Supplementary Information

Spiderweb-Like Fe-Co Prussian Blue Analogue Nanofibers as Efficient Catalyst for Bisphenol-A Degradation by Activating Peroxymonosulfate

Hongyu Wang ^{1,2}, Chaohai Wang ^{1,2}, Junwen Qi ^{1,2,*}, Yubo Yan ³, Ming Zhang ^{1,2}, Xin Yan ^{1,2}, Xiuyun Sun ^{1,2}, Lianjun Wang ^{1,2} and Jiansheng Li ^{1,2,*}

- ¹ Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, Nanjing 210094, China; wanghy4113@163.com (H.W.); wch2016@njust.edu.cn (C.W.); mzhang925@njust.edu.cn (M.Z.); 18205150297@163.com (X.Y.); sunxyun@njust.edu.cn (X.S.); wanglj@njust.edu.cn (L.W.)
- ² Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
- ³ Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huaian 223300, China; yubo.yan@outlook.com
- * Correspondence: qijunwen@njust.edu.cn (J.Q.); lijsh@njust.edu.cn (J.L.); Tel.: (+86)-025-8431-5351 (J.L.)

Figure S1. (Thermogravimetric analysis) TG curves of PAN, FCPBA, FCPBA/PAN.

Figure S2. (a) Particle size; (b) zeta potential and (c) stability of FCPBA.

Figure S3. (a) N₂ sorption isotherms and (b) pore size distribution of FCPNA/PAN nanofibers.

Figure S4. Water contact angle of FCPBA/PAN nanofibers.

Figure S5. Mechanical properties of FCPBA/PAN nanofibers.

Figure S6. SEM images of (a) Fe-Fe PBA and (b) Co-Co PBA; TEM imagers of (c) Fe-Fe PBA and (d) Co-Co PBA.

Figure S7. Cobalt leaching of FCPBA/PAN and Fe-FePBA/PAN in reaction system.