MXene Boosted CoNi-ZIF-67 as Highly Efficient Electrocatalysts for Oxygen Evolution

Yangyang Wen*, Zhiting Wei, Chang Ma, Xiaofei Xing, Zhenxing Li* and Dan Luo*

State Key Laboratory of Heavy Oil Processing, College of New Energy and Material, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China; WZT1215385749@126.com (Z.W.); machang_cup@126.com (C.M.); xingxiaofei_cup@126.com (X.X.)

* Correspondence: wenyangyang@cup.edu.cn (Y.W.); lizx@cup.edu.cn (Z.L.); luodan@iccas.ac.cn (D.L.)

Catalysts	С	0	Ν	F	Ti	Со	Ni
Ti3C2Tx	45.6	17.9	_	18.1	18.4	_	_
CoNi-ZIF-67@Ti3C2Tx	50.4	13.7	9.0	12.5	11.2	2.9	0.3
CoNi-ZIF-67	69.2	4.8	19.2	_	—	6.1	0.7

Table S1. Elemental compositions of Catalysts (at.%) determined by XPS.

Table S2. Co 2p core level peak analyses of catalysts (at.%).							
Co2p	Co ²⁺ 2p _{1/2}	Co ³⁺ 2p _{1/2}	Satellite	Co ²⁺ 2p _{3/2}	Co ³⁺ 2p _{3/2}	Satellite	
	(798.1 ± 0.2 eV)	(796.9 ± 0.1 eV)	$(803.2 \pm 0.2 \text{ eV})$	$(782.4 \pm 0.2 \text{ eV})$	(781.3 ± 0.2 eV)	$(787.0 \pm 0.2 \text{ eV})$	
CoNi-ZIF-67	11.2	7.0	20.3	18.3	14.6	28.6	
CoNi-ZIF-	5 5	0.2	26.2	16.0	25.0	10 1	
67@Ti3C2Tx	5.5	9.2	20.2	10.0	25.0	10.1	

		1	1 5	5 .		
Ni2p	Ni ²⁺ 2p _{1/2} (876.1 ± 0.2 eV)	Ni ³⁺ 2p _{1/2} (873.3 ± 0.1 eV)	Satellite (882.9 ± 0.4 eV)	Ni ²⁺ 2p _{3/2} (855.0 ± 0.1 eV)	Ni ³⁺ 2p _{3/2} (856.7 ± 0.1 eV)	Satellite (861.2 ± 0.2 eV)
CoNi-ZIF-67	16.5	13.9	16.8	27.1	17.4	8.3
CoNi-ZIF- 67@Ti3C2Tx	19.5	19.0	12.2	17.9	22.5	8.9

Table S3. Ni 2p core level peak analyses of catalysts (at.%).

Table S4. Comparisons of OER performance between recent reported CoNi-based electrocatalysts with CoNi-ZIF-67@Ti₃C₂T_x.

Catalyst	η ₁₀ (mV)	Tafel slop (mV dec ⁻¹)	Electrolyte	Substrate	Mass loading (mg cm ⁻²)	Ref.
CoNi-ZIF-67@Ti ₃ C ₂ T _x	323	65.1	0.1 M KOH	Glassy carbon	0.5	This work
Titanium carbide-CoBDC	410	48.2	0.1 M KOH	Glassy carbon	0.21	1
Co ₃ O ₄ /Co ₂ MnO ₄	540	N.A.	0.1 M KOH	Glassy carbon	0.028	2
C00.13Ni0.87Se2	320	94	1.0 M KOH	Ti plate	1.67	3
NiCo2O4/CNTs	390	68.1	1.0 M KOH	Glassy carbon	0.2	4
NixCo3-xO4 nanowires	337	75	1.0 M KOH	Glassy carbon	0.7	5
NiCo2O4 nanoneedles	565	292	1.0 M KOH	FTO glass	0.53	6
NiCo-LDH nanosheets	420	113	0.1 M KOH	Glassy carbon	1.76	7

Table S5. The simulated internal resistance (R1) and charge transfer resistance (R2) from the Nyquist plots in Figure 6b.

Figure S1. Enlarged image of XRD patterns of catalysts.

Figure S2. SEM images of pure CoNi-ZIF-67 prepared by the same procedure but with CTAB (**a**,**b**) and without CTAB (**c**,**d**) at different magnifications.

Figure S3. SEM image of CoNi-ZIF-67@Ti₃C₂T_x without using CTAB.

Figure S4. HAADF-STEM images and the corresponding elemental maps of C, Ti, Co and Ni in the CoNi-ZIF-67@Ti₃C₂T_x.

Figure S5. Nitrogen adsorption isotherms and pore size distribution of the pristine Ti₃C₂T_x, CoNi-ZIF-67@Ti₃C₂T_x and pure CoNi-ZIF-67.

Figure S6. XPS results of Ti₃C₂T_x (a-c) and CoNi-ZIF-67 (d-f).

Figure S7. CV curves in a potential range of 1.023-1.073 V vs. RHE of catalysts: $Ti_3C_2T_x$ (**a**), CoNi-ZIF-67@Ti₃C₂T_x (**b**) and pure CoNi-ZIF-67 (**c**).

References

- Zhao, L.; Dong, B.; Li, S.; Zhou, L.; Lai, L.; Wang, Z.; Zhao, S.; Han, M.; Gao, K.; Lu, M.; Xie, X.; Chen, B.; Liu, Z.; Wang, X.; Zhang, H.; Li, H.; Liu, J.; Zhang, H.; Huang, X.; Huang, W. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 2017, 11, 5800-5807.
- Wang, D.; Chen, X.; Evans, D. G.; Yang, W. Well-Dispersed Co₃O₄/Co₂MnO₄ nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. *Nanoscale* 2013, 5, 5312-5315.
- 3. Liu, T.; Asiri, A. M.; Sun, X. Electrodeposited Co-doped NiSe₂ nanoparticles film: a good electrocatalyst for efficient water splitting. *Nanoscale* **2016**, 8, 3911-3915.
- Cheng, H.; Su, Y.; Kuang, P.; Chen, G.; Liu, Z. Hierarchical NiCo₂O₄ nanosheet decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation. *J. Mater. Chem. A* 2015, 3, 19314-19321.
- Yan, X.; Li, K.; Lyu, L.; Song, F.; He, J.; Niu, D.; Liu, L.; Hu, X.; Chen, X. From water oxidation to reduction: transformation from Ni_xCo_{3-x}O₄ nanowires to NiCo/NiCoO_x heterostructures. *ACS App. Mater. Inter.* 2016, 8, 3208-3214.
- Shi, H.; Zhao, G. Water oxidation on spinel NiCo₂O₄ nanoneedles anode: microstructures, specific surface character, and the enhanced electrocatalytic performance. *J. Phys. Chem. C* 2014, 118 (45), 25939-25946.
- 7. Jiang, J.; Zhang, A.; Li, L.; Ai, L. nickel-cobalt layered double hydroxide nanosheets as highperformance electrocatalyst for oxygen evolution reaction. J. Power Sources 2015, 278, 445-451.