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Abstract: The nonlinearity of semiconductor quantum dots under the condition of low light levels
has many important applications. In this study, linear absorption, self-Kerr nonlinearity, fifth-order
nonlinearity and cross-Kerr nonlinearity of multiple quantum dots, which are coupled by multiple
tunneling, are investigated by using the probability amplitude method. It is found that the linear and
nonlinear properties of multiple quantum dots can be modified by the tunneling intensity and energy
splitting of the system. Most importantly, it is possible to realize enhanced self-Kerr nonlinearity,
fifth-order nonlinearity and cross-Kerr nonlinearity with low linear absorption by choosing suitable
parameters for the multiple quantum dots. These results have many potential applications in
nonlinear optics and quantum information devices using semiconductor quantum dots.
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1. Introduction

Nonlinear optical interaction of semiconductor quantum dots (QDs) has been widely
studied [1–10] because it plays a fundamental role in many key devices, such as quantum logic
gates [11,12], optical amplifiers [13,14] and single photon source [15]. One of the important goals of
this field is to obtain large nonlinear interactions at low light levels. Electromagnetically-induced
transparency (EIT), which is based on laser-induced atomic coherence, plays an important role in the
interaction between light and matter [16–18]. With the help of EIT, Kerr nonlinearity can be greatly
enhanced, and at the same time, the linear absorption can be suppressed [19–27], leading to the study
of nonlinear optics at low light levels in EIT systems [28–30]. In addition, fifth-order nonlinearity has
been studied in various mediums [31–37]. Fifth-order nonlinearity can have broad impacts in many
fields, such as phase gate [38], multi-wave mixing [34,39,40] and optical solitons [35,41].

Two or more closely-spaced QDs can form quantum dot molecules (QDMs), in which the tunneling
between the closely spaced QDs can induce atomic coherence and quantum interference. Vertical
and lateral QDMs have been experimentally fabricated, and the number of QDs per molecule can be
controlled via different growth conditions [42–49]. Many theoretical and experimental works on QDMs
have been carried out [50–65]. In double quantum dots (DQDs), a phenomenon, which is similar to
EIT and called tunneling induced transparency (TIT), has been reported [52]. Via TIT, giant self-Kerr
nonlinearity with vanishing absorption can be realized in triple quantum dots (TQDs) [62].
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Most of the studies of nonlinearity in QDMs are focused on self-Kerr nonlinearity. However,
cross-Kerr nonlinearity and fifth-order nonlinearity can also be beneficial to many applications.
In addition, most of the studies of nonlinearity are carried out in DQDs or TQDs. The study of
nonlinearity in multiple quantum dots (MQDs) will bring extra controlling parameters and many novel
results. It is also important to understand the mechanisms of other types of nonlinearities in MQDs and
gain the ability to control them. In this study, the general analytic expression of linear and nonlinear
susceptibility of the probe field in MQDs is deduced, and the linear absorption, self-Kerr nonlinearity,
fifth-order nonlinearity and cross-Kerr nonlinearity of MQDs is then investigated. The linear and
nonlinear properties of MQDs can be modified by the parameters of MQDs, and it is possible to
realize enhanced self-Kerr nonlinearity, fifth-order nonlinearity and cross-Kerr nonlinearity with low
linear absorption.

2. Models and Equations

A schematic of the setup of the MQDs is shown in Figure 1a. The number of QDs is N in MQDs.
QD1 and QDn (n = 2, 3, . . . N) are coupled by gate electrodes, and there is no gate electrode between
QDn (n = 2,3, . . . N). When no gate voltage between QD1 and QDn is applied, the electron tunneling
between QD1 and QDn is very weak because the conduction-band electron levels are not resonant.
While the gate voltage is applied, the electron tunneling between QD1 and QDn is greatly increased
because the conduction-band electron levels come close to resonance. The hole tunneling is neglected
because of the far off-resonant valence-band energy levels. A schematic of the level configuration of
the MQDs is shown in Figure 1b. |0〉 is the ground state without excitations, |1〉 is the exciton state
with one electron-hole pair being in QD1, and |n〉 (n = 2, 3, . . . N) is the indirect exciton state with the
electron being in nth QD and the hole remaining in QD1.

Nanomaterials 2019, 9, x FOR PEER REVIEW 2 of 15 

 

similar to EIT and called tunneling induced transparency (TIT), has been reported [52]. Via TIT, giant 
self-Kerr nonlinearity with vanishing absorption can be realized in triple quantum dots (TQDs) [62]. 

Most of the studies of nonlinearity in QDMs are focused on self-Kerr nonlinearity. However, 
cross-Kerr nonlinearity and fifth-order nonlinearity can also be beneficial to many applications. In 
addition, most of the studies of nonlinearity are carried out in DQDs or TQDs. The study of nonlinearity 
in multiple quantum dots (MQDs) will bring extra controlling parameters and many novel results. It is 
also important to understand the mechanisms of other types of nonlinearities in MQDs and gain the 
ability to control them. In this study, the general analytic expression of linear and nonlinear 
susceptibility of the probe field in MQDs is deduced, and the linear absorption, self-Kerr nonlinearity, 
fifth-order nonlinearity and cross-Kerr nonlinearity of MQDs is then investigated. The linear and 
nonlinear properties of MQDs can be modified by the parameters of MQDs, and it is possible to realize 
enhanced self-Kerr nonlinearity, fifth-order nonlinearity and cross-Kerr nonlinearity with low linear 
absorption. 

2. Models and Equations 

A schematic of the setup of the MQDs is shown in Figure 1a. The number of QDs is N in MQDs. 
QD1 and QDn (n = 2, 3,…N) are coupled by gate electrodes, and there is no gate electrode between 
QDn (n = 2,3,…N). When no gate voltage between QD1 and QDn is applied, the electron tunneling 
between QD1 and QDn is very weak because the conduction-band electron levels are not resonant. 
While the gate voltage is applied, the electron tunneling between QD1 and QDn is greatly increased 
because the conduction-band electron levels come close to resonance. The hole tunneling is neglected 
because of the far off-resonant valence-band energy levels. A schematic of the level configuration of 
the MQDs is shown in Figure 1b. 0  is the ground state without excitations, 1  is the exciton state 

with one electron-hole pair being in QD1, and = ( 2, 3,... )n n N  is the indirect exciton state with the 

electron being in nth QD and the hole remaining in QD1. 

 
Figure 1. (a) The schematic of the setup of a multiple quantum dots (MQDs); (b) the schematic of the 
level configuration of a MQDs. 
Figure 1. (a) The schematic of the setup of a multiple quantum dots (MQDs); (b) the schematic of the
level configuration of a MQDs.



Nanomaterials 2019, 9, 423 3 of 14

A weak probe field with a Rabi frequency of Ωp = µ01Ep and detuning of δp = ω10 −ωp probes
the transition of |0〉 → |1〉 , with µ01 being the electric dipole moment for the excitonic transition
between states |0〉 and |1〉, Ep being the electric-field amplitude of the probe field, ω10 being the
energy splitting between states |0〉 and s |1〉, and ωp being the frequency of the probe field. The nth
tunneling couples the transition from state |n〉 (n = 2, 3, . . . N) to state |1〉. The intensity of the nth
tunneling is Tn (n = 2, 3, . . . N), depending on the barrier characteristics and the external electric field.
ω1n (n = 2, 3, . . . N) is the energy splitting between the exciton state |1〉 and indirect exciton state
|n〉 (n = 2, 3, . . . N), and can be controlled by manipulation of the external electric field which changes
the effective confinement potential.

The Hamiltonian of the basis {|0〉, |1〉, . . . |N〉} under the rotating-wave and the electric-dipole
approximations can be written as (assumption of } = 1):

HI =


0 −Ωp 0 . . . 0
−Ωp δp −T2 . . . −TN

0 −T2 δp −ω12 . . . 0
. . . . . . . . . . . . . . .
0 −TN 0 . . . δp −ω1N

 (1)

The state vector at any time t is:

|ΨI(t)〉 =
N

∑
n=0

an(t)|n〉 (2)

an(t) is the atomic probability amplitude of state |n〉. The evolution of the state vector obeys the
Schrödinger equation:

d
dt
|ΨI(t)〉 = −iHI(t)|ΨI(t)〉 (3)

Substituting Equations (1) and (2) into Equation (3), and then using the Weisskopf–Wigner theory
can obtain the dynamical equations for atomic probability amplitudes in the interaction picture:

i
.
a0 = −Ωpa1, (4)

i
.
a1 = −Ωpa0 −

N

∑
n=2

Tnan +
(
δp − iγ1

)
a1, (5)

i
.
an = −Tna1 +

(
δp −ω1n − iγn

)
an (n = 2, 3, . . . , N), (6)

N

∑
n=0
|an|

2

= 1, (7)

where γn = Γn0/2 + γd
n0 (n = 1, 2, . . . N) is the typical effective decay rate, Γn0 is the radiative decay

rate of populations from states |n〉 → |0〉 and γd
n0 is the pure dephasing rate. The response of MQDs to

the probe field is governed by susceptibility χp = Γ
V

µ2
01

ε0}Ωp
χ. Γ is the optical confinement factor, V is the

volume of MQDs, ε0 is the dielectric constant, and µ01 is the associated dipole transition-matrix element.
By solving Equations (4)–(7) under the weak field approximation, the analytical expression of χ

can be obtained (Appendix A):

χ =
1

Γ1 −
N
∑

n=2

T2
n

Γn

· 1

1 +
Ω2

p∣∣∣∣Γ1−
N
∑

n=2

T2
n

Γn

∣∣∣∣2
(

1 +
N
∑

n=2

T2
n

|Γn |2

) , (8)

where Γ1 = δp − iγ1 and Γn = δp −ω1n − iγn (n = 2, 3, . . . , N).
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The linear susceptibility is proportional to Ω0
p, the third-order susceptibility is proportional to

Ω2
p and the fifth-order susceptibility is proportional to Ω4

p. By using Maclaurin formula, χ can be
expended into the fourth-order of Ωp,

χ = χ(1) + χ(3)Ω2
p + χ(5)Ω4

p, (9)

where
χ(1) = − 1

Γ1 −
N
∑

n=2

T2
n

Γn

, (10)

χ(3) = − 1

Γ1 −
N
∑

n=2

T2
n

Γn

· 1∣∣∣∣Γ1 −
N
∑

n=2

T2
n

Γn

∣∣∣∣2
·
(

1 +
N

∑
n=2

T2
n

|Γn|2

)
, (11)

χ(5) = − 1

Γ1 −
N
∑

n=2

T2
n

Γn

· 1∣∣∣∣Γ1 −
N
∑

n=2

T2
n

Γn

∣∣∣∣4
·
(

1 +
N

∑
n=2

T2
n

|Γn|2

)2

. (12)

Then by using the method in References [26,27], the cross-Kerr nonlinearity (cross phase
modulation) effect induced by tunneling Ti (Ωp < Ti < Tn (n 6= i)) on the probe field can be
given as:

χ
(1)
Ti = − 1

Γ1 −
N
∑

n=2,n 6=i

T2
n

Γn

, (13)

χ
(3)
Ti = − 1

Γi

(
Γ1 −

N
∑

n=2,n 6=i

T2
n

Γn

)2 . (14)

The linear absorption Im[χ(1)] corresponds to the imaginary part of the first-order susceptibility,
the self-Kerr nonlinearity Re[χ(3)] corresponds to the real part of the third-order susceptibility, the
fifth-order nonlinearity Re[χ(5)] corresponds to the real part of the fifth-order susceptibility, and the
cross-Kerr nonlinearity Re[χ(3)

Ti ] corresponds to the real part of the third-order susceptibility χ
(3)
Ti

between probe field and tunneling Ti.

3. Results and Discussion

The number of QDs in MQDs is five in the following calculation and discussion. Therefore, the
intensity of tunneling are T2, T3, T4 and T5, respectively. The energy splittings are ω12, ω13, ω14 and
ω15, respectively. The typical effective decay rate for each state are γ1, γ2, γ3, γ4 and γ5, respectively.
In this study, all parameters are scaled by the decay rate γ1.

In MQDs, the tunneling couplings Ti depends on the barrier characteristics and the external electric
field, frequency transition ω1i depends on effective confinement potential which can be manipulated
by the external electric field. MQDs have been achieved in much experimental progress [42–49],
and the realistic values of the parameters are according to References [52,62] and references therein.
In addition, the tunneling can be in weak [66] or strong tunneling regime [67]. Some of the value of
parameters are for DQDs or TQDs, however, it can be inferred that the tunneling, frequency transition
and decay rates of MQDs have the same order as those of DQDs or TQDs.

Based on the above equations, the linear absorption Im
[
χ(1)

]
, self-Kerr nonlinearity Re

[
χ(3)

]
,

fifth-order nonlinearity Re
[
χ(5)

]
and cross-Kerr nonlinearity Re

[
χ
(3)
Ti

]
between the probe field and

tunneling Ti are investigated for varying of tunneling intensity and energy splitting.
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3.1. Tunneling Induced Transparency of MQDs

In Figure 2, the 2D linear absorption Im
[
χ(1)

]
as functions of probe detuning δp and tunneling

intensity T5 for varying energy splitting are investigated. Firstly, when all values of energy splitting are
not equal, that is ω12 6= ω13 6= ω14 6= ω15, it can be seen from Figure 2a that there are five absorption
peaks and four TIT windows. By decreasing value of T2 and T5, the width of the outer side of TIT
windows becomes much narrowing, however, these TIT windows always locate at δp = ω12, δp = ω13,
δp = ω14, and δp = ω15.
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Figure 2. Linear absorption Im
[
χ(1)

]
as functions of probe detuning δp and tunneling intensity T5 for

varying conditions of the energy splitting. (a) ω12 = −1.2γ1, ω13 = −0.4γ1, ω14 = 0.4γ1, ω15 = 1.2γ1,
T3 = T4 = 0.8γ1, T2 = T5; (b) ω12 = ω13 = −0.8γ1, ω14 = ω15 = 0.8γ1, T2 = T3 = 0.8γ1, T4 = T5;
(c) ω12 = ω13 = ω14 = ω15 = 0, T2 = T3 = T4 = T5. The other parameters are γ2 = γ3 = γ4 =

γ5 = 10−3γ1.

Secondly, in the case of ω12 = ω13 6= ω14 = ω15, it can be seen from Figure 2b that there are only
three absorption peaks and two TIT windows. By decreasing tunneling intensity T4 and T5 at the same
time, the right-hand side of TIT window becomes much narrowing, while that of the left-hand side
becomes a little widen. The two TIT windows locate at δp = ω12 and δp = ω14.

Thirdly, with ω12 = ω13 = ω14 = ω15, only two absorption peaks and one TIT window is
obtained as shown in Figure 2c. By decreasing all tunneling intensity, the width of the TIT window
narrows, and the profile of Im

[
χ(1)

]
keeps symmetry.

In all three cases, Im
[
χ(1)

]
can be controlled by the tunneling intensity and energy splitting,

especially, narrow TIT window can be obtained by choosing the suitable parameters, which is essential
to acquire enhancement of nonlinearity. The TIT window also locates at δp = ω12.

3.2. Dressed States of MQDs

The corresponding results in Figure 2 can be explained under the dressed state picture. Under
the coupling of four tunneling fields, the system can be treated as a new system under the dressed
states, as shown in Figure 3. Each dressed state is the combination of the bare states |1〉, |2〉, |3〉, |4〉
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and |5〉. Therefore, the weak probe field probes the transition from ground state |0〉 to the dressed state
|i〉 (i = a, b, c, d, e).

In the case of ω12 6= ω13 6= ω14 6= ω15, each dressed state has the component of state |1〉
(Figure 3a), resulting in five absorption peaks at five different detuning of the probe field. In addition,
quantum interference between the transitions |0〉 → |i〉 (i = a, b, c, d, e) will lead to four TIT windows
(Figure 2a). By choosing the suitable tunneling intensity and energy splitting of the MQDs, the width
of TIT windows can be very narrow. The narrowing of the TIT window is responsible for acquiring
enhanced nonlinearity, which is the basis for the following calculation and discussion.

In the case of ω12 = ω13 6= ω14 = ω15, the dressed states |b〉 and |d〉 do not have the component
of state |1〉 anymore (Figure 3b), so there are three absorption peaks and two TIT windows resulted
from quantum interference between the transitions |0〉 → |a〉 , |0〉 → |c〉 and |0〉 → |e〉 (Figure 2b).
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If all the energy splitting is equal, that is ω12 = ω13 = ω14 = ω15, the dressed states |b〉, |c〉 and
|d〉 do not have the component of state |1〉 anymore (Figure 3c), so there are only two absorption
peaks and one TIT window resulted from quantum interference between the transitions |0〉 → |a〉
and |0〉 → |e〉 (Figure 2c). In all these cases, one can modify the width of the TIT windows via the
tunneling coupling, as shown in Figure 2.

3.3. Self-Kerr and Fifth-Order Nonlinearity of MQDs

According to Equations (10) and (11), the linear absorption Im
[
χ(1)

]
and self-Kerr nonlinearity

Re
[
χ(3)

]
are calculated for three different conditions of energy splitting.

Firstly, in Figure 4a,b, Im
[
χ(1)

]
and Re

[
χ(3)

]
as a function of probe detuning δp under the

condition of ω12 6= ω13 6= ω14 6= ω15 is investigated. Figure 4a shows that, with equal value of
tunneling intensity, Im

[
χ(1)

]
curve exhibits symmetric properties with five absorption peaks and four

TIT windows. In addition, Re
[
χ(3)

]
is enhanced with strong absorption, which is not suitable for

applications. Then in Figure 4b, the energy splitting is kept unchanged, but tunneling intensity T2 and
T5 is reduced. The width of the outer side of the TIT window becomes narrower, at the same time, in
the vicinity of the TIT windows, enhanced self-Kerr nonlinearity is realized. In addition, compared
with the results of TQDs [62], enhanced self-Kerr nonlinearity within the vicinity of TIT window can
occur at two probe detuning, where δp = ω12 and δp = ω15.
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Figure 4. Linear absorption Im
[
χ(1)

]
and self-Kerr nonlinearity Re

[
χ(3)

]
as a function of probe

detuning δp for varying tunneling coupling and energy splitting. (a) ω12 = −1.2γ1, ω13 = −0.4γ1,
ω14 = 0.4γ1, ω15 = 1.2γ1, T3 = T4 = 0.8γ1, T2 = T5 = 0.8γ1; (b) the parameters are the same as
those in (a), except T2 = T5 = 0.2γ1; (c) ω12 = ω13 = −0.8γ1, ω14 = ω15 = 0.8γ1, T2 = T3 = 0.8γ1,
T4 = T5 = 0.8γ1; (d) the parameters are the same as those in (c), except T4 = T5 = 0.2γ1; (e) ω12 =

ω13 = ω14 = ω15 = 0, T2 = T3 = T4 = T5 = 0.8γ1; (f) the parameters are the same as those in (e),
except T2 = T3 = T4 = T5 = 0.1γ1. The other parameters are γ2 = γ3 = γ4 = γ5 = 10−3γ1.

Secondly, in Figure 4c,d, Im
[
χ(1)

]
and Re

[
χ(3)

]
as a function of probe detuning δp under the

condition of ω12 = ω13 = −0.8γ1 and ω14 = ω15 = 0.8γ1 is investigated. With equal value of
tunneling intensity, Im

[
χ(1)

]
curve exhibits symmetric property with two TIT windows locating at

δp = ±0.8γ1. This is similar like the one realized in TQDs. Re
[
χ(3)

]
is enhanced with large absorption

in the vicinity of the absorption peaks, as shown in Figure 4c. Then with smaller intensity of tunneling
T4 and T5, the right side of the TIT window becomes much narrower, and enhanced Re

[
χ(3)

]
enters

the narrow TIT window, as shown in Figure 4d. This means that enhanced self-Kerr nonlinearity with
low absorption can be obtained.

Thirdly, in Figure 4e,f, Im
[
χ(1)

]
and Re

[
χ(3)

]
as a function of probe detuning δp under the

condition of ω12 = ω13 = ω14 = ω15 = 0 is investigated. As can be seen that there is only one TIT
window at δp = 0, however, self-Kerr nonlinearity is not enhanced (Figure 4e). Then with smaller
value of all tunneling, the width of TIT window becomes narrower. In the vicinity of this TIT window,
enhanced self-Kerr nonlinearity occurs (Figure 4f).

These results reveal that one can obtain enhanced self-Kerr nonlinearity by choosing the
suitable parameters of tunneling intensity and energy splitting. Compared with QDMs with two
or three dots [62], more than one probe fields with different frequencies can acquire enhanced Kerr
nonlinearity simultaneously.

For the susceptibility magnitude decreases typically with increasing order of nonlinearity,
most nonlinear studies at low light level have focused on the third-order processes. So here, the
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fifth-order nonlinearity is also investigated. According to Equations (10) and (12), the linear absorption
Im
[
χ(1)

]
and fifth-order nonlinearity Re

[
χ(5)

]
as a function of probe detuning δp for three different

conditions of energy splitting are plotted in Figure 5. Using the same parameters in Figure 4, Re
[
χ(5)

]
exhibits the similar profile. Enhanced fifth-order nonlinearity can be obtained in the vicinity of
TIT windows by choosing the suitable tunneling intensity and energy splitting. Compared with
Reference [63], more than one probe fields with different frequencies can acquire enhanced fifth-order
nonlinearity simultaneously.
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[
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]
and fifth-order nonlinearity Re

[
χ(5)

]
as a function of probe

detuning δp for varying tunneling coupling and energy splitting. (a) ω12 = −1.2γ1, ω13 = −0.4γ1,
ω14 = 0.4γ1, ω15 = 1.2γ1, T3 = T4 = 0.8γ1, T2 = T5 = 0.8γ1; (b) the parameters are the same as
those in (a), except T2 = T5 = 0.2γ1; (c) ω12 = ω13 = −0.8γ1, ω14 = ω15 = 0.8γ1, T2 = T3 = 0.8γ1,
T4 = T5 = 0.8γ1; (d) the parameters are the same as those in (c), except T4 = T5 = 0.2γ1; (e) ω12 =

ω13 = ω14 = ω15 = 0, T2 = T3 = T4 = T5 = 0.8γ1; (f) the parameters are the same as those in (e),
except T2 = T3 = T4 = T5 = 0.1γ1. The other parameters are γ2 = γ3 = γ4 = γ5 = 10−3γ1.

3.4. Cross-Kerr Nonlinearity of MQDs

In this section, according to Equations (10) and (14), cross-Kerr nonlinearity Re
[
χ
(3)
Ti

]
between

probe field and the ith tunneling field as a function of probe detuning δp under different condition of
energy splitting is investigated.

Firstly, in Figure 6a–d, cross-Kerr nonlinearity between probe field and T2, T3, T4 and T5 is
calculated, respectively. It can be seen that for each tunneling enhanced cross-Kerr nonlinearity can
be realized with low linear absorption. The advantage of realizing cross-Kerr nonlinearity in MQDs
system is that such enhanced cross-Kerr nonlinearity with low linear absorption can be achieved for
probe fields with different frequencies.
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Figure 6. Linear absorption Im
[
χ(1)

]
and cross-Kerr nonlinearity Re

[
χ
(3)
Ti

]
as a function of probe

detuning δp for varying tunneling coupling and energy splitting. (a) Re
[
χ
(3)
T2

]
, the parameters are

ω12 = −1.2γ1, ω13 = −0.4γ1, ω14 = 0.4γ1, ω15 = 1.2γ1, T3 = T4 = T5 = 0.8γ1; (b) Re
[
χ
(3)
T3

]
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parameters are the same as those in (a), except T2 = T4 = T5 = 0.8γ1; (c) Re
[
χ
(3)
T4

]
, the parameters

are the same as those in (a), except T2 = T3 = T5 = 0.8γ1; (d) Re
[
χ
(3)
T5

]
, the parameters are the

same as those in (a), except T2 = T3 = T4 = 0.8γ1; (e) Re
[
χ
(3)
T2

]
(Re
[
χ
(3)
T3

]
), ω12 = ω13 = −0.8γ1,

ω14 = ω15 = 0.8γ1, T3 = 0.1γ1, T4 = T5 = 0.8γ1; (f) Re
[
χ
(3)
T4

]
(Re
[
χ
(3)
T5

]
), the parameters are the

same as those in (e), except T2 = T3 = 0.8γ1, T5 = 0.1γ1; (g) Re
[
χ
(3)
T2

]
(Re
[
χ
(3)
T3

]
, Re

[
χ
(3)
T4

]
and

Re
[
χ
(3)
T5

]
), ω12 = ω13 = ω14 = ω15 = 0, T3 = T4 = T5 = 0.1γ1; (h) Re

[
χ
(3)
T2

]
(Re
[
χ
(3)
T3

]
, Re

[
χ
(3)
T4

]
and Re

[
χ
(3)
T5

]
), ω12 = ω13 = ω14 = ω15 = 0.1γ1, T3 = T4 = T5 = 0.1γ1. The other parameters are

γ2 = γ3 = γ4 = γ5 = 10−3γ1.

Secondly, cross-Kerr nonlinearity Re
[
χ
(3)
Ti

]
between probe field and the ith tunneling field under

the condition of ω12 = ω13 and ω14 = ω15 is shown in Figure 6e,f. The curves of Re
[
χ
(3)
T2

]
and Re

[
χ
(3)
T3

]
are coincident (Figure 6e), and that of Re

[
χ
(3)
T4

]
and Re

[
χ
(3)
T5

]
are also coincident (Figure 6f). It is shown

that enhanced cross-Kerr nonlinearity with low linear absorption can also be realized.
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Thirdly, cross-Kerr nonlinearity Re
[
χ
(3)
Ti

]
between probe field and the ith tunneling field under

the condition of ω12 = ω13 = ω14 = ω15 is shown in Figure 6g,f. The curves of Re
[
χ
(3)
T2

]
, Re

[
χ
(3)
T3

]
,

Re
[
χ
(3)
T4

]
and Re

[
χ
(3)
T5

]
are all coincide for different tunneling. With zero energy splitting, the enhanced

cross-Kerr nonlinearity occurs at the position of δp = 0 in the vicinity of low linear absorption
(Figure 6g). The enhanced cross-Kerr nonlinearity with low linear absorption can also be achieved for
nonzero energy splitting, as shown in Figure 6h.

4. Conclusions

In conclusion, linear absorption, self-Kerr nonlinearity, fifth-order nonlinearity and cross-Kerr
nonlinearity of MQDs controlled by multiple tunneling was investigated. By using the probability
amplitude method, general analytic expression of linear and nonlinear susceptibility of the probe
field in MQDs was obtained. The multiple tunneling can induce quantum interference among the
dressed states and result in multiple TIT windows. In the vicinity of such TIT windows, enhanced
self-Kerr nonlinearity, fifth-order nonlinearity and cross-Kerr nonlinearity accompanied by low linear
absorption was realized by choosing the tunneling intensity and energy splitting of the exciton states.
Realizing enhanced nonlinearity with low absorption in MQDs has essential applications in novel
nonlinear optics and quantum information devices.
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Appendix A

The analytical expressions of the first-order, third-order and fifth-order susceptibilities can be
obtained by solving Equations (4)–(7). Under the steady-state condition (|a0|2 = 1), Equations (4)–(7)
goes to:

−Ωpa1 = 0, (A1)

−Ωpa0 −
N

∑
n=2

Tnan +
(
δp − iγ1

)
a1 = 0, (A2)

− Tna1 +
(
δp −ω1n − iγn

)
an= 0 (n = 2, 3, . . . , N), (A3)

N

∑
n−0
|an|

2

= 1. (A4)

From A3:
an =

Tn

Γn
a1. (A5)

Substituting Equation (A5) into Equation (A2), then:

a1 = Ωp
1

Γ1 −
N
∑

n=2

T2
n

Γn

a0. (A6)
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Substituting Equations (A5) and (A6) into Equation (A4), then:

|a0|2 =
1

1 +
Ω2

p∣∣∣∣Γ1−
N
∑

n=2

T2
n

Γn

∣∣∣∣2
(

1 +
N
∑

n=2

T2
n

|Γn |2

) . (A7)

The coherence element between state |0〉 and |1〉 is:

a1a∗0 = Ωp
1

Γ1 −
N
∑

n=2

T2
n

Γn

· |a0|2. (A8)

Substituting Equation (A7) into Equation (A8), then:

χ =
a1a∗0
Ωp

=
1

Γ1 −
N
∑

n=2

T2
n

Γn

· 1

1 +
Ω2

p∣∣∣∣Γ1−
N
∑

n=2

T2
n

Γn

∣∣∣∣2
(

1 +
N
∑

n=2

T2
n

|Γn |2

) . (A9)

Using the Maclaurin formula and expand χ into the fourth-order of Ωp, then:

χ =
1

Γ1 −
N
∑

n=2

T2
n

Γn

·

1−
Ω2

p∣∣∣∣Γ1 −
N
∑

n=2

T2
n

Γn

∣∣∣∣2
(

1 +
N

∑
n=2

T2
n

|Γn|2

)
−

Ω4
p∣∣∣∣Γ1 −

N
∑

n=2

T2
n

Γn

∣∣∣∣4
(

1 +
N

∑
n=2

T2
n

|Γn|2

)2

. (A10)

The first-order susceptibilities is proportional to Ω0
p, the third-order susceptibilities is proportional to

Ω2
p, and the third-order susceptibilities is proportional to Ω4

p, thus

χ = χ(1) + χ(3)Ω2
p + χ(5)Ω4

p, (A11)

where
χ(1) = − 1

Γ1 −
N
∑

n=2

T2
n

Γn

, (A12)

χ(3) = − 1

Γ1 −
N
∑

n=2

T2
n

Γn

· 1∣∣∣∣Γ1 −
N
∑

n=2

T2
n

Γn

∣∣∣∣2
·
(

1 +
N

∑
n=2

T2
n

|Γn|2

)
, (A13)

χ(5) = − 1

Γ1 −
N
∑

n=2

T2
n

Γn

· 1∣∣∣∣Γ1 −
N
∑

n=2

T2
n

Γn

∣∣∣∣4
·
(

1 +
N

∑
n=2

T2
n

|Γn|2

)2

. (A14)
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