was identified within a deposition time of 5 to 8 min that produced a relatively-sTable 50 RLU
light signal (Figure 6B). In this period, the plasmons scattering effect was compensated by a possible
increase in the concentration of the immobilized DNA. In addition, SEM characterization was conducted
on the effect of the deposition time on the formation of silver nano-islands (Figure 7). The results
enforce the prior findings, where a clear correlation was visible between the deposition time and the
size and amount of the silver nano-islands. Longer deposition time resulted in significantly-larger
silver nano-islands (8 > 7 > 5 > 4 min). A monolayer was formed at a deposition time of 9 min, which
also confirms the reason behind the decrease in the light signal response. From a deposition time of
7 min onwards, 3D formations were already visible, which is a possible explanation for the steady-state
period in the light signal response with a 50 RLU light signal (Figure 6B). This finding also enforces the
assumption that in this deposition time-period the plasmons scattering effect was compensated by a
possible increase in the concentration of the immobilized DNA, because the 3D constructions may
have resulted in increased molecule immobilization, while still resulting in a monolayer surface that
reduced the overall light response by the scattering process. To conclude, a preferred silver-deposition
reaction duration of 5 to 8 min was identified, which increased the deposition of silver on the glass
surface by up to 13-times, and also resulted in the amplification of the MEF phenomenon and the
produced light signal to the maximum signal of 50 RLU that was later detected by the CMOS sensor.
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Figure 6. Effect of the deposition reaction duration on the silver-layer formation and the metal-enhanced
fluorescence (MEF) amplification. Monitoring the influence of the silver-deposition reaction duration
on both (A) optical density at 420 nm (OD420 nm), and (B) relative light units (RLU). (C) With a
distance lower than 10 nm between the silver-deposited glass surface and the light photons that were
generated from the horseradish peroxidase (HRP) enzyme reaction with its substrate, a plasmons
transfer occurred that increased the light signal, which was later detected by the complementary
metal-oxide-semiconductor (CMOS) sensor. (D) After excessive silver deposition the silver dots formed
a silver layer, and the plasmons scattered and reduced the light signal.

Biosensors 2020, 10, 204 12 of 18 

 

Figure 6. Effect of the deposition reaction duration on the silver-layer formation and the metal-

enhanced fluorescence (MEF) amplification. Monitoring the influence of the silver-deposition reaction 

duration on both (A) optical density at 420 nm (OD420 nm), and (B) relative light units (RLU). (C) With 

a distance lower than 10 nm between the silver-deposited glass surface and the light photons that 

were generated from the horseradish peroxidase (HRP) enzyme reaction with its substrate, a 

plasmons transfer occurred that increased the light signal, which was later detected by the 

complementary metal-oxide-semiconductor (CMOS) sensor. (D) After excessive silver deposition the 

silver dots formed a silver layer, and the plasmons scattered and reduced the light signal. 

 

Figure 7. Scanning electron microscopy (SEM) characterization of the effect of the deposition time on 

the formation of silver nano-islands. The surface morphology was characterized by an SEM model 

MIRA3 from TESCAN (Brno-Kohoutovice, Czech Republic), at a 5 kV accelerating voltage. Before 

imaging, a thin layer of palladium gold was deposited onto the samples in order to render them 

0 1 2 3 4 5 6 7 8 9 10 11 12

AgAg

HRP

Substrate
Light

Plasmon's 
transfer

Glass

CMOS

Light

HRP

Substrate 
Light

Plasmon's 
transfer

Glass

CMOS

Ag

Plasmon's 
scattering

X

No 
light

L
ig

h
t 

In
te

n
s
it
y
 (

R
L

U
)

Deposition time (min)B

A
C

D

Figure 7. Scanning electron microscopy (SEM) characterization of the effect of the deposition time on
the formation of silver nano-islands. The surface morphology was characterized by an SEM model
MIRA3 from TESCAN (Brno-Kohoutovice, Czech Republic), at a 5 kV accelerating voltage. Before
imaging, a thin layer of palladium gold was deposited onto the samples in order to render them
electrically conductive and to avoid potential surface charging by the electron beam. The influence
of the silver-deposition reaction duration of (A) 1 min; (B) 3 min; (C) 4 min; (D) 6 min; (E) 7 min;
(F) 8 min; (G) 9 min; and (H) 10 min, was investigated. A clear correlation is visible between the
deposition time and the size and amount of the silver nano-islands. Longer deposition time resulted in
significantly-larger silver nano-islands (8 > 7 > 5 > 4 min).
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3.5. The Sensitivity of the CMOS-Based Biosensor System to Colletotrichum gloeosporioides Fungi

The sensitivity of the developed CMOS-based biosensor system was lastly examined for
the detection of the quiescent DNA marker of Colletotrichum gloeosporioides, a specific sequence
of enoyl-CoA-hydratase/isomerase (Cgl_00014454) (Figure 8). The pathogenic fungus usually
penetrates the fruit before harvest. Then, it enters into a quiescent and microscopic phase,
and only when the fruit ripens does the fungi switch to its necrotrophic phase and cause decay [13].
The enoyl-CoA-hydratase/isomerase gene is highly upregulated during the fungal quiescent state,
while other metabolic and transcriptomic activities are significantly reduced [14]. DNA strands have
been widely used in order to detect fungi, bacteria, and other genetically-modified organisms [72].
In this study, a complementary CMOS-based biosensor was developed, which integrated specific DNA
strands that allowed the detection of enoyl-CoA-hydratase/isomerase. The conclusions that were
discussed in the previous sections were integrated in order to form an improved silver-deposition
procedure protocol. Then, a comparison of the detection sensitivity was conducted between two
setups that were based on the initial or the improved protocols. The initial procedure included a 24-mL
silver reaction solution heated at 35 ◦C on the heater plate for 9 min. While in the improved protocol,
the 4-mL silver reaction solution was heated at 35 ◦C in a water bath for 5 min. Then, the glass tubes
were immobilized with 20 µL 1 µM surface DNA strands and then treated with a blocking agent
solution of 1% (w/v) skim milk. For both the initial and improved protocols, the modified glass
surfaces were then exposed to the target DNA strand in different concentrations, and later exposed
to 20 µL 1 µM quiescent-stage reporter DNA strand. From the results, the biosensor demonstrated
the ability to distinguish between the different concentrations of the target DNA for up to a 10 nM
threshold (Figure 8A,B). The implementation of the improved procedure increased the biosensor
sensitivity to 3.3 nM, by using the preferred number of silver nano-dots deposited on the glass
surface (Figure 8C). Moreover, the light signal was amplified in the improved protocol (1000 nM,
30,000 RLU; 100 nM, 15,000 RLU; 10 nM, 5500 RLU; 3.3 nM, 4500 RLU; and 2 nM, 1500 RLU) as
compared to the initial protocol (1000 nM, 1600 RLU; 100 nM, 1350 RLU; 10 nM, 1000 RLU; 3.3 nM,
400 RLU; and 2 nM, 400 RLU) for all the tested concentrations. The light signal was higher by
18.75-, 11.11-, 5.5-, 11.25-, and 3.75-times in the improved protocol for all the tested concentrations
of the target DNA strand of 1000, 100, 10, 3.3, and 2 nM, respectively. The developed CMOS-based
biosensor system demonstrated comparable detection sensitivity with other optical-based [73,74],
electrochemical-based [75,76], and mass-balance-based [77,78] biosensor platforms for pathogen
detection in plants. The PCR technology demonstrates a more sensitive DNA detection; however, it is
not suitable for real-time monitoring on agricultural sites. To conclude, MEF can be amplified by a
customized silver-deposition procedure that results in increased detection sensitivity.
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Figure 8. The sensitivity of the CMOS-based biosensor system to Colletotrichum gloeosporioides fungi.
The response of the biosensor system to different concentrations of the quiescent marker of Colletotrichum
gloeosporioides, a specific sequence of enoyl-CoA-hydratase/isomerase (Cgl_00014454), before and after
integrating the conclusions from the optimization steps of the biosensor procedures. (A + B) initial
protocol and (C) improved protocol. Negative control (N.C.) was used. For both protocols, the modified
glass surfaces were immobilized with 20 µL 1 µM surface DNA strand, exposed to the target DNA
strand in different concentrations, and later exposed to 20 µL 1 µM quiescent-stage reporter DNA strand.
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4. Conclusions

In this study, a CMOS-based biosensor was developed, which integrates specific DNA strands that
allow the detection of enoyl-CoA-hydratase/isomerase, which is the quiescent marker of Colletotrichum
gloeosporioides fungi. The developed biosensor mechanism is based on the MEF phenomenon, which is
amplified by depositing silver onto a glass surface. Several parameters that affect the silver-deposition
procedure were examined, including silver solution temperature and volume, heating mode, and the
tank material. From the results, the deposition of silver was more efficient with a lower deposition
solution, a volume of 4 mL in a glass tank, and by heating the deposition solution with a water bath to a
temperature of 35 ◦C. Moreover, the effect of blocking treatment (skim milk or BSA) on the silver-layer
stability and nonspecific DNA absorption was tested. It was found that the treatment of a blocking
agent after silver deposition shows a protective effect over washing steps, which may increase the
silver-layer stability. The patterns of the uniform results indicate that the blocking treatment at all the
tested concentrations resulted in a similar blocking-layer formation that reduced the nonspecific DNA
absorption to the silver-deposited glass surface. The effect of the deposition reaction duration on the
silver-layer formation and the MEF amplification was also investigated. A preferred silver-deposition
reaction duration was identified of 5 to 8 min, which increased the deposition of silver on the glass
surface and resulted in the amplification of the MEF phenomenon and the produced light signal that
was later detected by the CMOS sensor. It was found that MEF can be amplified by a customized
silver-deposition procedure that results in increased detection sensitivity. The implementation of the
improved conditions increased the biosensor sensitivity to 3.3 nM (4500 RLU) with a higher detected
light signal as compared to the initial protocol (400 RLU). Moreover, the light signal was amplified
by 18.75-, 11.11-, 5.5-, 11.25-, and 3.75-times in the improved protocol for all the tested concentrations of
the target DNA strand of 1000, 100, 10, 3.3, and 2 nM, respectively. Several previous studies described
the development of CMOS-based biosensor systems for the detection of nucleic acids [79,80]. However,
they mostly address the detection of pathogens in healthcare [24,81], and not in agriculture or food.
The developed biosensor system demonstrated reproducible results within the same setup as well as
between different setups. The developed biosensor may allow the detection of the pathogenic fungus
in postharvest produce and determine its pathogenicity state.
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