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Abstract: Protein microarrays have gained popularity as an attractive tool for various fields,
including drug and biomarker development, and diagnostics. Thus, multiplexed binding affinity
measurements in microarray format has become crucial. The preparation of microarray-based protein
assays relies on precise dispensing of probe solutions to achieve efficient immobilization onto an
active surface. The prohibitively high cost of equipment and the need for trained personnel to
operate high complexity robotic spotters for microarray fabrication are significant detriments for
researchers, especially for small laboratories with limited resources. Here, we present a low-cost,
instrument-free dispensing technique by which users who are familiar with micropipetting can
manually create multiplexed protein assays that show improved capture efficiency and noise level
in comparison to that of the robotically spotted assays. In this study, we compare the efficiency of
manually and robotically dispensed α-lactalbumin probe spots by analyzing the binding kinetics
obtained from the interaction with anti-α-lactalbumin antibodies, using the interferometric reflectance
imaging sensor platform. We show that the protein arrays prepared by micropipette manual
spotting meet and exceed the performance of those prepared by state-of-the-art robotic spotters.
These instrument-free protein assays have a higher binding signal (~4-fold improvement) and a
~3-fold better signal-to-noise ratio (SNR) in binding curves, when compared to the data acquired by
averaging 75 robotic spots corresponding to the same effective sensor surface area. We demonstrate
the potential of determining antigen-antibody binding coefficients in a 24-multiplexed chip format
with less than 5% measurement error.
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1. Introduction

Understanding the true nature of the interaction between ligands and analytes requires accurate
analysis of the underlying binding kinetics, necessitating label-free detection (LFD) techniques to study
biomolecular interactions [1]. In addition to measuring the binding affinity, it is often desirable to quantify
the specificity of the interaction and cross-reactivity of the analyte to similar ligands, especially for
proteins. Thus, multiplexed LFD methods have emerged as essential laboratory techniques. Solid-phase
assays for LFD, especially in optical imaging modality, can interrogate arrayed sensor surfaces, and thus,
benefit from advances in protein microarray fabrication. Both quantitative and functional proteomics
have been exploiting the advantages of microarrays for a well-controlled study of proteins [2,3].
Protein microarrays offer multiplexing and low sample volume consumption, drastically reducing the
time and resources required for sample analysis with respect to other methods [4].
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To fully exploit the advantages of dense protein microarrays, binding kinetics analysis platforms,
such as Surface Plasmon Resonance (SPR), utilize external custom microarray spotting services
or in-house robotic microspotters (SPRi-Continuous Flow Microspotter, SPRi-Arrayer, Arrayjet,
M2 instrumentSIX). These arraying instruments offer precise sample dispensing of extremely low
solution volumes, and, can therefore, be utilized to create arrays with hundreds to thousands of probe
spots; however, they are often bulky, complex, and expensive. Therefore, the multiplexed affinity
measurements for proteins remain elusive for laboratories with limited infrastructure and resources.
For those applications, for which this level of precision and multiplexing may be unnecessary, a manual
(instrument-free) arraying capability along with a compatible LFD technique is highly desirable.

The Interferometric Reflectance Imaging Sensor (IRIS) platform is a thin-film interference-based
technology for dynamic mass accumulation measurements for label-free binding kinetics analyses.
The IRIS system is a simple common path interferometer utilizing multi-color LED illumination and
a CMOS camera for imaging a large (>30 mm2) sensor surface. The IRIS sensors are Si chips with a
thin layer of thermally-grown oxide on top, allowing for scalable fabrication. The instrumentation
and chip consumables are low-cost and accessible for smaller research labs without significant
capital investment. However, there is a bottleneck regarding surface immobilization of molecular
probes. Traditionally, robotic microarray spotters have been used to create high-density (hundreds
of spots) multiplexed sensor surfaces with homogenous surface morphology. For high-sensitivity
measurements, especially for low molecular weight (MW) target molecules, spatial averaging was
employed on replicate spots for maintaining statistical significance and achieving a low noise level.
While robotic printing produces molecular spots with excellent surface morphology, it introduces a
high-cost infrastructure element into the affinity measurement workflow, and a low-cost alternative
would be highly desirable.

Here, we present a method by which a researcher familiar with dispensing samples through
a micropipette can rapidly create a multiplexed protein array with as many as 24 different probes
on an IRIS chip that maintains excellent sensitivity and capture efficiency. An SNR analysis of
label-free binding kinetics assays is performed, and the results obtained by instrument-free arraying
are compared favorably to those obtained for a microarray fabricated through an automated robotic
spotter. We finally demonstrate that this instrument-free microarray fabrication method significantly
reduces the cost and resources necessary for producing a multiplexed affinity measurement workflow,
combined with high-sensitivity and small molecule measurement capability offered by IRIS technology.
Thus, accurate multiplexed affinity measurements, once limited to high-resource laboratories, will be
accessible for individual researchers and small research laboratories.

2. Materials and Methods

2.1. The IRIS Platform

The principles that drive the IRIS system and the advantages it offers have been described
extensively [4–6]. Briefly, the IRIS system (Figure 1) works on the principle of thin-film (110 nm SiO2/Si)
interference and label-free detection of biomass accumulation with a CMOS camera. In this common
path interferometer configuration, biomass accumulation on the sensor surface causes an effective
increase of the top transparent layer (oxide). The change in optical path difference (OPD) results
in a spectral shift in reflectance, affecting the recorded intensity of the image (Figure 2). To convert
intensities to mass accumulation, four images are taken before the experiment at 457 nm, 518 nm,
595 nm, and 632 nm with narrowband LEDs, and a lookup table is created for each sensor surface [7].
During experimentation, the sensor is illuminated with a single 457 nm LED.
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Figure 1. (a) The Reflectance Imaging Sensor (IRIS) fluidic cartridge; (b) the IRIS optical setup. 
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Figure 2. IRIS working principle; (a) demonstration of biomass accumulation on the sensor surface 

and (b) the resulting change in reflectance of the film. 

2.2. Image Acquisition and Analysis 

The real-time videos were captured with the CMOS camera FLIR BlackFly BFS-U3-70S7M-C. To 

maximize the sensitivity of the IRIS platform, the dominant noise factors should be minimized. In a 

bright field imaging setup, such as IRIS, the predominant noise contributor is shot noise. Shot noise 

or Poisson noise originates from the discrete nature of electrons, and can be modeled with a Poisson 

distribution. Since the variance of a Poisson distribution is equal to the number of events, in this case, 

electrons, in a shot noise limited system, the SNR increases with the square root of the number of 

generated electrons. The number of electrons accumulated on a single pixel is physically limited by 

its full well capacity, and therefore, SNR improvement by merely maximizing the accumulation is 

insufficient. In the earlier work, we have demonstrated SNR improvement, due to averaging nearly 

identical robotically spotted capture probes and temporal averaging [8]. In this study, we start with 

the same premise, and we demonstrate that noise is further decreased with increase spot area. The 

regions of interests include the spatially averaged spot area and its neighboring spatially averaged 

background area. Analyses of binding characteristics and SNR levels are performed in MATLAB. 

2.3. Sensor Chip Surface Functionalization 

Sensor functionalization acts to capture and covalently bind probes to the sensor surface without 

hindering their activity. We prepared our chips with a DMA-NAS-MAPS-based polymeric coating 

(commercially known as MCP-2, Lucidant Polymers LLC) [9]. Before coating, the chips were plasma 

cleaned with strong air plasma for 10 min to activate the silicon dioxide surface. The cleaned chips 

were submerged in a 1% w/v MCP-2 polymer in a 10% saturated ammonium sulfate solution. These 

chips were then incubated on a shaker plate for 30 min, washed by swirling in 1 L of MilliQ water, 

dried under a nitrogen stream, and placed into a vacuum drying oven at 80 °C for 15 min. The chips 

are then placed into a vacuum desiccator for at least 1 h prior to use.  

Figure 1. (a) The Reflectance Imaging Sensor (IRIS) fluidic cartridge; (b) the IRIS optical setup.
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Figure 2. IRIS working principle; (a) demonstration of biomass accumulation on the sensor surface and
(b) the resulting change in reflectance of the film.

The full assembly of the microfluidic cartridge consists of placing a 50 µm imaging spacer
(Grace Bio-Labs, Bend, OR) between the SiO2/Si IRIS chip and an anti-reflection (AR)-coated glass slide
with inlet/outlet through holes, creating a sealed fluidic chamber.

2.2. Image Acquisition and Analysis

The real-time videos were captured with the CMOS camera FLIR BlackFly BFS-U3-70S7M-C.
To maximize the sensitivity of the IRIS platform, the dominant noise factors should be minimized.
In a bright field imaging setup, such as IRIS, the predominant noise contributor is shot noise. Shot noise
or Poisson noise originates from the discrete nature of electrons, and can be modeled with a Poisson
distribution. Since the variance of a Poisson distribution is equal to the number of events, in this case,
electrons, in a shot noise limited system, the SNR increases with the square root of the number of
generated electrons. The number of electrons accumulated on a single pixel is physically limited by
its full well capacity, and therefore, SNR improvement by merely maximizing the accumulation is
insufficient. In the earlier work, we have demonstrated SNR improvement, due to averaging nearly
identical robotically spotted capture probes and temporal averaging [8]. In this study, we start with the
same premise, and we demonstrate that noise is further decreased with increase spot area. The regions
of interests include the spatially averaged spot area and its neighboring spatially averaged background
area. Analyses of binding characteristics and SNR levels are performed in MATLAB.

2.3. Sensor Chip Surface Functionalization

Sensor functionalization acts to capture and covalently bind probes to the sensor surface without
hindering their activity. We prepared our chips with a DMA-NAS-MAPS-based polymeric coating
(commercially known as MCP-2, Lucidant Polymers LLC) [9]. Before coating, the chips were plasma
cleaned with strong air plasma for 10 min to activate the silicon dioxide surface. The cleaned chips were
submerged in a 1% w/v MCP-2 polymer in a 10% saturated ammonium sulfate solution. These chips
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were then incubated on a shaker plate for 30 min, washed by swirling in 1 L of MilliQ water, dried under
a nitrogen stream, and placed into a vacuum drying oven at 80 ◦C for 15 min. The chips are then placed
into a vacuum desiccator for at least 1 h prior to use.

2.4. Probe Preparation and Spotting

Before spotting, all coated chips were placed in a humidity chamber set to 57% humidity for
10 min. Both BSA and α-lactalbumin proteins were diluted to a concentration of 1 mg/mL with 1X-PBS
(22 µm-filtered before use). As seen in Figure 3a, a partial array of α-lactalbumin was spotted manually
on one side of the sensor chip using a micropipette set to 0.25 uL (spot size ~1000 µm), while the array
of spots with sizes ranging from 130 µm to 1000 µm was created with robotic spotting, by varying the
number of 120 pL droplets dispensed by M2 iTWO™-300P Microarray Spotter at 57% humidity, on both
MCP-2 coated chips. For more accurately spaced arrays, a rudimentary X-Y stage can be used for
manual spotting. The spotted chips were then incubated at 67% humidity overnight. Upon retrieving
these chips from the humidity chamber, MCP-2 coated chips were blocked in a solution of 150 mM
ethanolamine and 100 mM Tris at pH 9 for one hour. All experiments were performed with both freshly
prepared and month-old batches; we did not observe any degradation or difference in capture efficiency.
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Figure 3. Spotted IRIS chips; (a) from left to right, one column of micropipette spots followed by
five columns of robotically deposited spots in decreasing number of droplets per spot; (b) identical
robotically dispensed single droplet spots (30 × 40 array).

As seen in Figure 3b, a robotic spotting scheme was implemented for direct comparison.
This scheme consisted of α-lactalbumin at 1 mg/mL and 0.5 mg/mL concentration, as well as negative
control columns consisting of BSA at 1 mg/mL concentration. Although the lower concentration spots
were used for binding consistency validation, this study focuses on the higher concentration spots.
These chips were produced using the M2 iTWO™—300P robotic spotter, at 57% humidity, in the same
run as the chips mentioned above to maintain consistency.

2.5. Chemical and Biological Materials

All reagents and buffers were purchased from Sigma Aldrich (St. Louis, MO, USA). Bovine serum
albumin (BSA) and α-lactalbumin were purchased from Sigma Aldrich (St. Louis, MO, USA).
The anti-α-lactalbumin antibody was purchased from Abcam (Cambridge, UK). All protein and
antibody samples were diluted by 1X-PBS. MCP-2 was purchased from Lucidant LLC. P-doped silicon
wafers with thermally grown silicon dioxide were purchased from Silicon Valley Microelectronics
(Santa Clara, CA, USA).
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3. Results

3.1. SNR Analysis of α-Lactalbumin—Anti-α-Lactalbumin Binding Curve: Dense Array, Single Droplet Spots

To calculate the SNR of the binding curves, a definition of the system’s signal is needed, followed by
the extraction of the noise level. Here we define binding as the mass accumulation on the spot area,
calculated from the thickness difference between the spot and its corresponding background, hence,
the difference in intensity readings between the spot and the background. The binding signal is defined
as the differential intensity, converted to an accumulated number of electrons on the camera sensor.
We know that in a shot noise limited system, the SNR level will be proportional to the square root
of the total number of electrons (N) accumulated on the CMOS camera sensor, since the signal level
is proportional to N and the dominating noise (shot noise) will be inversely proportional to

√
N.

The primary goal in binding experiments is extracting the binding coefficients of antigen-antibody
complexes. Hence, our definition of the signal is slightly different from the classic idea of absolute
intensity signal measured on the CMOS sensor; we aim to demonstrate the sufficient SNR level in an
experiment for accurate estimation of binding characteristics. For this reason, after recording the signal
level, we apply a Savitzky—Golay filter to binding-debinding events to estimate what we define as
the “noiseless” curve for each averaging step. Then, we extract the noise by calculating the standard
deviation of the difference between raw data and the estimated noiseless curve. Lastly, the SNR is
calculated as the level of the binding signal divided by the level of extracted noise. The binding
experiment for a dense array of single 120 pL spots of probe solution, as seen in Figure 3b, was run
for the fabricated chips. Figure 4a illustrates the binding curves for a single spot, and also a random
selection of 5, 50, and 500 spots curves averaged together; Figure 4b shows the filtered curves and the
calculated SNR for each curve.
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Figure 4. (a) Example binding curves from MCP-2 functionalized chip with single drop 1 mg/mL
α-lactalbumin spots showing the effect of spatial averaging. (b) Binding curves with Savitzky–Golay
filtering and their calculated SNR level.

The SNR analyses for binding curves extracted from spatially averaged spots on different chips are
shown in Figure 5. Here, for each number of averaged spots (n) (on each step increasing n), we apply
the explained SNR calculation on multiple (>100) random selections of n spots. The median of the
calculated SNR values for each n is fitted to a square root and power curve, and the median absolute
deviation (MAD = median (|x −median(x)|)) for each n is illustrated with error bars. Medians and
MADs are plotted with respect to the corresponding total number of electrons averaged. The applied
curve fitting reveals that SNR increases in a square root dependence on the accumulated number of
electrons with an R2 of 0.99.
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Figure 5. SNR dependence on a number of total electrons, captured from averaging a growing number
of identical spots on MCP-2 functionalized chips; 1 mg/mL ligand (α-lactalbumin) concentration.
The data points are fitted with a square root law, and the R2 value is shown.

3.2. SNR Analysis Comparison of Spots with Varying Areas and Micropipette Spots

In the previous section, an analysis of accumulated electron dependence of SNR was
demonstrated for α-lactalbumin—anti-α-lactalbumin binding experiments with the dense array
of robotic spots. Single droplet (120 pL) spots were averaged to increase the area of spatial averaging,
effectively increasing the number of electrons. A similar SNR analysis was performed on chips
robotically spotted with a varying number of droplets per spot, hence, varying areas; and manually
spotted with large surface areas by micropipetting (Figure 5). In Figure 6, the calculated SNRs of
different sized spots, the variations within the same spot size, and previously obtained SNR behavior
of dense array single drop spots are plotted together. The SNR levels of spots with larger areas are
observed to be higher than that of the multiple single droplets averaging with the same total electron
yield. The SNR dependence on electrons this time was shown for the robotically-created bigger spots,
with a square root curve fitting having an R2 of 0.97.

The improvement in the SNR levels results from the higher signal levels observed in spots
having a larger area. Figure 7a demonstrates the increasing signal level with increasing spot size.
Clearly, the amount of mass accumulation on the surface depends on the probe density and efficiency
of each spot, and increasing the dispensed volume on the surface is expected to increase the number
of probes per unit area, until saturation of the surface [10]. Figure 7b shows the initial thicknesses of
spots with varying sizes; hence, the immobilized probe densities, and the mass accumulation obtained
from the experiment.

Although measuring immobilized probe density demonstrates the capture capability of the
microarray spot, it is not adequate to assess the performance. This is precisely the reason for our
comparison using kinetic binding curves and error in fitting binding coefficients.
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3.3. Variance and Percent Error in Extracted Binding Coefficients with Respect to SNR Levels

As we mentioned before, the primary goal of many binding experiments is the correct estimation
of binding coefficients between the analyte and the ligand. A bivalent antibody may bind to two
separate antigens, and the binding of antigen to one binding site may directly impact the efficiency of
binding to the other binding site on the same antibody. This Bivalent model is described as follows [11]:

[L] + 2[R]
kon1
↔

koff1
[LR] + [R]

kon2
↔

koff2
[LRR] (1)
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where kon1 and koff1 represent the first association and dissociation rates, and similarly, kon2 and koff2

are the secondary association and dissociation rates. To understand the binding kinetics of these
interactions, the more computationally efficient Langmuir model can also be used [12]:

[L] + [R]
kon
↔
koff

[LR] (2)

where kon and koff represent the association and dissociation rates for the single-valent interaction
of two molecules. This single-valent model offers a simpler analytic solution and is frequently used
to model the antigen-antibody binding characteristics, since the secondary association and primary
dissociation rates (kon2 and koff1) can usually be neglected—for high-affinity reactions—in favor of
the primary association and secondary dissociation rates (kon1 and koff2). To demonstrate the effect of
SNR improvements on these estimations, we first applied the Langmuir fitting to extract the binding
coefficients and simulate a theoretical curve, and we simulated different “noisy” curves by adding a
random noise component having a Poisson probability distribution (Figure 8).
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Figure 8. (a) Example raw data from obtained is shown with a Bivalent and Langmuir fit, with R2

values of 0.998 and 0.993, respectively. (b) The theoretical curves were created from the extracted
coefficients with an additive Poisson noise.

We then averaged a growing number of curves (n), each step having a hundred random selections
of n different curves to mimic the improvement of SNR by spatial averaging. For every averaged
curve, the Langmuir fitting was performed, and the kon and koff rates were recorded for each random
selection. Figure 9 shows the histograms of the different kon coefficients extracted from each random
selection of n averaged curves.
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Figure 9. (a) Histograms for the extracted kon values with a corresponding number of curves averaged
and the yielding SNR values (SNR (a) 10–87, (b) 87–125). The red-dotted line represents the actual
calculated kon value (1.33 × 105). (b) The highest percent error was observed from each group of kon
estimations from averaging steps. The marked spot on the plot (green) represents the projected percent
error from micropipette spots on the 24-multiplexing line.

The histogram in Figure 9a displays that increasing SNR enables greater precision in predicting
kon values for α-lactalbumin and anti-α-lactalbumin association coefficient. The deviation of estimated
binding coefficients from expected values drastically decreases with increased SNR of the curves;
for kon, koff, and kd, a maximum percent error of 129, 553, and 1524 were observed for initial curves
(SNR~10), and 2.3, 54, and 53 were observed after averaging 150 curves (SNR~123), respectively.
Figure 9b demonstrates the decrease in percent error with averaging (with the increase of SNR); we also
show the estimated percent error (~3%) from micropipette spots as performance comparison. With a
rudimentary XY stage, an array of 6 × 4 spots (~1000 µm diameter) can be easily placed on the sensor
surface, yielding a multiplexing capacity of 24.

4. Discussion

In this study, we have compared the efficiency of robotically spotted microarrays and
instrument-free created spots for the α-lactalbumin protein and anti-α-lactalbumin antibody binding
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experiment. Given that the IRIS platform is a shot noise limited system, we expect to have an
increased SNR, therefore, increasing accuracy and sensitivity with spatial averaging. The performed
SNR analyses revealed that averaging performed on the single drop assays follows the

√
N rule,

showing the improvement of increasing the effective area/total electron accumulation. Four hundred
fifty replicate spots averaged showed an SNR of 260. Based on this result, the spots with larger
surface areas (hence, the increased number of electrons) were analyzed and compared with the same
method. We observed an improved signal level for the larger spots (robotic and instrument-free),
with respect to averaging duplicate single drop spots with the same total electron yield for both
surface coatings. Micropipette spots having the same area/electron yield of averaging 50–75 single
drop duplicate drops (SNR level ~ 70–110) showed SNR levels of 210–298. As expected, the increased
volume dispensed (proportional to radius cubed) on the surface resulted in an increase in probe density
within the spot area (proportional to radius squared). Probe density, due to the saturation of the
spot surface, remained the same after 10 nL. We then demonstrated the effect of noise level on the
accurate extraction of binding coefficients by first fitting a binding curve obtained from the kinetic
measurements (kon = 1.33 ×105 koff = 1.53 × 10−5), and then simulating noisy curves with the same
parameters and additive Poisson noise. The variance of the estimated parameters decreased with an
increasing number of curves averaged (therefore increased SNR) and the percent error of the values
decreased by 55, 10, and 28-fold for kon, koff, and Kd, respectively.

In conclusion, we demonstrated the excellent performance of the instrument-free assay fabrication
method in comparison to robotic spotting. Micropipette spots achieved higher signal levels (2.8–4.3 fold)
and higher SNR levels (~3 fold) than the averaging of robotic spots with the same area yield
(~75 spots). Coupled with the IRIS platform, this method enables accessibility of high-sensitivity
affinity measurements in a multiplexed manner for small research laboratories.
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