
Supplementary Material

Interaction between Persistent Organic Pollutants and ZnO NPs in Synthetic and Natural Waters

Rizwan Khan¹, Muhammad Ali Inam¹, Sarfaraz Khan², Du Ri Park¹ and Ick Tae Yeom^{1,*}

- ¹ Graduate School of Water Resources, Sungkyunkwan University (SKKU) 2066, Suwon 16419, Korea; rizwankhan@skku.edu (R.K.); aliinam@skku.edu (M.A.I.); enfl8709@skku.edu (D.R.P.)
- ² Key Laboratory of the Three Gorges Reservoir Region Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China; Sfk.jadoon@yahoo.com
- * Correspondence: yeom@skku.edu; Tel.: +82-31-299-6699

Figure S1. (**A**) Brunauer–Emmett–Teller (BET) analysis of zinc oxide nanoparticles (ZnO NPs) powder; (**B**) isoelectric point (IEP) of ZnO NPs in DI water; (**C**) aggregation kinetics of ZnO NPs in the absence and presence of the both solvents used for dissolving the polybrominated diphenyl ethers (PBDPEs); and (**D**) hydrodynamic size distribution of ZnO NPs in DI water after 30 min sonication

		- 1 1	
Nanomaterials Parameter	Unit	Technique	Value
Chemical formula			ZnO
Manufacturer-reported size ^a	nm	TEM	<50
Bulk density ^a	g(cm ³)-1	_	5.60
Solubility			High
Isoelectric point (pH _{iep} , see Figure S1B)	-		9.2
Zeta potential in DI (pH=7)	mV	Malvern Zetasizer	$+12 \pm 5.1$
HDD measured in DI (n=50)	nm	DLS	280 ± 35
Purity / moisture content	wt %	TGA/ICP-OES	96.52/1.85
Crystalline structure	—	XRD	Hexagonal
Shape			Polyhedral roughly round
Hamaker Constant	J ^(b)	_	1.9×10^{-20}
Net energy barrier in pure water (IS 5 × 10⁻⁶ M)	kT ^(c)	-	42.8

Table S1. Detailed properties of zinc oxide nanopatericles used in this study.

^a Vendor reported

^b [1]

° 1 KT=4.1142x10-21 J at 25 °C

ICP-OES: inductively coupled plasma optical emission spectroscopy

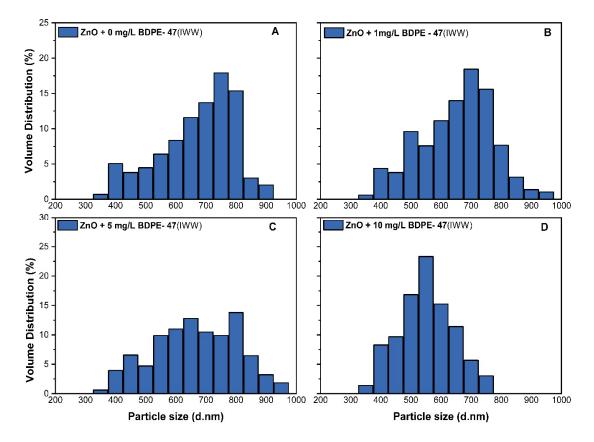
TGA: thermal gravimetric analysis

TEM: transmission electron microscopy

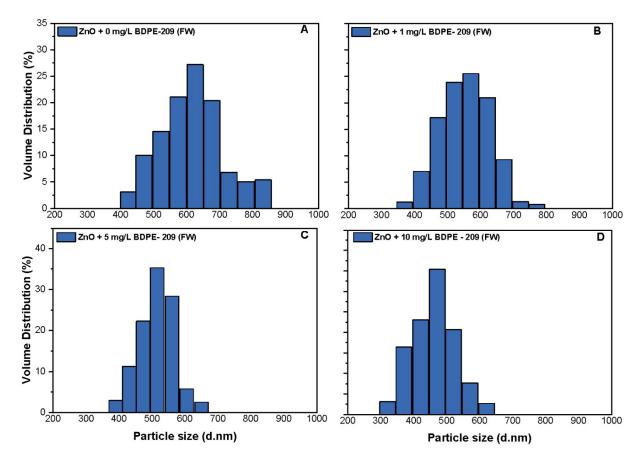
Parameter	Unit	Industrial Wastewater	Freshwater
pH *	_	7.54	6.90
IS	mML ⁻¹	8.95	0.79
Conductivity*	µscm⁻¹	651	119
Na ⁺	mgL ⁻¹	16.01	NM
K^+	mgL ⁻¹	8.53	1.20
Cu	mgL ⁻¹	0.36	NM
Fe	mgL ⁻¹	ND	NM
Mg^{2+}	mgL ⁻¹	28.15	3.49
As	mgL ^{−1}	21.52	NM
Ca ²⁺	mgL ^{−1}	16.11	1.50
Sb	mgL ^{−1}	27.77	NM
Cl-	mgL ^{−1}	22.40	6.61
SO4 ²⁻	mgL ^{−1}	10.52	NM
TOC	mgL ^{−1}	25	10
HCO ₃	mg CaCO3 L^{-1}	-	12
PO4	mgL ^{−1}	ND	0.64

Table S2. Properties of the synthetic and natural waters used in the current study.

*Measured in lab

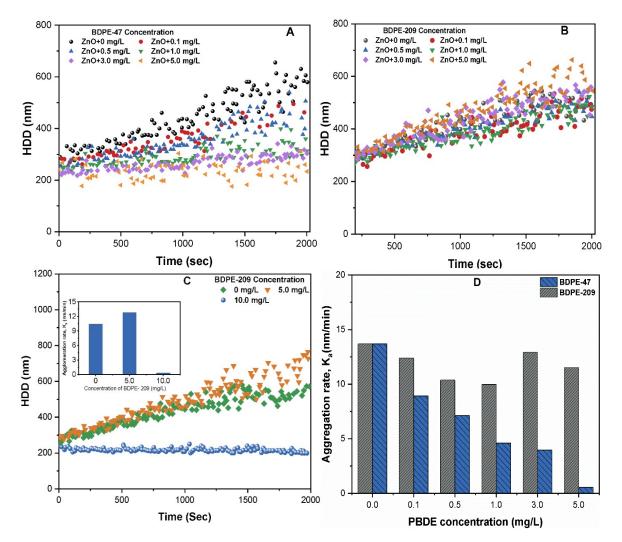

ND = Not detected

NM = Not measured


Results and Discussion

1.1. NPs Characterization


The Scherrer equation, $D = (k\lambda/\beta hklcos\theta)$, was used to determine the crystalline sizes of the ZnO NPs, where D is the crystalline size in nanometers (nm), λ is the wavelength of the radiation (1.54056 Å for CuK α radiation), k is a constant equal to 0.94, β hkl is the peak width at half-maximum intensity, and θ is the peak position. In this study (102) plane was chosen to calculate the crystalline size. The crystalline sizes of the ZnO NPs were observed to be 45 ± 2 nm, which is in accordance with the manufactured reported size (<50 nm).


Figure S2. Volume distribution of ZnO NPs (10 mg/L) with different concentration of BDPE-47 showing (**A**) 0 mg/L; (**B**) 1 mg/L; (**C**) 5 mg/L; and (**D**) 10 mg/L in industrial wastewater (IWW).

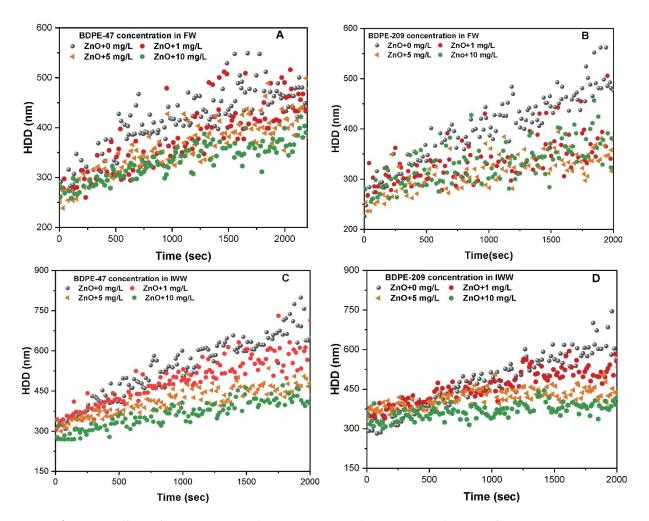

Figure S3. Volume distribution of ZnO NPs (10 mg/L) with different concentration of BDPE-209 showing (**A**) 0 mg/L ;(**B**) 1 mg/L; (**C**) 5 mg/L and; and (**D**) 10 mg/L in freshwater (FW).

Figure S4. Volume distribution of ZnO NPs (10 mg/L) with different concentration of BDPE-209 showing (**A**) 0 mg/L ;(**B**) 1 mg/L; (**C**) 5 mg/L; and (**D**) 10 mg/L in IWW.

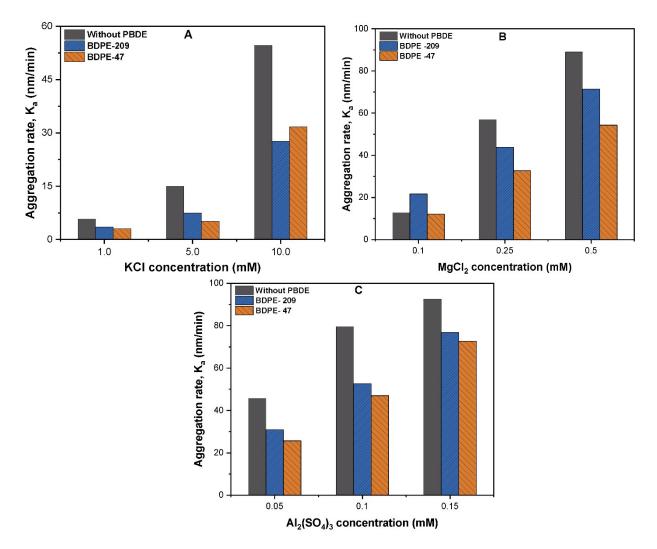


Figure S5. Effects of different concentration (0–5 mg/L) of (**A**) BDPE- 47 and (**B**) BDPE-209 on the aggregation kinetics of ZnO NPs (10 mg/L) in the presence of 20 mM KCl at pH 7; (**C**) aggregation kinetics of ZnO NPs in DI water containing 0, 5, and 10 mg/L BDPE-209, while inset showing aggregation rates at same concentrations; and (**D**) aggregation rates of ZnO NPs in at various concentration (0–5 mg/L) of BDPE- 47 and BDPE-209.

Figure S6. Effects of (**A**) BDPE- 47 and (**B**) BDPE-209 on the aggregation kinetics of ZnO NPs (10 mg/L) in FW, (**C**) BDPE -47, and (**D**) BDPE -209 on the aggregation kinetics of ZnO NPs in IWW.

Figure S7. Aggregation rates of ZnO NPs (10 mg/L) in absence and presence (1 mg/L) of BDPE- 47 and BDPE -209 with (**A**) monovalent (KCl); (**B**) divalent (MgCl₂); and (**C**) trivalent Al₂(SO₄)₃ cations at pH 7.

References

 Ackler, H. D.; French, R. H.; Chiang, Y. M. Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water: From force laws and physical properties. *J. Colloid Interface Sci.* 1996, 179, 460–469, doi:10.1006/jcis.1996.0238.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).