

Supplementary Materials Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H2 Generation

5 Jinbao He, Aicha Anouar, Ana Primo * and Hermenegildo García *

6 Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat

7 Politècnica de Valencia, Av. De los Naranjos s/n, 46022 Valencia, Spain; 2131342@mail.dhu.edu.cn (J.H.);

- 8 aian1@doctor.upv.es (A.A.)
- 9 * Correspondence: hgarcia@qim.upv.es (A.P.); aprimoar@itq.upv.es (H.G.); Tel.: +34-96-387-7800 (A.P.); Tel.: 10 +34-96-387-7807 (H.G.)

11

Figure S1. Raman spectra of (N)G prepared from chitosan pyrolyzed at 900, 1000, 1100, 1200 °C under
 Ar (a) or Ar/H₂ (5%) (b) flow respectively.

- 14
- 15
- 16

17

Figure S2. Raman spectra of G prepared from alginate pyrolyzed at 900, 1000, 1100, 1200 °C under Ar
(a) or Ar/H₂ (5%) (b) flow respectively.

20

22 Figure S3. Raman spectra of (N)G prepared from chitosan (a) and G prepared from alginate (b) 23 pyrolyzed at 1100, 1200 °C under Ar/H₂ (5%) or (10%) flow respectively.

	(N)G						G			
Entry	T (°C)	Gas	C-C	C-0/C-N	C=O	O-C=O	C-C	C-0	C=O	O-C=O
1	900	Ar	66.36	26.33	5.33	1.99	63.91	25.73	6.20	4.16
2	900	Ar/H ₂	67.46	23.57	5.06	3.92	66.25	22.95	5.20	5.60
3	1000	Ar	67.17	23.46	4.09	5.28	67.10	22.23	5.85	4.82
4	1000	Ar/H ₂	68.14	23.84	3.30	4.72	67.35	23.13	3.43	6.09
5	1100	Ar	68.19	22.53	4.63	4.66	67.62	24.12	3.35	4.91
6	1100	Ar/H ₂	68.60	22.81	2.81	5.78	67.67	22.63	4.23	5.47

3.67

5.20

3.74

4.32

68.44

70.44

22.05

21.39

3.83

3.61

5.67

4.57

26

7

8

1200

1200

Ar

Ar/H₂

68.91

69.68

23.68

20.80

Table S2. Distribution of N atoms among different chemical environments as determined by deconvolution of the high resolution XPS N 1s peak for the (N)G samples under study.

				(N)G	
Entry	T (°C)	Gas	Graphitic	Pyrrolic	Pyridinic
1	900	Ar	17.21	47.37	35.43
2	900	Ar/H ₂	19.82	51.63	28.55
3	1000	Ar	20.82	50.31	28.87
4	1000	Ar/H ₂	22.76	51.26	25.98
5	1100	Ar	23.05	55.18	21.77
6	1100	Ar/H ₂	26.73	57.08	16.18
7	1200	Ar	36.93	41.44	21.63
8	1200	Ar/H ₂	38.24	40.80	20.95

Figure S4. High resolution XPS of C1s peak of G pyrolyzed at 900 °C under Ar (a) or Ar/H₂ (5%) (b)
and G pyrolyzed at 1200 °C under Ar (c) or Ar/H₂ (5%) (d).