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Abstract: Hexagonal boron nitride (h-BN)-based heat-spreading materials have drawn considerable
attention in electronic diaphragm and packaging fields because of their high thermal conductivity
and desired electrical insulation properties. However, the traditional approach to fabricate thermally
conductive composites usually suffers from low thermal conductivity, and cannot meet the requirement
of thermal management. In this work, novel h-BN/cellulose-nano fiber (CNF) composite films with
excellent thermal conductivity in through plane and electrical insulation properties are fabricated via
an innovative process, i.e., the perfusion of h-BN into porous three dimensional (3D) CNF aerogel
skeleton to form the h-BN thermally conductive pathways by filling the CNF aerogel voids. When at
an h-BN loading of 9.51 vol %, the thermal conductivity of h-BN/CNF aerogel perfusion composite
film is 1.488 W·m−1

·K−1 at through plane, an increase by 260.3%. The volume resistivity is 3.83 × 1014

Ω·cm, superior to that of synthetic polymer materials (about 109~1013 Ω·cm). Therefore, the resulting
h-BN/CNF film is very promising to replace the traditional synthetic polymer materials for a broad
spectrum of applications, including the field of electronics.
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1. Introduction

The rapid development of miniaturization, integration, and high-power electronic devices brings
with it higher requirements for their effective heat-dissipation properties [1–3]. Considerable heat will
be accumulated and make an electronic device heat up during the working process if the heat cannot
be transferred out rapidly. This will affect the operation quality considerably, and compromise the
lifetime and reliability of electronic devices significantly [2,4,5], or even cause an explosion and other
serious accidents [6,7]. It is vital for the electronic and electrical industry to prevent heat accumulation
in the electronic devices by exporting the heat in a timely way [6,8–10]. Synthetic polymers have been
widely used in encapsulation of electronic devices as traditional insulating packaging materials [11–13].
However, the thermal conductivities of synthetic polymer materials are usually very low (about
0.1~0.5 W·m−1K−1 at room temperature) [7,14–17], and polymer itself also has aging issues leading to
embrittlement, such as polyimide (PI) [18], polyimide 11 (PI 11) [19], and polyethylene (PE) [20] films.
Hence, it is an inevitable trend for the electronic and electrical equipment industry to replace synthetic
polymer materials with green and eco-friendly insulating materials with high thermal conductivity.
Thermal insulating paper used in electronic devices is usually made from plant fibers [21], which
have excellent thermal stability and electrical insulation properties but poor thermal conductivity [22].
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Metal oxides (aluminum oxide, zinc oxide, beryllium oxide, etc.), ceramic and metal nitride (boron
nitride [23,24], aluminum nitride, etc.) have good thermal conductivities and electrical insulation
properties [25,26], but cannot be folded and crimped [27]. Obviously, insulating composites with
excellent thermal conductivity and flexible folding properties can be prepared by the combination of
cellulose fibers and thermally conductive inorganic metallic compounds [23]. Boron nitride (BN) as
a highly thermally conductive and electrical insulating two dimensional (2D) material has attracted
great interest in recent years due to its large and direct band gap, relatively low price, resistance to
oxidation, and high elastic modulus [28–30], which is one of the most promising 2D thermal conductive
fillers [4]. Micro-nano hexagonal boron nitride (h-BN) exfoliated from commercial h-BN, with the
thinner thickness and larger specific surface area, has a higher thermal conductivity which is widely
used in composites [4,31]. However, the thicknesses of electronic insulating film materials such as
polyimide films are often below 125 µm [32], and thinner film is always desirable. Apparently, it is
rather difficult for fiber-based film to reach a similar thickness to that of synthetic polymeric ones as
plant fiber itself has average diameter about 15~30 µm [33]. Moreover, it is hard to form thermally
conductive pathways between the two sides of the composite because of the barrier between fibers
and inorganic metallic compound particles [34,35]. To address this problem, perfusing h-BN into
cellulose-nano fiber (CNF) (100~2000 nm in length, <100 nm in diameter) aerogel originating from plant
fibers was proposed in an attempt to create multiple thermally conductive pathways of the composite
film [36]. This method not only overcomes the drawback of high resistance between ordinary plant
fibers and thermal conducting particles, but also makes the film thinner, leading to a flexible, foldable,
high temperature and aging-resistant insulating material.

In our previous work [6], the BN/CNF composite film was fabricated by mixing CNF and BN to
fabricate BN/CNF aerogel, and then filled with CNF dispersion. The drawback is that the existence
of CNF blocked the full contact between BN. In this study, we first report a novel strategy for the
fabrication of h-BN thermally conductive pathways on a 3D cellulose aerogel skeleton. The micro-nano
h-BN with excellent thermal conductivity and electronic insulation performance was selected as thermal
conductivity material. The highly thermally conductive composite films were then prepared using a
perfusion method, i.e., impregnating CNF aerogels into a certain amount of h-BN suspension with
ultrasonic-assisted mixing so that the h-BN closely connected with each other and thermal conductive
pathways can be formed in the network gap of CNF aerogel. The resulting green, eco-friendly and
high thermally conductive and electrical-insulating material is of great potential to substitute synthetic
polymer material for various electronic devices.

2. Experimental Section

2.1. Materials

The cellulose used in this work was bleached softwood pulp (Ilim Pulp Co. Ltd., Bratsk, Russia).
The hexagonal boron nitride (h-BN) powders with an average diameter of 1~2 µm were obtained from
Aladdin reagent Co. (Shanghai, China). 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was purchased
from Jiana Chemical Co., Ltd. (Changzhou, China). Isopropyl alcohol, sodium bromide were supplied
from Nanjing Chemical reagent Co. (Nanjing, China); sodium hypochlorite solution, with an effective
chlorine content of 12%, was purchased from Sinopharm group Co., Ltd. (Shanghai, China). A
cationic papermaking-grade poly(aminoamide) epichlorohydrin resin (PAE) solution (Tianma Specialty
Chemicals Co., Suzhou, China) was used without any purification. Polyvinylidene fluoride (PVDF)
membrane with a pore size of 0.22 µm was obtained from Aladdin reagent Co. (Shanghai, China).

2.2. Preparation of Cellulose-Nano Fiber (CNF)

Bleached softwood pulp with mechanical pretreatment (5 g) was suspended in 450 mL of deionized
water and 50 mL of NaClO. Then, TEMPO (0.08 g) and NaBr (0.8 g) were added into the solution and
stirred at 250 rpm at 25 ◦C for 8 h. The pH was adjusted to about 10.0~10.5 by HCl (20% v/v) and
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NaOH (0.5 mol·L−1). Then, the reaction was terminated by adding ethyl alcohol (10 mL), followed
by adjusting pH to 7 with HCl (1 mol·L−1). The suspension was dialyzed using a dialysis bag with
MW-CO 12000~14000 (D) after centrifuging at 5000 rpm 3 times. Eventually, the suspension was
treated with a homogenizer (FB-110X, ShangHai LiTu Mechanical Equipment Engineering Co. Ltd.,
Shanghai, China) under a pressure of 600 bar for 10 cycles.

2.3. Exfoliation of Hexagonal Boron Nitride (h-BN)

The liquid phase exfoliation of h-BN was performed according to the work reported previously [4],
as shown in Figure S1. Briefly, a certain amount of h-BN powders was added into a mixture solvent of
isopropanol and deionized water (1/1). The suspension was sonicated in a sonication bath (X0-650,
Xianou Instruments Ltd., Nanjing, China) for 8 h with a frequency of 200 kHz and a 520 W output
power. The resulting dispersion was centrifuged at speed of 3000 rpm for 20 min, the supernatants
were dried at 80 ◦C for 24 h to obtain micro-nano sized h-BN power.

2.4. Preparation of CNF Aerogel

Cellulose aerogels were fabricated by a typical method. In brief, 33.4 g, 0.5 wt % of CNF and
0.83 g, 0.1 wt % of PAE dispersion were mixed in an ice bath under the ultrasonic condition at 300 W
output power (X0-650, Xianou Instruments Ltd., Nanjing, China) [37]. To prevent flocculation of CNF,
PAE should be added drop by drop. Then the mixture slurry was poured into polystyrene petri dishes
(diameter 65 mm) and frozen in liquid nitrogen. The CNF aerogels were obtained after freeze-drying
at −80 ◦C, 15 Pa for 72 h in a FD-1C-80 freeze dryer (Shanghai Yuming Instruments Ltd., Shanghai,
China). CNF aerogels with enhanced wet strength were obtained after heated at 105 ◦C for 30 min to
induce cross-linking.

2.5. h-BN/CNF Composite Films Preparation

In this study, h-BN/CNF composite films were prepared by the blending method and aerogel
perfusion method, as shown in Figure 1.
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2.5.1. Preparation of h-BN/CNF Blended Composite Film

CNF was mixed with the h-BN suspension in the beaker. Various amounts of h-BN (see Table 1)
were added with stirring for 30 min, and the concentration of the mixed suspension was adjusted
to 0.5 wt %. Then, the mixture slurry was poured into polystyrene petri dishes (diameter 65 mm)
and transferred into a blast oven at 25 ◦C for 7 h to obtain the gel. The mixture after preliminary
dehydration was placed between two PVDF membranes to compact under 0.5 MPa pressure. Finally,
the composite films were calendered (YYG-300, Dandong Yutai Instruments Ltd., China) under 1 MPa
for 10 times. All the samples were conditioned at 25 ◦C and 50% relative humidity (RH) for 72 h
before measurements.

Table 1. Ratio of h-BN of the composite films (the CNF dry weight of all samples was 0.167 g).

Sample h-BN (g) h-BN Loading (wt %) h-BN Loading (vol %)

1 0 0 0
2 0.0084 4.79 1.59
3 0.0167 9.09 3.18
4 0.0251 13.07 4.78
5 0.0334 16.67 6.33
6 0.0418 20.02 7.92
7 0.0501 23.08 9.51

2.5.2. Preparation of h-BN/CNF Aerogel Perfusion Composite Film

The h-BN/CNF aerogel perfusion films were fabricated using ultrasonic-assisted impregnation
of h-BN suspension. The h-BN loading was controlled through changing the h-BN solution volume.
After ultrasonic infiltration for 15 min, 30 min, 45 min, 60 min, 75 min, and 90 min, the samples were
transferred into a blast oven at 25 ◦C for 5 h to remove a part of the water. The aerogel composites
after preliminary dehydration were placed between two PVDF membranes to compact under 0.5 MPa
pressure. Finally, the composite films were calendered (YYG-300, Dandong Yutai Instruments Ltd.,
Dandong, China) under 1 MPa for 10 times. All the samples were conditioned at 25 ◦C and 50% RH for
72 h before measurements.

2.6. Characterization

The morphologies of h-BN and CNF were characterized using a dimension edge atomic force
microscope (AFM) (Bruker, Germany) in tapping mode at 300 kHz. The morphologies of the h-BN,
CNF aerogel, and h-BN/CNF composite films were observed using an environmental scanning electron
microscope (SEM) (Quanta-200, FEI, Hillsboro, OR, USA). The thermal stability of the composite
films were measured via thermogravimetric (TG) analysis using a thermogravimetric analyzer TGA
(Q5000IR, TA instruments, New Castle, DE, USA). The volume resistance was tested with an insulation
resistance tester (ZC36, Shanghai Jingke Industrial Co., Shanghai, China) at 25 ◦C and 50% humidity.
Thermal conductivity was measured through the laser flash technique (LFA 467 HT HyperFlash,
NanoFlash, Netzsch, Seelze, Germany). Every film was cut into a square with size of 10 × 10 mm,
the thermal diffusion coefficient of the sample was measured at 25 ◦C under the N2 atmosphere of
50 mL/min. The specific heat of the sample was obtained by DSC 204 F1 Phoenix (Netzsch, Germany);
the density was measured using a real density meter with exhaust method. Thermal conductivity K
(W·m−1

·K−1) was calculated as a multiplication of density (ρ, g·cm−3), specific heat (Cp, J·g−1
·K−1), and

thermal diffusivity (α, mm2
·s−1); namely: K(T) = α(T) × Cp(T) × ρ(T). The composite film sample was

placed in the oven of 80 ◦C with constant temperature for 6 h, and then transferred to the platform
on the cold plate at room temperature (around 19 ◦C). The temperature of the composite films were
recorded by an infrared thermal-graph (Ti45, Fluke, Madison, WI, USA).
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3. Results and Discussion

3.1. Preparation of h-BN/CNF Composite Film

In this study, CNF was prepared by the combination of TEMPO/NaClO/NaBr oxidation and
high-pressure homogenization, and the carboxylate content of CNFs was 1.587 mmol·g−1. Figure 2a
shows the AFM image of CNF with length of 300~1000 nm and Figure 2b is the corresponding height
distribution measured from AFM topography, which shows the diameters of CNFs around 5~7 nm.
The diameter of CNFs was 5~7 nm (<100 nm) and exhibited a Tyndall effect in Figure S2a [38]. This
endows good flexible and folding properties in the composite film because of the high aspect ratio of
CNFs (around 40~200). Figure S2b,c present the images of the cellulose aerogel, shaped like a “white
foam”. Hydrogen boding governs the strength of CNF aerogel, which tends to be broken when exposed
to water, leading to poor aerogel strength. Therefore, a wet strength agent, i.e., PAE, was added to
CNF solution to endow the CNF aerogel water resistance. Figure 2c,d present the SEM images under
different magnifications of the CNF aerogel, demonstrating that a typical 3D porous structure with
pore diameter of 5~20 µm was created.
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Figure 2. (a) Atomic force microscope (AFM) image of CNF. (b) The corresponding height distribution
measured from AFM topographic data of CNF. (c,d) Scanning electron microscope (SEM) images
of CNF aerogel under different magnifications. (e) and (f) AFM images of h-BN under different
magnifications. (g) The corresponding height distribution measured from AFM topographic data from
Figure e. (h) Tyndall phenomenon of h-BN suspension.
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In order to increase thermal transfer efficiency of h-BN, theoretically, the thermal conductive
network should be constructed as much as possible. In this case, the thickness of h-BN sheets should be
kept as thin as possible and the specific surface area of h-BN should be large. Exfoliation is a common
method to obtain the micro-nano h-BN [39]. Therefore, it is desirable to increase the contact area and
decrease the inter-layered gap between h-BN for the conductive network construction, leading to
the relatively gentle phonon scattering at the interfaces of h-BN and thus the high thermal transfer
efficiency [2]. Figure S1 presents the schematic of exfoliation of h-BN. Few-layer h-BN was prepared
by sonication-assisted liquid-phase exfoliation using a mixture of isopropanol and deionized water
as solvent for both dispersion and exfoliation. Under the intense vibration of ultrasonic wave, the
polar molecules of isopropanol permeate into the h-BN film layer, and large size h-BN particles were
separated. After centrifuging and collection, a uniform and stable h-BN suspension was obtained,
as shown in Figure 2h. When irradiated by red laser beam, an obvious pathway can be observed,
resulting in the Tyndall phenomenon [40]. The morphologies of the h-BN were observed using SEM
and AFM. The morphology of the commercial h-BN is shown in Figure S3a. The original h-BN showed
the scale-like shape, with lateral sizes in the range of 1~2 µm and the thickness of about dozens of
layers. After exfoliation, the transverse dimensions and sheet thicknesses were calculated according
to the AFM topographic images of the exfoliated h-BN as shown in Figure 2e,f. Figure 2g is the
corresponding height distribution measured from AFM topographic data of h-BN. We can see that the
length and height of h-BN were about 400~1000 nm and 50~130 nm, respectively. Compared to our
previous work [6], the transverse dimensions and thickness of boron nitride nano-sheets (BNNS) were
about 500 nm and 5nm (Figure S3b,c). This indicates that with the increase of the centrifugal speed, the
size of the h-BN in supernatants became smaller. All the data suggested that the h-BN was exfoliated
successfully, which will increase the heat conductivity.

Figure 1 presents the synthesis pathways of h-BN/CNF composite films by simple blending and
aerogel perfusion methods. In brief, the h-BN/CNF blended composite film was prepared by mixing
CNF with h-BN in suspension; after drying and calendering, the h-BN/CNF blends were obtained. The
h-BN/CNF aerogel perfusion films were fabricated using ultrasonic-assisted impregnation of h-BN
suspension into CNF aerogel. After ultrasonic infiltration, h-BN was packed into the 3D network of
CNF aerogel and formed thermally pathways. After drying and calendering, the h-BN/CNF aerogel
perfusion film was fabricated.

Figure 3a shows an image of h-BN/CNF composite film using the perfusion method with the
h-BN content of 23.08 wt %. Figure 3b presents the optical photograph of a “paper crane” folded from
the composite film shown in Figure 3a. This demonstrated good folding and crimping performance of
the aerogel perfusion-prepared composite film. The surface morphologies of the h-BN/CNF composite
films are clearly exhibited in Figure 3c,d. Comparing two morphologies, it can be seen that the
composite film prepared by perfusion method bears more h-BN particles than h-BN/CNF blended
composite film. This is due to the fact that the blended method makes the mixture of CNF and h-BN
more uniform, whereas the perfusion method would have more h-BN trapped on the surface of the
CNF aerogel. The cross-section images of the h-BN/CNF composite film are shown in Figure 3e,f. As
shown in Figure 3e, after impregnation by h-BN suspension, the pores of CNF aerogel were fully
filled with h-BN. The layered structure of h-BN and CNF could also be observed, but the exact shape
of the nanoscale h-BN could not be revealed due to the limited magnification. However, those in
white pathways indeed represent the h-BN thermally conductive pathways, which are framed by blue
rectangles in the Figure. These features would be beneficial for enhancing the thermal conductivity of
the h-BN/CNF composite film material. According to the morphologies of CNF, CNF aerogel, h-BN and
the cross-sectional SEM image of h-BN/CNF aerogel perfusion composite film, the proposed thermal
defusion mechanism is illustrated in Figure 4, in which the white filaments represent CNFs, h-BN
is shown in a yellow hexagon, and the thermally conductive pathways formed by h-BN contacting
each other are represented with red lines. As can be seen from Figure 3e, the thermally conductive
pathways are vertical, so the prospective thermal defusion direction is upright, as indicated by the
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red arrows. Meanwhile, no obviously thermally conductive pathways were observed in h-BN/CNF
blended composite film (Figure 3f).Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 14 
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Figure 3. (a) Optical photograph of h-BN/CNF aerogel perfusion composite film with 23.08 wt %
h-BN loading, red arrow indicated the diameter of the film was 65 mm. (b) Optical photograph of a
“paper crane” folded from a h-BN/CNF aerogel perfusion composite film. (c,d) Surface SEM images of
h-BN/CNF aerogel perfusion composite film and h-BN/CNF blended composite film with 23.08 wt %
h-BN loading, respectively. (e,f) Cross-sectional SEM images of h-BN/CNF aerogel perfusion composite
film and h-BN/CNF blended composite film with 23.08 wt % h-BN loading, respectively, red arrows
were channels of CNFs and h-BN, blue rectangles were thermally conductive pathways of h-BN.
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3.2. Thermal Stability of h-BN/CNF Aerogel Perfusion Composite Films

The decomposition temperature of h-BN/CNF aerogel perfusion-prepared composite film started
from 200 ◦C while pure CNF film degradation began at 175 ◦C. The lower onset degradation
temperature of CNFs is due to the existence of carboxyl groups on the surface of CNFs [41,42]. The TG
and the corresponding derivative thermogravimetry (DTG) curves of the h-BN/CNF aerogel perfusion
composite film are shown in Figure 5. For the pure CNF film, the initial decomposition temperature
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and the maximum decomposition rate were 175 ◦C and 272 ◦C, respectively. The initial decomposition
temperature of pure CNF film was lower than that reported elsewhere [43], possibly because the
voids in the film forming from aerogels reduce the thermal stability of the pure CNFs film. The initial
decomposition temperature and the maximum decomposition rate of the film gradually increased
with the increase of h-BN content in the composite film. When the h-BN contents were 16.67 wt % and
23.08 wt %, the initial decomposition temperature of the composite film increased from 175 ◦C to 200 ◦C
and 218 ◦C, respectively; and the temperatures corresponding to the highest rate of decomposition
temperature increased from 272 ◦C to 279 ◦C and 292 ◦C, respectively. It has been reported that pure
h-BN exhibits high thermal stability on heating up to 800 ◦C under N2 atmosphere [44], indicating
that h-BN can effectively slow down the decomposition rate of composite film. The h-BN added to
the composite film enhances the heat resistance and barrier effect because of its high heat capacity
and thermal conductivity; meanwhile, this prevents CNF components in composite film from being
decomposed promptly. Moreover, with the layered structure of h-BN/CNF aerogel composite film,
h-BN closely connected with each other and provided a tortuous path for the diffusion of gas molecules
and significantly reduced the permeation rate of gas. Herein, the oriented h-BN platelets acted as a
physical barrier and delayed the escape of degradation products, which finally promoted the thermal
decomposition temperature to move towards high temperature [31]. Thus, the thermal stability of the
composites was improved.
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3.3. Thermal Conductivity and Electrical Properties of h-BN/CNF Composite Films

To investigate the thermal conductive properties of the h-BN/CNF composite films, the specific
heat, density and thermal diffusivity of the blended composite film and aerogel perfusion composite
film were tested respectively in the experiment, as shown in Table S1. According to Table S1, the
specific heat of blended composite film was very close to the aerogel perfusion composite film when
the h-BN loading was the same. This was probably due to the fact that the heat absorbed by the
material remained the same with the temperature rising so long as the composition of materials is
identical, which was hardly affected by the internal structure of the material [45]. However, the thermal
diffusivity of aerogel perfusion composite film was higher than that of blended composite film with the
same content of h-BN. The higher thermal diffusivity rate was probably attributed to more heat transfer
passages formed in the aerogel perfusion composite film; or less heat transfer resistance between h-BN
and CNF.

Taking the content of h-BN as abscissa and the thermal diffusivity as ordinate, the linear distribution
line is shown in Figure 6a. As can be seen, the thermal diffusivity of the film was 0.268 mm2

·s−1

without h-BN, regardless of preparation method. After loading with the same amount of h-BN, the
thermal diffusivity of composite films prepared by the aerogel perfusion method was greater than that
of composite films prepared by blending method. The correlation coefficient (R2) is an indicator to the
degree of affinity; the larger the R2, the higher the correlation between independent and dependent
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variables. It is of interest that starting from 0 wt%, the thermal diffusivity of the h-BN/CNF composite
film increased linearly with the h-BN content. Comparing two types of composite films at the same
loading, we found that R2 of blended composite film was higher than that of aerogel perfusion
composite film, implying that the thermal diffusivity of the blended film increases by a much similar
degree for every increment of h-BN content.Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 14 
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Inserting the data in the table into the Equation (1) leads to the thermal conductivity of the
composite films, which is defined as:

K(T) = α(T) × Cp(T) × ρ(T) (1)

where K (W·m−1K−1), ρ (g·cm−3), Cp (J·g−1K−1) and α (mm2
·s−1) represent the thermal conductivity,

density, specific heat and thermal diffusivity of the film, respectively. Meanwhile, it has been reported
that the thermal conductivities of the composites can be predicted by several physical models such as
the Agaris equation [46], effective medium theory (EMT) [47] and Foygel’s theory [48], etc. For the
purpose of comparison, in this study, we choose the Agaris equation (i.e., Equation (2)) which is a
classic model fitting the composite with low filler loading for estimating the thermal conductivity of
particulate composites [1]:

logK = Vf × C2 × logKf + (1 − Vf) × log(C1 × Kp) (2)

where Vf is the volume fraction of filler. Kp and Kf are the thermal conductivities of polymer substrate
and filler, here, they are 0.413 and 350 W·m−1K−1 [49], respectively. C1 is a measure of the factor of filler
on the secondary structure of polymer substrate, such as crystallinity and crystal size, which is related to
the thermal conductivity of polymer substrate. Referring to a previous study [46], C1 can be considered
to be 1 in this work; C2 measures the degree of difficulty to form conductive pathways and generally
should be 0~1. The higher the value of C2, the easier to form the conductive pathways. The thermal
conductivities of experimental and predicted values of Agari’s model are shown in Figure 6b by setting
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C2 as 1. It can be seen that the thermal conductivity of the composite film prepared by both methods
increased with the increase of h-BN. When h-BN content was 23.08 wt%, the thermal conductivities of
the blended composite film and aerogel perfusion film were 0.678 W·m−1K−1 and 1.488 W·m−1K−1 at
25 ◦C, respectively, 64.2% and 260.3% higher than that of pure CNF film. Obviously, the predicted
values are slightly lower than the experimental values of h-BN/CNF aerogel perfusion-prepared film.
Accordingly, the calculated C2 should be much higher than 1 if we use Agaris model to fit the measured
thermal conductivities of h-BN/CNF aerogel perfusion composite film. These results demonstrated
that the perfusion-prepared aerogel h-BN/CNF composite film facilitated the formation of thermally
conductive pathways with the low loading of h-BN. To further elucidate the extent of improvement, a
parameter ηwas introduced, Equation (3) which is defined as:

η = (Kh − Kc) × 100/Kc (3)

where Kh (W·m−1K−1) and KC (W·m−1K−1) represent the thermal conductivity of the composite film
and pure CNF film, respectively. As shown in Figure 6c, it can be found that the increment of thermal
conductivity improved with the increasing of h-BN. Moreover, the increased range from aerogel
perfusion method was much greater than that from blended method. After calendering, the density
difference between the two types of film was not significant, but the thermal conductivity of the
h-BN/CNF aerogel perfusion composite film was much higher than h-BN/CNF blended composite film.
This further demonstrates that perfusion h-BN into CNF aerogel can create more thermally conductive
pathways, which is not only conducive to phonon propagation, but also effectively improve the overall
thermal conductivity of the composites. It is always desirable to have the higher thermal conductivity
with the loading of h-BN as low as possible. As a result, the loading of h-BN above 23.08% was not
further conducted.

For electrical insulation applications, a high electrical resistivity of the composite material is
important. Figure 6d presents the volume electrical resistivity (Φ) of the h-BN/CNF composite films.
One can see that the addition of h-BN was helpful to increase the electrical resistivity of the films, and the
volume resistivity of the blended composite film was slightly higher than that of the aerogel perfusion
composite film at the same h-BN loading. It is possible that the h-BN particles in the h-BN/CNF
composite film prepared by the blending method were more evenly dispersed and contributed more
towards the insulation performance. As can be seen from Figure 6d, the volume resistivities of pure
CNF film, blended h-BN/CNF composite film and aerogel perfusion h-BN/CNF composite film with
h-BN loading of 23.08 wt % were 2.68 × 1014 Ω·cm, 3.98 × 1014 Ω·cm, and 3.83 × 1014 Ω·cm, respectively.
The h-BN/CNF composite films can fully meet the insulation requirements (Φ > 109 Ω·cm) [50] for
electrical insulation applications.

3.4. Thermal Management Capability of the h-BN/CNF Aerogel Perfusion Composite Films

In order to demonstrate the thermal management application of the h-BN/CNF aerogel
perfusion-prepared composite film, the variations of the surface temperature of the composites
with time during heating and cooling were recorded using an infrared thermal imager. To do this, the
samples of pure CNF film, h-BN/CNF aerogel perfusion composite film loaded with 23.08 wt % h-BN
were vertically placed on the same stage. The thickness of both specimens is the same, i.e., 0.1 mm. The
temperature distribution images with time and optical photographs are shown in Figure 7a, in which
all the samples were placed in an 80 ◦C oven for 6 h to ensure uniform sample temperature and then
transferred to a thermal insulating wooden stage in a room temperature environment. During the heat
dissipation process, the h-BN/CNF aerogel perfusion composite film exhibited much faster decrease
with time in comparison with the pure CNF film. 2 s after the sample was placed in the wooden
stage, the center temperatures of pure CNF film and h-BN/CNF aerogel perfusion composite film were
decreased from 80 ◦C to 67.9 ◦C and 56.7 ◦C, respectively. After 5 s, the films center temperatures
reached 41.8 ◦C and 37.2 ◦C, and further dropped to 20.9 ◦C and 19.0 ◦C after 30 s, respectively. The
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results indicated that h-BN/CNF aerogel perfusion composite film has good transient heat dissipation
performance at high temperature.Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 14 
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23.08 wt % h-BN loading in cooling process. (b) Thermographs of pure CNF film and h-BN/CNF
aerogel perfusion composite film with 23.08 wt % h-BN loading on the surface of a light-emitting diode
(LED) luminescence chip.

The practical thermal management performance of pure CNF film and h-BN/CNF aerogel perfusion
composite film with 23.08 wt % h-BN loading was demonstrated in the experiment. A 1 w LED chip
with a diameter of 30 mm was applied in the test processing, and every film was cut into a disk-shape
with a diameter of 30 mm. In the working process, the pure CNF film and h-BN/CNF aerogel perfusion
composite film were put on a flat wooden stage, respectively, and the LED chip was fixed on the top of
the film tightly, to ensure the full contact between the film and the LED chip. The surface temperature of
the LED chip was recorded in a timely way through an infrared thermal imager. As shown in Figure 7b,
the LED chip surface center temperature was 61.4 ◦C after continue to work for 1 h, while the center
temperatures of the LED chip with the pure CNF film and h-BN/CNF aerogel perfusion composite
film were 59.1 and 52.1 ◦C, respectively. h-BN/CNF aerogel perfusion composite film displayed better
heat dissipation efficiency in practical applications. The excellent thermal management capability can
timely dissipate of the heat within the LED, eventually resulting in an extended lifetime and improved
the thermal management efficiency of the electronic devices.

4. Conclusions

h-BN/CNF composite film with improved thermal conductivity and electrical insulation properties
was successfully fabricated by the perfusion of micro-nano h-BN into CNF aerogel. At 23.08 wt %
of h-BN content, the thermal conductivities of the h-BN/CNF aerogel perfusion composite film was
1.488 W·m−1K−1, a 260.3% increase compared with pure CNF film. The volume resistivities of pure
CNF film and h-BN/CNF aerogel perfusion composite film with 23.08 wt % h-BN loading were
2.68 × 1014 Ω·cm and 3.83 × 1014 Ω·cm, respectively. The thermal management capacity in practical
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applications also is investigated. After continuing to work for 1 h, the center temperature of the
LED chip with the h-BN/CNF aerogel perfusion composite film was 7 ◦C lower than that of the LED
chip with the pure CNF film, indicating that the heat dissipation efficiency of h-BN/CNF aerogel
perfusion composite film was better than pure CNF film. Therefore, the as-fabricated h-BN/CNF aerogel
perfusion composite film is promising to replace the traditional synthetic polymer film materials as a
green, eco-friendly and flexible thermally conductive and electrical insulation film, leading to a broad
potential application in the field of electronics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/7/1051/s1:
Figure S1: Schematic of exfoliation of h-BN, Figure S2: (a) Tyndall phenomenon of CNF. (b) and (c) Optical
photographs of CNF aerogel, red arrows indicated the diameter and the thickness of the CNF aerogel were 65 mm
and 7mm, Figure S3: (a) SEM image of commercially h-BN. (b) SEM image of exfoliated h-BN. (c) AFM topographic
image of exfoliated h-BN. (d) The corresponding height distribution measured from AFM topographic data from
Figure 2f, Table S1: Comparing the specific heat, thermal diffusivity and density of h-BN /CNF composite films
prepared by different methods (25 ◦C).
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