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Abstract: Recently, graphene has been extensively researched in fundamental science and engineering
fields and has been developed for various electronic applications in emerging technologies owing to
its outstanding material properties, including superior electronic, thermal, optical and mechanical
properties. Thus, graphene has enabled substantial progress in the development of the current
electronic systems. Here, we introduce the most important electronic and thermal properties
of graphene, including its high conductivity, quantum Hall effect, Dirac fermions, high Seebeck
coefficient and thermoelectric effects. We also present up-to-date graphene-based applications: optical
devices, electronic and thermal sensors, and energy management systems. These applications pave
the way for advanced biomedical engineering, reliable human therapy, and environmental protection.
In this review, we show that the development of graphene suggests substantial improvements in
current electronic technologies and applications in healthcare systems.
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1. Introduction

Graphene is a recently discovered two-dimensional (2D) carbon allotrope that consists of
only a single layer of carbon atoms arranged in a honeycomb lattice and is a base unit for other
graphitic materials. Although graphene has been theoretically studied for several decades [1-3],
freestanding graphene was first obtained in 2004 by using sticky tape and a pencil, and follow-up
experiments opened ‘the world of graphene’ [4-7]. Over the past decades, various electronics,
such as next-generation radio-frequency and high-speed devices, sensors, thermally and electrically
conductive composites, and transparent electrodes for solar cells and displays, have been widely
developed [8]. Additionally, novel materials such as quantum dots (QDs) and rare earth elements
have been thoroughly studied to support the fast-growing technology and to continuously enhance
the performance of electronics [9-11]. However, the difficulty of synthesis and high cost due to
limited supply have made the broad exploitation of these materials difficult [12]. Graphene is an
excellent candidate to replace these materials. Graphene exhibits remarkable electronic and thermal
properties and shows unusual electronic properties, such as Dirac fermions [13], the quantum Hall
effect (QHE) [7], and an ambipolar electric field effect [14]. Low-energy excitations of graphene
are massless; Dirac fermions behave uniquely in magnetic fields and lead to the QHE. Additionally,
graphene is highly thermally conductive, exhibiting a thermal conductivity of ~4000 Wm~! K1 [15-17].
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Moreover, graphene has a high Seebeck coefficient and figure of merit, which make it easier to
convert electrical current to heat [18]. Thus, graphene has the potential for use in energy-harvesting
applications. Additionally, this unique material has impressive mechanical and optical properties,
such as a fracture strength of 130 GPa [19], optical transparency [20], high room-temperature carrier
mobility, and an ultrabroad optical absorption spectrum [21]. Graphene has attracted explosive interest
in physics, material science and wide technological applications [22-27]. Here, we present a review
of the electronic and thermal properties of graphene and its up-to-date applications, including high
conductivity, the quantum Hall effect, Dirac fermions, a high Seebeck coefficient, thermoelectric effects,
optical devices, electronic and thermal sensors, and energy management systems. In addition, the
remarkable potential to extend the field of applications based on graphene is suggested.

2. Electronic Properties and Applications

2.1. Electronic Properties

The remarkable electronic and optical properties observed for graphene crystallites are the primary
reasons for the exclusive focus of experimental and theoretical efforts on graphene while ignoring
the existence of other 2D materials. The electrons in graphene have long mean free paths without
disrupting the electron-electron interactions and disorder. Therefore, the properties of graphene differ
from those of other common metals and semiconductors associated with the physical structures and
electronic properties.

2.1.1. Honeycomb Lattice and Brillouin Zone

Figure 1a shows the hexagonal structure of carbon atoms in graphene [13]. A triangular lattice
with a basis of two atoms forms the honeycomb lattice structure. The unit vectors of the lattice can be
expressed as

alzg(a\@),az:%(&—\@), 1)

where the distance between two carbon atoms is approximately 1.42 A. The reciprocal-lattice vectors

can be written as ) )
b1:3—;[(1,\/§), b2:3—Z(1,—\/§). ?)

The two points K and K’ at the edge of the graphene Brillouin zone (BZ), called Dirac points, are
essential for the physics of graphene. Their positions in momentum space can be expressed as
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The three nearest-neighbor vectors are expressed by
a a
b1 =5(1V3),6 = 5(1,—V3),65 = ~a(1,0) @

while the six second-nearest neighbors are positioned at 6/1 = +a;, §/; = £ay, and /3 = £(ay — a7).
The graphene electronic structure can be predicted by graphene simulation, especially using
density functional theory (DFT). The adsorption energy of graphene and other materials (such as
lithium, sodium, hydrogen and potassium), density of states (DOS), geometry, work function and
dipole moment of each adatom-graphene system are studied and calculated using DFT [28-34].

2.1.2. Ambipolar Electric Field Effect in Single-Layer Graphene

As shown in Figure 1b, the exceptional quality of graphene can be precisely seen in its pronounced
ambipolar electric field effect [14]. Charge carriers can have high mobilities 1 over 15,000 cm? V=1 s~1
at ambient conditions and can be continually switched between electrons and holes in concentrations



Nanomaterials 2019, 9, 374 3 of 33

n of 10!® em~2 [4-7]. The mobility of graphene has a consistently high value despite the high n
(1013 cm~?2) in electrically and chemically doped devices.
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Figure 1. Electronic and optical properties of graphene, (a) Hexagonal lattice structure (left) and
its Brillouin zone (right); (b) Graph of the ambipolar electric field effect of single-layer graphene.
The inset indicates the change in Fermi energy Ef in response to the changing gate voltage Vg in
the conical low-energy spectrum E(k); (c) Hall conductivity oy, (red) and longitudinal resistivity
Pxx (green) of graphene versus carrier concentration. The inset shows oy in double-layer graphene;
(d) Three examples of Landau quantization in graphene. D is density of states; (e) Image of a 50-um
diameter aperture covered partly by graphene and its bilayer. (Inset) The designed sample; (f) The
open circles show the transmittance spectrum of single-layer graphene. (Inset) Black squares indicate
the transmittance of white light versus the number of graphene layers; (a) Reproduced with permission
from [13]. Copyright Reviews of Modern Physics, 2009. (b), (d) Reproduced with permission from [14].
Copyright Nature Materials, 2007. (c) Reproduced with permission from [7]. Copyright Nature, 2005.
(e), (f) Reproduced with permission from [20]. Copyright Science, 2008.



Nanomaterials 2019, 9, 374 4 of 33

2.1.3. Quantum Hall Effect

The QHE is another factor indicating the system’s outstanding electronic quality. Because the
temperature range of the QHE for graphene is 10 times broader than that of other 2D materials, the
QHE in graphene can be seen at room temperature. The unique reaction of massless fermions in a
magnetic field is made more evident by their behavior at the high-field limit, where Shubnikov-de Haas
oscillations (SdHOs) progress to the QHE [7]. In Figure 1c, the Hall conductivity oy, and longitudinal
resistivity pxy of graphene are shown with electron or hole concentrations in a constant magnetic
field B. Pronounced QHE plateaus are detectable but do not behave in the expected progression
oxy = (4¢2/h)N, where N is an integer. The first plateau occurs at (2¢?/h), and the progression
is (4¢?/h)(N + 1/2) because the plateaus correspond to half-integer v values. In graphene, the
movement from the lowest hole (v = -1/2) to the lowest electron (v = +1/2) Landau level (LL) needs
the same amount of carriers (An = 4B/¢y ~ 1.2 X 10"?cm™2), as does movement between other
adjacent levels. To highlight this extraordinary property, Figure 1c shows the oy, of a graphite film
comprising only two graphene layers. The existence of a quantized level at zero E, which is shared by
electrons and holes, is the most important factor in realizing the unusual QHE sequence [14,35-39]
(Figure 1d(1)). Another means of describing the half-integer QHE is to identify the coupling between
pseudospin and orbital motion [5,7,40]. The pseudospin related to massive Dirac fermions induces
a geometrical phase of 27, which appears in the double degeneracy of the zero-E LL (Figure 1d(2)).
Interestingly, the ‘standard” QHE with all the plateaus present can be recovered in bilayer graphene
by the electric field effect. A gate voltage causes an asymmetry between the two graphene layers,
resulting in a semiconducting gap. The electric-field-induced gap results in a sustained QHE sequence
by dividing the double step into two (Figure 1d(3)).

2.1.4. Visual Transparency of Graphene

The transparency or opacity of suspended graphene is dependent only on the fine-structure
constant, « = €?/hc &~ 7.299 x 1073 (where c is the speed of light) [14]. This parameter, conventionally
related to quantum electrodynamics, defines the binding of light and relativistic electrons. Nair et al.
reported that graphene absorbs a large portion (i = 2.3%) of incident white light despite being only
one atom thick [20]. The universal G (high-frequency conductivity) for Dirac fermions means that
detectable quantities such as graphene’s optical transmittance T and reflectance R are also universal
(expressed by T = (1 + %) g (1 + %mx) * and R = 172a2T, respectively, for normally incident
light) [41,42]. Additionally, the opacity of graphene is yielded by (1 — T) ~ mx, which can be written
by computing the absorption of light by two-dimensional Dirac fermions with Fermi’s golden rule.
Figure le displays a graphene crystal sample covering submillimeter apertures in a metal scaffold
(Figure le inset) in transmitted white light. The opacities of different areas can be compared because the
schematic in Figure le shows only an aperture partially covered by suspended graphene. Differences
in the observed light intensity can be explained by the line scan traveling across the image. Figure 1f
illustrates an opacity of graphene of 2.3 & 0.1% with minor reflectance (< 0.1%), in contrast to optical
spectroscopy, which indicates that the opacity is nearly independent of the wavelength, A. As shown
in the inset of Figure 1f, the opacity increases by 2.3% for each graphene layer added to the membrane.
The above results also demonstrate a universal dynamic conductivity G = (1.01 4 0.04) ¢?/4F (here e
is the elementary charge and 7 is the Planck constant) in the visible-frequency region, which is the
expected performance for ideal Dirac fermions.
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2.2. Electronic Applications
2.2.1. Optical Devices

Photodetectors

The ability of photodetectors to detect broad spectral ranges of light with high responsivity
and fast photodetection is critical in optoelectronic applications ranging from sensing, imaging, and
spectroscopy to communications. Therefore, numerous studies have reported the use of traditional
semiconductors for broader ranges of photodetection, even in the mid-infrared to far-infrared
regime. As a result, narrow-bandgap semiconductor compounds such as indium antimonide (InSb),
mercury cadmium telluride (HgCdTe), lead sulfide (PbS), and lead selenide (PbSe) are now widely
applied in mid-infrared or far-infrared photodetectors [43—45]. However, the cryogenic operation,
high cost, and complicated growth processes of these narrow-bandgap semiconductors has limited
their practical usage as broad-range photodetectors [46]. Therefore, graphene has advantages over
narrow-bandgap semiconductor compounds in terms of its ultrabroad optical absorption spectrum
and high room-temperature electron and hole mobilities.

Liu et al. developed photodetectors consisting of a thin tunnel barrier sandwiched between two
graphene layers [47]. The graphene/5-nm-thick Ta;O5/graphene heterostructure photodetector shows a
remarkably high responsivity of ~1000 A W~! under a low excitation power (~10~ W) of 532 nm laser
light at a 1 V source-drain bias voltage. Additionally, the authors fabricated a similar graphene/6-nm-thick
intrinsic silicon/graphene heterostructure device with improved photoresponsivity in the infrared regime.
The intrinsic-silicon-incorporated photodetector shows high responsivity in a broadband regime ranging
from near-infrared (4 A W1 at 1.3 um light and 1.9 A W-lat21 um light) to mid-infrared light (1.1
A W1 at32 um). Yuetal fabricated a mid-infrared photodetector by hybridizing graphene with
an innovative narrow-bandgap semiconductor, titanium sesquioxide (TiyO3) nanoparticles [48]. The
schematic in Figure 2a shows the representative hybrid graphene/TiyO3; nanoparticle photodetector, with
a high responsivity of ~300 A W~ and high detectivity of ~7 x 108 cm Hz!/2 W~ at room temperature.
Furthermore, a high responsivity of ~120 A W~! can be achieved from the photodetector over a wide range
of wavelengths from 4.5 um to 10 um (Figure 2b). Figure 2c shows the superior performance of this material
compared to those in other recent studies, such as hybrid ZnO/graphene [49], perovskite/graphene [50],
QDs/graphene [51], etc. [52]. Wang et al. proposed seamless lateral graphene p-n junctions by performing
selective-area ion implantation followed by the in situ chemical vapor deposition (CVD) of graphene [53].
The photodetector based on these seamless lateral graphene p-n junctions offers a high responsivity
of 14~4.7 A W~ and detectivity of ~10'2 cm Hz'/2 W~ in the broad spectral range of visible light
(532 nm) to near-infrared light (1550 nm) under an illuminated light intensity of 15 mW/ cm?. Fang et al.
proposed a graphene photodetector with a gold snowflake-like fractal metasurface design [54]. The authors
measured the photovoltages generated when light was illuminated on the fractal metasurface and plain
gold-graphene edge (Vactal and Vegge, respectively). The results showed that photovoltage enhancement
factors (Viractal/ Vedge) of 8 to 13 over the visible-light range (476 to 647 nm) can be achieved. Cakmakyapan
et al. fabricated a photodetector with gold-patched graphene nanostripes showing ultrafast photodetection
and high responsivity [55]. The photodetector operates in a wide spectral range of visible light (800 nm)
to infrared light (20 um) with a high responsivity ranging from 0.6 A W—! to 8 A W~1. Additionally, the
photodetector shows an ultrafast photodetection speed exceeding 50 GHz.

Light-Emitting Diodes

Solid-state light-emitting diodes (LEDs) are currently widely used in the semiconductor
industry [56] due to their unique electronic properties. Recently, the improved performance of
LEDs has enabled various electronic applications, such as smart displays, light communications,
and optoelectronics [57-60]. The external quantum efficiency (EQE), current efficiency, and power
efficiency are important factors that determine the performance of LEDs. Among these factors, the
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EQE is known to be dominated by the light extraction efficiency and internal quantum efficiency [61].
To date, the internal quantum efficiency of LEDs has been remarkably improved and has already
reached the theoretical limit, which is larger than 90% [62]. In contrast, the light extraction efficiency
has not reached the theoretical limit. Therefore, improving the light extraction efficiency is key to
obtaining a higher EQE. A high optical transparency, high reliability and low sheet resistance are
required for better light extraction efficiency. Thus, the use of transparent conductive electrodes (TCEs)
is necessary; indium tin oxide (ITO) is one of the most widely used materials because of its high
optical transmittance (above 80% at 450 to 550 nm) and low sheet resistance [63,64]. However, ITO
has considerable disadvantages, which are its mechanical brittleness and high cost [65]. Thus, metal
nanowires (NWs) and carbon-based materials such as carbon nanotubes and graphene have been

investigated to replace ITO [22,66-69].

(@

Graphene

(d

GO/G heterostructure!/|

()

GIGO
—
5.3eV

(b)

> I
8 3

o
1=}

Responsivity (A / W)

1.8eV

6.35eV

9.15eV

bt g gy

0
45 50 55 6.0 65 7.010

Wavelength (um)

3.0eV  3.0eV

6.4eV 6.4eV

Pressure

Release

Current (A)

Unloading

=

Loading

Time (s)

Figure 2. Electronic applications of graphene (a) Schematic showing a hybrid graphene/Ti2O3
photodetector for mid-infrared detection; (b) High photodetector responsivity when illuminated with

Lens

’  Field-effect sensor

Graphene channel $
Graphene/AgNW

Antenna

(0)

(e

(8

()

-

Power efficiency(Im 1/W)

=

Transmittance (%)

N
S

Current efficiency(cd/A)

Current density (mA/cm?)

Responsivity (A /W)

60

40

100

80

60

40

80 0—-10;‘.'_".—-—-‘[ o
—- ITO

- = QD/Graphene
- 4 ZnO/Graphet
* Perovskite/G
. »BP

10 12

4 6 8
Wavelength (um)

———t 8 =0-0.0.4.4
i e,

~+~ Graphene by rosin
~+~ Graphene by PMMA

10! 10? 10°

Luminance (cd m~2)

e
"
~o% "
——|TO B Yy
~e~ Graphene by rosin ..
—=— Graphene by PMMA .,

s

.

10! 10? 10°
Luminance (cd m~2)

—e— Spiro-OMeTAD

—e— MoS2 QDs/Spiro-OMeTAD
—+— MoS2-QD;f-ROG/Spiro-OMeTAI
—*= F-RGO/Spiro-OMeTAD

[0 I 0:28. 045l 0167 07811 X0 | hiED
Voltage (V)

o
5}

©
o

@
o

IS
=)

0

g%

e 80

e Graphene
e AQNW 60

—— Hybrid 40

—

400 600

800 1,000 1,200 1,400

Wavelength (nm)



Nanomaterials 2019, 9, 374 7 of 33

wavelengths of light from 4.5 to 10 um; (c¢) Comparison of photodetector responsivity with the results
of other recent studies; (d) Structure of a graphene OLED (left) and its energy-level diagram (right);
(e) Current efficiency (top) and power efficiency (bottom) versus luminance characteristics of three
types of OLEDs. The inset indicates a flexible green OLED with a rosin-transferred graphene anode; (f)
Schematic of a mesoscopic MAPbI3-based perovskite solar cell; (g) I-V curves of measured perovskite
solar cells exploiting MoS2 QDs, f-RGO, and MoS2 QDs:f-RGO as an ABL between spiro-OMeTAD and
MAPbI3; (h) Sensing mechanism of a piezoresistive pressure sensor and current response to loading
and unloading. (i) Image of multifunctional sensors on a soft contact lens; (j) Transmittance and haze
of graphene, AgNW films, and graphene/AgNW hybrid structures. (a), (b), (c) Reproduced with
permission from [48]. Copyright Nature Communications, 2018. (d), (e) Reproduced with permission
from [21]. Copyright Nature Communications, 2017. (f), (g) Reproduced with permission from [70].
Copyright ACS Nano, 2018. (h) Reproduced with permission from [71]. Copyright Small, 2018. (i), (j)
Reproduced with permission from [72]. Copyright Nature Communications, 2017.

Zhang et al. fabricated four-inch flexible organic light-emitting diodes (OLEDs) showing a high
brightness of ~10,000 cd m~2 by transferring ultraclean and damage-free graphene supported by
rosin (C19Hp9COOH); Figure 2d shows the device structure [21]. To date, various materials, such
as small organic molecules and macromolecular polymers, have been used as supporting layers for
transferring graphene [73-75]. However, low solubility in all solvents and strong interactions with
graphene make the elimination of the supporting layers after the transfer difficult. These problems
damage and leave polymer residues on the transferred graphene layer, degrading the electrical and
optical properties. Rosin shows high solubility in solvents and weak interactions with graphene,
thus enabling an ultraclean and damage-free transfer. As a result, OLEDs with rosin-transferred
graphene showed a maximum current efficiency of 89.7 cd A~! and power efficiency of 102.6 Im W1,
exceeding the performance of ITO and poly(methyl) methacrylate (PMMA)-transferred graphene
OLEDs (Figure 2e). In addition, the inset shows an optical image of a rosin-transferred graphene-based
OLED showing uniformly bright green light. Lee et al. proposed flexible OLEDs with an electrode
structure based on low-index hole injection layers (HILs) and high-index TiO, layers sandwiching
graphene electrodes [76]. This structure enables losses in both the surface plasmon polariton (SPP) and
cavity resonance enhancement to be controlled, thereby leading to a high EQE. The proposed OLEDs
showed ultrahigh EQEs of 40.8% and 62.1% for single- and multijunction structures, respectively.
Additionally, the OLEDs were bendable to a radius of 2.3 mm because the TiO; layer is capable of
withstanding flexural strains up to 4%. Wang et al. developed a single tunable LED emitting light
ranging from blue (~450 nm) to red (~750 nm) composed of semireduced graphene oxide sandwiched
by graphene oxide (GO) and reduced graphene oxide (RGO) [77]. The LED produced red and green
lights at 4.8 Im W~! and 6000 cd m~2 under a 12 V bias voltage and a 0.1 A drive current and blue
light at 0.67 Im W~! and 800 cd m~2 under a 16.5 V bias voltage and a 0.1 A drive current. This
experiment enabled in situ wavelength tuning by controlling the bias voltage and doping level. Huang
et al. introduced transparent LEDs based on graphene-encapsulated Cu NWs [78]. Cu NWs are a
strong candidate to replace ITO TCEs owing to their high transmittance (~93%), low sheet resistance
(51 ohm/sq), and low cost [79,80]. However, the low stability against oxidation of Cu NWs limits their
use as electrodes for LEDs. To solve this problem, gas-phase graphene can be used to encapsulate
Cu NWs to enhance their stability: the material shows strong antioxidant stability while maintaining
high optoelectronic properties (33 ohm/sq and 95% transmittance) over a broad transparency range
(200~3000 nm). Therefore, the encapsulated NWs serve as electrodes by forming good ohmic contact
with both n-GaN and p-GaN, thereby leading to the successful fabrication of blue-light LEDs. Seo et al.
conducted similar research by integrating silver nanowires (AgNWs) with a graphene protecting layer
to achieve high performance [81]. High-quality graphene was obtained by a two-step growth method,
which results in reduced point defects and an increased graphene domain size. The measured sheet
resistance of AgNWs with graphene produced via the two-step growth method (A-2GE) was 77.5 &+
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10 ohm/sq, and that of AgNWs was 205.1 £ 40 ohm/sq. Additionally, the oxygen transmission rate
(OTR) was measured after the graphene films had been transferred to a polyethylene terephthalate
(PET) film. The OTR of 2-G/PET was 5.39 + 0.9 cc/m?-day, 74% less than that of bare PET. Thus,
A-2GE showed high optoelectronic properties and strong antioxidant stability and can be used for
TCEs for LEDs.

Solar Cells

Solar cells based on organic-inorganic perovskite materials have recently been widely studied
due to their high power conversion efficiencies (PCEs), long-range carrier diffusion length, intense
light absorption, and facile fabrication (low cost and low temperature) [82-89]. The active device
layers of perovskite solar cells (PSCs) are sandwiched by electron and hole transport layers (ETLs and
HTLs, respectively) [90-92]. Since the charge carrier transport properties can be affected by both the
electronic structures of the various interfaces and the morphology of PSCs [93,94], graphene and related
two-dimensional materials (GRMs), such as graphene quantum dots (GQDs) [95-97], RGO [97-99],
and fullerene [100], have been widely used to tune the interfacial properties and morphologies of PSCs.
GRMs have been exploited as the top electrodes of PSCs, as an interlayer between the ETL/HTL and the
perovskite layer, and by integration with the ETL/HTL to provide efficient charge transfer [101,102].

You et al. proposed semitransparent PSCs with top graphene electrodes [103]. The fabricated PSCs
showed maximum PCEs of 11.65 & 0.35% and 12.02 4= 0.32% from the graphene and fluorine-doped
tin oxide (FTO) sides, respectively, with optimized conditions of double-layer graphene and an ~70 mg
mL 1 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluorine (spiro-OMeTAD) solution
due to the low surface roughness. Sung et al. first fabricated PSCs with over 17% efficiency by
exploiting graphene as a transparent conducting anode [104]. The presence of molybdenum trioxide
(MoO3) controlled the contact angle between poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)
(PEDOT:PSS) and the graphene surface and helped successfully form PEDOT:PSS/MAPbI; layers.
The thickness of the MoOj layer affected the PCE of the PSCs. In the experiment, a 1 nm-thick MoOs
layer with graphene-based devices showed a maximum PCEs of 17.1%, larger than 90% of those of
ITO-based devices (18.8%). The flexibility and high PCE of this graphene-based device pave the way
for the further development of flexible solar cells. Najafi et al. fabricated a PSC with a high PCE of
over 20% using MoS; QDs and a functionalized reduced graphene oxide (f-RGO) hybrid [70]. MoS,
QDs:f-RGO hybrids are used as both the HTL and active buffer layer (ABL), and a schematic of the
PSC is shown in Figure 2f. The PSC structure consists of FTO/compact TiO; (cTiO;)/mesoporous TiO;
(mTiO,)/MAPDI;3 /{-RGO:Mo0S; /spiro-OMeTAD/ Au. The I-V characteristics of MoS; QDs, {-RGO,
and MoS, QDs:f-RGO as ABLs are shown in Figure 2g. The PSC using MoS, QDs:f-RGO showed
a further improved performance, with a maximum PCE of 20.12% and a fill factor (FF) of 79.75%,
compared to the reference device showing a maximum PCE of 16.85% and an FF of 76.9%. Agresti
et al. fabricated a large-area PSC of 50.56 cm? with a PCE of 12.6% by doping the mTiO, layer with
graphene flakes and inserting lithium-neutralized graphene oxide flakes (GO-Li) between the interface
of the mTiO, and perovskite [105]. The charge injection from perovskite to mTiO; is improved by the
GO-Li layer, and the graphene flakes dispersed in the mTiO, layer help speed up the charge dynamic
at the electrode. The interface engineering of PSCs by GRMs leads to an increased PCE, from 11.6%
for the reference PSC to 12.6% for the PSC with GO-Li and mTiO,. Li et al. proposed a PSC with an
MALI perovskite layer incorporating graphene nanofibers [106]. Integrating graphene nanofibers with
perovskite leads to improved charge injection and the formation of larger crystals. Therefore, the PSCs
with graphene nanofibers showed an improved PCE of 19.83% compared to the PCE of the reference
device of 17.51%.
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2.2.2. Sensors

Electronic Sensors

Graphene can be utilized in various electronic sensors due to its unique device properties. Recently,
novel integrated electronic circuitries with tactile pressure sensors based on piezoelectricity [107,108],
piezoresistivity [109,110], capacitance [111,112], and field-effect transistors (FETs) [113-115] have
been fabricated for healthcare and health-monitoring applications [107,108,115]. Haniff et al.
successfully fabricated a flexible piezoresistive-type pressure sensor based on graphene synthesized
at various substrate temperatures (750, 850 and 1000 °C) with hot-filament thermal chemical vapor
deposition (HFTCVD) [116]. The authors found that the sensitivity of the flexible graphene-based
piezoresistive-type pressure sensor could be tuned through this technique (graphene deposited
at 750 °C has a four-fold higher sensitivity than graphene deposited at 1000 °C). A flexible and
highly sensitive piezoresistive pressure sensor based on an ultrathin wrinkled graphene film (WGF),
interdigital electrodes (IDEs), polyvinyl alcohol (PVA) NWs, and an interconnected isolation effect was
reported by Liu et al. [71]. The sensing mechanism and current response to loading and unloading are
described in Figure 2h. The WGF and interconnected PVA NWs produce a synergistic effect, resulting
in a piezoresistive pressure sensor with an ultrasensitivity of 28.34 kPa~! and mechanical durability
and reliability (repeated tests of 6000 cycles). Shin et al. paved the way to use pressure sensors for
diverse application areas, such as medical diagnosis, robotics and automatic electronics [117]. The
authors developed transparent tactile pressure sensors covering a wide pressure range (250 Pa~3 MPa)
by forming fully integrated active-matrix pressure-sensitive graphene FET arrays with air-dielectric
layers between two folded opposing panels.

For the true integration of woven electronics and/or optoelectronics into textiles, the direct
fabrication of the device on the fiber itself with high-performance materials allowing easy unification
into fabrics is required [118,119]. Alonso et al. completely integrated flexible (up to 10 mm, the
radius of a human finger), transparent and durable graphene-based LED and touch sensors on textile
fibers [120]. Roll-to-roll and printing-compatible patterning techniques were adopted to fabricate
the LED and the capacitive touch sensors. Transparent electrodes coated by monolayer graphene
on a textile fiber can be utilized for wearable electronics with high conductivity and flexibility [121].
Graphene-based optical waveguide tactile sensors can overcome the disadvantage of optical sensors
with a directional coupler [122]. Additionally, transparent and flexible UV sensors play an important
role in the field of wearable and/or portable optoelectronic systems. Pyo et al. demonstrated a fully
transparent, exceedingly sensitive, and flexible UV sensor with 1D hybrid carbon nanotubes (CNTs)
combined with a 2D graphene electrode [123]. Because of the provided effective charge transfer and
the minimized effect of contact resistance by the integration of the CNTs and graphene without a
potential barrier, the CN'T-graphene UV sensors have a 30 times higher photoresponse (45% under
254 nm UV illumination with a power intensity of 1.91 mW cm~2) than that of the CNT-Au electrode
sensors. Additionally, thanks to the outstanding properties of graphene and CNT, the device shows
a high optical transparency (over 80% at 550 nm) and remarkable mechanical flexibility (bending
radius of 5.5 mm) with high electrical reliability. Goossens et al. reported the monolithic integration of
graphene with a complementary metal-oxide—semiconductor (CMOS)-integrated circuit operating as
a high-mobility phototransistor [124]. Broadband high-resolution image sensing and a sensitive digital
camera in the range of ultraviolet, visible and infrared light was demonstrated.

Research on the safe and accurate monitoring of human body signals, hazardous disease detection,
and stimulation systems has been highly focused in areas ranging from biological research to clinical
medicine [125-132]. Electrooculography (EOG) is a technique for recording the corneo-retinal standing
potential between the retina and the cornea of human eyes. Ameri et al. described a noninvasive
graphene electronic tattoo (GET)-based invisible EOG sensor [133]. Ultrathin (350 nm thickness),
stretchable (up to 50%), soft, fully transparent (85% in the visible regime), and breathable EOG
sensors based on GETs have a high resolution (approximately 4° to detect eye movement); wireless
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communication can be achieved by connecting the sensor to an OpenBCI Cyton board, and the
sensors can be successfully applied to a human-robot interface (HRI). Kuzum et al. simultaneously
recorded electrophysiological spikes in the brain with flexible, fully transparent graphene-based
neural electrodes and neuro-optical images with confocal or multiphoton microscopy [134]. The
graphene electrodes were highly transparent, such that both electrophysiological recording and optical
imaging, leading to brain imaging with high spatiotemporal dynamics, could be achieved without
perturbing either technique. Additionally, the simultaneous optical stimulation of neural tissue and
electrical recording of the brain can be achieved by using p-LEDs and transparent graphene electrodes,
respectively. [135]. Such powerful graphene-based systems that resolve individual cells and their
connections through optical imaging and electrical recording of brain activity are a breakthrough in
neuroscience. Monitoring glucose [136,137] and the intraocular pressure [138-141] are particularly
crucial for detecting and managing diabetes and glaucoma, respectively. Kim et al. fabricated a highly
conductive, flexible and transparent wearable smart contact lens using a reliable and robust hybrid
structure of 1D and 2D nanomaterials [72]. Wearable contact lenses can directly and noninvasively
detect and wirelessly monitor biomarkers such as the glucose contained in tears and intraocular
pressure by measuring the change in resistance and capacitance of the electronic device. Figure 2i
shows a schematic of fully integrated multifunctional sensors on a soft contact lens. As shown in
Figure 2j, a lower optical transmittance, haziness, and sheet resistance were obtained when graphene
and AgNWs were integrated in a hybrid system than when the single materials of graphene or AgNWs
were used.

Biomolecule Sensors

For early and reliable clinical cancer diagnosis and treatments, cost-efficient, dependable and
sensitive monitoring and detecting systems are crucial. Wu et al. fabricated a functionalized
graphene-based electrochemical sensor array system for cell sensing [142]. The graphene-based
chemical nose/tongue approach system can discern 100 cell samples consisting of (i) artificial
circulating tumor cells (CTCs); (ii) cancerous, multidrug-resistant cancerous and metastatic human
breast cells; and (iii) different cell types with almost 100% classification accuracy.

Detecting and monitoring various electrolytes, such as biological, organic, and inorganic
electrolytes, and electroactive materials in human body fluids are important for clinical diagnosis and
analytical applications [61,143-145]. Wang et al. developed electrochemical biosensors to selectively
and simultaneously detect five analytes in human serum: ascorbic acid (AA), dopamine (DA),
nitrite (NOy), tryptophan (Trp), and uric acid (UA) [146]. A CVD method was used to fabricate
freestanding graphene nanosheets on tantalum (Ta) wire. Graphene-based biosensors provided
highly selective, sensitive results (detection limits of AA, DA, NO,, Trp, and UA of 1.58, 0.06, 6.45,
0.10, and 0.09 uM, respectively (S/N = 3)) with differential pulse voltammetry (DPV). As predicted
by the World Health Organization (WHO), the number of diabetes patients has been gradually
increasing [147], and such patients require the continuous monitoring of glucose levels in the interstitial
fluid. Currently, only invasive methods are available for monitoring the glucose in the blood [148-150].
Lipani et al. demonstrated a noninvasive, transdermal, path-selective, and specific glucose monitoring
and detection system based on a miniaturized device array platform fabricated by a graphene thin-film
method or screen-printing technology [151]. The authors found via in vivo testing on healthy humans
that the graphene-based glucose monitoring system can continuously record the blood sugar for 6 h.

The most important consideration for systems biology and personalized and precision medicine
is an acceptable affinity and binding efficiency of deoxyribonucleic acid (DNA) hybridization and
the ability to distinguish DNA sequences with single-nucleotide substitutions. Xu et al. suggested
next-generation multichannel graphene-based DNA sensors for a cost-effective, fast, simple and
label-free biosensing system to perform kinetic studies (e.g., detection limit of 10 pM for DNA) [152].
Reproducible and reliable G-FET DNA biosensors have been designed using a mature FET fabrication
method characterized by low cost, low power, and simplicity of miniaturization. Diffusive transport is
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a general mechanism for biomolecules in viscous media, and a crucial prerequisite for biosensing is
placing the target biomolecules at the most sensitive point. Because of the powerful dielectrophoresis
(DEP) forces of monolayer graphene, the sharp edge of monolayer graphene can successfully produce
singular electrical field gradients, accurately trapping and positioning biomolecules (nanoparticles and
DNA molecules) [153]. Seo et al. fabricated a sensitive and selective electrochemical genosensor
integrated with grown graphene films, realizing reliable biodetection and demonstrating the
functionality of the graphene films [154].

A provisional WHO guideline has established a concentration limit of microcystin-LR (MC-LR)
of 1 ug/L in drinking water [155] because the continuous monitoring of drinking water quality
and appropriate treatment are extremely important for human healthcare and the quality of life
worldwide [156,157]. Zhang et al. reported a novel graphene film-integrated biosensor for MC-LR
detection that is time- and cost-effective, portable, scalable to large-scale manufacturing, and easy to
handle. A graphene film/polyethylene terephthalate (GF/PET) composite grown through the CVD
method was used to develop a graphene-based biosensor, resulting in a detection limit of 2.3 ng/L,
which fully satisfies the safety guideline of the WHO.

Gas Molecule Sensors

With fast-growing industrial development, toxic gases endangering human beings have been
extensively produced and emitted [158,159]. Therefore, developing gas sensors with a high detection
sensitivity or control capacity for hazardous gases is extremely important for the protection of human
health and the environment [160]. Wu et al. reported a chemiresistor-type sensor based on a 3D
sulfonated reduced graphene oxide hydrogel (S-RGOH); the sensor is capable of detecting a variety of
important gases with high sensitivity, boosted selectivity, fast response, and good reversibility [161].
The NaHSO;-functionalized RGOH displays 118.6 and 58.9 times higher responses than its unmodified
RGOH counterpart for NO3 and NHj, respectively. Moreover, the response increases monotonically
from 6.1% at 200 ppb NO; to 22.5% at 2 ppm NO,. Guo et al. fabricated a NO; gas sensor from the
room-temperature reduction of GO via two-beam-laser interference (TBLI) [162]. The fabricated RGO
sensor enhanced the sensing response for NO, and accelerated the response/recovery rates. For 20
ppm NO,, the response (Ra/Rg) of the sensor based on RGO hierarchical nanostructures is 1.27, which
is higher than those of GO (1.06) and thermally reduced RGO (1.04). The response time and recovery
time of the sensor based on laser-reduced RGO are 10 s and 7 s, respectively, which are much shorter
than those of GO (34 s and 45 s).

Because of the significant properties (high heat of combustion and low minimum ignition energy)
of hydrogen (Hy), it can be exploited in various applications [163,164]. However, because of its
delicate properties (low level of explosion limit ~4%), the real-time and long-distance monitoring of
H; concentrations is essential. Sharma et al. produced an FET hydrogen sensor integrated with a
graphene-Pd-Ag-gate FET (GPA-FET) [165]. The GPA-FET showed an excellent sensing response to
hydrogen gas at 25~254.5 °C.

Many studies have reported the integration of graphene-based mobile gas sensors with modern
technologies such as smart phones, cloud computing and the Internet of Things (IoT) with graphene
nanoribbons due to the high electrical conductivity of the nanoribbons. The first monolithically
integrated CMOS-monolayer graphene gas sensor was developed by Zanjani et al., with a minimal
number of post-CMOS processing steps, to realize a gas sensor platform that integrates the higher
gas sensitivity of monolayer graphene with the low power consumption and cost advantages of a
silicon CMOS platform [166]. Furthermore, Pour et al. improved graphene nanoribbons’ electrical
conductivity by lateral extension [167]. Improved graphene nanoribbons were synthesized in solution;
the lateral extension decreased their bandgap and improved their electrical conductivity.
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3. Thermal Properties and Applications
3.1. Thermal Properties

3.1.1. Specific Heat of Graphene and Graphite

The specific heat, C, is a distinct characteristic of a material expressing the change in the energy
density U with respect to the change in temperature (1 K or 1 °C), represented as C = dU/dT, with
units of joules per kelvin per unit mass, per unit volume, or per mole. The thermal time constant of a
material, which indicates how quickly the material heats or cools, is determined by the specific heat.
The thermal time constant is expressed as T =~ RCV, where V is the volume of the material and R is the
thermal resistance for heat dissipation [168]. As the specific heat of graphene has not been measured
directly, the calculation was performed by referencing the data for graphite [169-171]. The specific
heat of a material is contributed by two components, phonons (or lattice vibrations) and electrons:
C = Cpn + Ce- However, the contribution of phonons dominates the specific heat of graphene at all
temperatures [172]. In addition, as shown in Figure 3a, the phonon specific heat increases with the
temperature [171,173]. The specific heat of graphite at room temperature is Cpp, = 0.7 ] g 1 K71, which
is approximately 30% higher than that of diamond due to the higher density of states (DOS) at low
phonon frequencies caused by the weak coupling of graphite layers. For a graphene sheet at room
temperature, a similar result is expected, but the specific heat can be altered when graphene interfaces
with a substrate (e.g., graphene on insulators) [174].

3.1.2. Thermal Conductivity

The thermal conductivity K is explained by Fourier’s law, § = —KV T [175]. In this equation, the
negative sign means heat flows from high to low temperature; g is the heat flux per unit area; and VT
is the temperature gradient. The thermal conductivity is related to the specific heat by K ~ }  CvA,
where v is the average phonon group velocity and A is the mean free path. Therefore, as the specific
heat of graphene is dominated by phonon transport, the thermal conductivity is also dominated by
phonon transport [171].
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Figure 3. Thermal properties of graphene (a) Specific heats of graphite, diamond, and graphene. The
inset compares the specific heats of graphene and graphite at low temperature; (b) Thermal conductivity
of bulk carbon allotropes as a function of temperature; (c) Figure of a graphene layer suspended across
a trench and the measurement of the thermal conductivity; (d) SEM image of a suspended graphene
layer across a 3-um-wide trench in a Si wafer; (e) Raman spectrum of graphene showing the G-peak
region measured at two different power levels; (f) Graph showing the G-peak position shift versus
power change; (g) Graph of measured Seebeck coefficients as a function of temperature for graphene
samples. (a) Reproduced with permission from [171]. Copyright MRS Bulletin, 2012. (b), (c), (d)
Reproduced with permission from [16]. Copyright Nature Materials, 2011. (e), (f) [176]. Copyright
Nano Letters, 2008. (g) Reproduced with permission from [18]. Copyright Science, 2010.

Here, the thermal conductivity of various carbon allotropes, including two types of pyrolytic
graphite (in-plane and cross-plane), diamond, and amorphous carbon, is presented in Figure 3b.
Pyrolytic graphite is similar to highly oriented pyrolytic graphite (HOPG). The in-plane K of pyrolytic
graphite is approximately 2000 W m~! K~! at room temperature, and the cross-plane K at room
temperature is more than two orders of magnitude smaller. Because HOPG is composed of well-aligned
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large crystallites, the overall behavior is analogous to that of a single crystal; this fact explains the
difference in K [177]. Heat is mainly transported by acoustic phonons in all bulk carbon allotropes. In
HOPG and diamond, K reaches maximum values at approximately 100 K and 70 K, respectively. In
amorphous carbon, K ranges from 0.01 W m~! K~ to 2 W m~! K~! at 4 K and 500 K, respectively.
Similarly, carbon allotropes have different thermal conductivities depending on the temperature. The
difference is attributed to the grain size and quality of graphite and the phonon DOS, as indicated
by Cph‘

A method to measure the thermal conductivity of graphene by exploiting confocal micro-Raman
spectroscopy is introduced in Figure 3c. The G peak in the graphene spectra depends strongly on
the temperature [178]. This high temperature sensitivity of the G peak enables the monitoring of
the local temperature change induced by laser light focused on a graphene layer. In this experiment,
trenches were fabricated on Si/SiO, substrates by reactive ion etching (RIE), and graphene was
suspended over the trenches. The depth of the trenches was 300 nm, and the width varied from 2 to
5 um [176]. An optical image of the trenches taken by scanning electron microscopy (SEM) is shown in
Figure 3d. The laser light focused on the middle of the suspended graphene layer generates heat in
the graphene. The heat generated by laser excitation propagates laterally through the graphene due
to the negligible thermal conductivity of air. Thus, even a small amount of heat propagated from the
middle of the graphene can result in a detectable temperature increase. The heat front propagating
through the graphene layers can be explained by two components: the plane-wave heat front and the
radial heat wave [179]. The thermal conductivity from the plane-wave heat front can be expressed
as K = (L/2S)(AP/AT), where AP/AT indicates the heating power change with respect to the
temperature change, L is the distance from the center of the graphene to the heat sink, and S=h x W.
For the radial heat wave case, K = x¢(1/2hm)(5w/5P) !, where 5w /5P indicates the G peak position
shift due to the heating power change. Consequently, the thermal conductivity can be expressed as

K = xg(L/2hW) (6w /éP) 1. (5)

As shown in Figure 3e, the excitation power dependence of the Raman G peak was measured
for the suspended graphene layers. The increase in laser power induced an increase in the
intensity and redshift of the G peak. The G peak position shift with respect to the power change
in the suspended graphene layers is shown in Figure 3f. The slope from the measured data is
Sw/8Pp ~ —1.29 cm'mW !, where Pp, is the total dissipated power and the temperature coefficient
Xc = —1.6 x 1072 cm~1/K [180]. When these values are substituted into equation (5), a thermal
conductivity of approximately 2000~4000 W m~! K~ is obtained for freely suspended graphenes;
this value is the highest of any known material [15-17]. Raman spectroscopy is a basic technique for
graphene analysis. In addition to thermal conductivity, Raman spectroscopy can help to characterize
graphene flakes [181], detect traces of molecules [182] and achieve electronic properties [183].

3.1.3. Thermoelectric Effects of Graphene

The thermoelectric power (TEP) is the voltage induced by a temperature gradient. Experimental
studies indicated that graphene has a TEP of ~ 50 to 100 wV K~! [184]. In addition, other experiments
showed that graphene has a maximum TEP value of ~80 pV K~! at room temperature. It was
theoretically verified that TEP behaves as 1//n¢ at a high carrier density (19) but is saturated at low
densities. The values of the Seebeck coefficient range from ~100 to ~10 uV K~! for temperatures
ranging from ~100 to ~300 K. The Seebeck coefficient (5 = dV/dT) shows lower values at high
temperatures, as shown in Figure 3g [18]. Graphene has a higher S than those of semiconductors,
and the polarity of S can be controlled by varying the gate voltage; these thermoelectric effects are
intriguing [185]. The figure of merit (ZT) of the efficiency of thermoelectric energy conversion is defined

as ZT = S%0T/ (Kph + Kgl), where o is the electrical conductivity [186]. Graphene shows a high value
of ZT due to suppressed phonon scattering, which leads to decreased K (Kp, + Ke;) [187,188]. The high
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value of ZT for graphene suggests the possibility of its use in energy-harvesting applications. The
ZT of various graphene nanostructures is very promising for the improvement of the thermoelectric
energy conversion [189].

3.2. Thermal Applications
3.2.1. Sensors

Temperature Sensors

Electronic skins (E-skins) can generate electronic signals from external stimulation for use as
human-machine interfaces (HMIs) and multifunctional smart skins [113,190-194]. In addition to
pressure and strain sensing, achieving the simultaneous detection and monitoring of temperature
with cost-efficient fabrication is important to make plausible mimics of multifunctional human skin.
Ho et al. fabricated a fully transparent (over 90% transmittance in the range 400 ~ 1000 nm) and
stretchable graphene-based multifunctional E-skin sensor matrix [195]. The matrix can detect and
monitor humidity, temperature, and pressure through a simple lamination process. Figure 4a shows
the fabrication technique of the sensor matrix. CVD-grown graphene interconnects electrodes with
three sensors, and GO and rGO are the active sensing materials for humidity and temperature,
respectively. Figure 4b shows the resistance change with respect to temperature, and real-time
measurement results are shown. Each sensor was simultaneously and individually sensitive to
only its relevant form of stimulation, and no response was obtained from other forms of stimulation.
Vuorinen et al. reported a simple technique to fabricate graphene/PEDOT:PSS-based skin-conformable
inkjet-printed temperature sensors [196]. A Phene Plus 13015 transparent graphene/PEDOT:PSS
ink was printed onto polyurethane skin-conformable adhesive bandages to form transparent and
flexible temperature sensors. The inkjet-printing method can significantly reduce the manufacturing
costs and wasted materials and provides advantages for the production of disposable systems. The
graphene/PEDOT:PSS temperature sensors present remarkable sensitivity to monitor temperature
changes on the human skin with a temperature coefficient of resistance (TRC) higher than 0.06% per
degree Celsius. Additionally, Trung et al. demonstrated an all-elastomeric transparent stretchable
(TS) gated sensor with a simple method using graphene [197]. The schematic of the structure of the
TS-gated sensor is shown in Figure 4c. The overall system integrated a graphene-based temperature
sensor and strain sensor. A PEDOT:PSS/PU dispersion (PUD) composite elastomeric conductor
serves as the source, drain, and gate contacts. A PU R-GO/PU nanocomposite and a composite of
AgNWs/PEDOT:PSS/PUD as a gate dielectric are used to form a temperature-responsive channel
layer and a strain sensing layer, respectively. The sensor shows a high stretchability of up to 70%,
responsivity of up to 1.34% per 34 °C and durability (10,000 test cycles at a strain of 30%) and could be
conformally attached to human body skin to monitor temperature changes. Figure 4d indicates the
sensor’s ability to monitor the surface temperature of targets: cold and hot water. The dashed line
illustrates the device region. Such devices can be useful for applications including interactive remote
healthcare systems, biomedical monitoring, and HMIs by integrating wireless communication units
such as Bluetooth into the sensors.

Single-layer graphene (SLG) presents impressive thermal properties, so graphene can be used for
thermal management and temperature sensing applications. Davaji et al. fabricated and compared
micropatterned SLGs on a silicon dioxide (SiO;)/Si substrate, a silicon nitride (SiNx) membrane,
and a Si wafer with etched rectangular boxes (10 x 20 um?) [198]. These sensors show a quadratic
dependence of the resistance versus temperature in the range of 283 ~ 303 K, as determined through
analyzing the temperature-dependent carrier density, electron mobility relationship (~T~*) and
electron-phonon scattering. The graphene-based sensor fabricated on a SiNx membrane has a
substantially faster response, better sensitivity because of the low thermal mass, and better mechanical
stability than other suspended graphene sensors. As a result, a temperature sensor comprising the
suggested SLG on a SiNx membrane can be exploited for various highly sensitive and fast applications.
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Figure 4. Thermal applications of graphene. (a) Schematic of the fabrication process of an all-graphene
electronic skin sensing matrix; (b) Graph showing resistance vs temperature of an rGO-based thermal
sensor (top) and real-time temperature sensing results (bottom); (c) Schematic of a device with a
transparent and stretchable gate; (d) Drain current responses of a TS-gated sensor according to
low-temperature water (left) and high-temperature water (right); (e) Schematic of a GO-PEG-P
theragnostic platform (top) and thermal images of vials with water and GQD-PEG-P solution
(100 pg/mL) (bottom); (f) Hybrid graphene/SWCNT film deposited on an ITO surface showing
high effusivity (top) and heat transfer coefficients on various heating surfaces (bottom). (a), (b)
Reproduced with permission from [195]. Copyright Advanced Materials, 2016. (c), (d) Reproduced
with permission from [197]. Copyright Advanced Materials, 2016. (e) Reproduced with permission
from [199]. Copyright ACS Appl. Mater. Interfaces, 2017. (f) Reproduced with permission from [200].

Copyright Nano Letters, 2016.
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Thermoelectric Sensors

Graphene can be utilized as not only a temperature sensor but also a sensor of other crucial
parameters. Though terahertz radiation has been used in various applications ranging from
security to medicine [201], the sensitive room-temperature detection of terahertz radiation is very
difficult [202]. Cai et al. successfully demonstrated a graphene thermoelectric terahertz photodetector
with highly impressive sensing ability (over 101 VIW~! (7001 VIW~1!) at room temperature) and low
noise-equivalent power (below 1100 | pW | Hz~1/2 (20 | pW | Hz~1/2)) [203]. The compared reference
was the incident (absorbed) power. The detection mechanism of the sensor is the hot-electron
photothermoelectric effect in graphene. Because of strong electron-electron interactions, photoexcited
carriers quickly gain heat [204,205], and the energy of the lattice decreases more slowly [204,206].
Electron diffusion is caused by the temperature gradient of electrons. As a results, a net current is
generated by asymmetry due to local gating [207,208] or dissimilar contact metals [209] through a
thermoelectric effect. The operation of graphene-based sensors is similar to that of state-of-the-art
room-temperature terahertz detectors [210], and the ability of the former to obtain time-resolved
measurements is eight to nine times faster than that of the latter [208,211]. Additionally, one of the
important considerations in on-chip nano-optical processing is the detection, control and generation
of propagating plasmons [212-214]. Graphene shows intensely confined and controllable (>0.5 ps)
plasmons induced by electrostatic fields [215-218]. An all-graphene-based mid-infrared plasmon
detector that precisely converts the natural decay product of the plasmon (electronic heat) to voltage
via the thermoelectric effect [219,220] was presented by Lunderberg et al. [221]. The detection system,
constructed with the plasmonic medium of graphene encapsulated in hexagonal boron nitride (hBN),
operates at room temperature; a single graphene sheet simultaneously acts as the plasmonic medium
and detector. The junction induced by two local gates was used to completely control the thermoelectric
and plasmonic behavior of the graphene.

Thermal Biosensors

Recently, studies aiming to realize theranostic systems with simultaneous detection and
therapeutic services in one single nanostructure have increased in the field of personalized
nanomedicine and clinical biomedical applications [222-224]. Cao et al. reported a multifunctional
theranostic system coupling diagnostic and therapeutic functions with a porphyrin derivative (P)
and GQDs [199]. The P is capable of high singlet oxygen production, and GQDs have excellent
fluorescence properties. A GQD- polyethylene glycol (PEG)-P system was fabricated by integrating
the P into PEGylated and aptamer-functionalized GQDs; the system showed exceptional physiological
stability, impressive biocompatibility and low cytotoxicity. The intrinsic fluorescence of the GQDs can
distinguish cancer cells from somatic cells and helps to detect intracellular cancer-related microRNA
(miRNA). The photothermal conversion properties of GQD-PEG-P are shown at the bottom of Figure 4e.
The image results indicated that the temperature of 100 ng/mL GQD-PEG-P solution increased to 53.6
°C, while the temperature of control water remained at 33.2 °C. A cancer treatment system combining
progressive photothermal therapy (PTT) and powerful photodynamic therapy (PDT) demonstrated
outstanding efficiency for both in vitro cancer cells and in vivo multicellular tumor spheroids (MCTS).
A total GQD-PEG-P theranostic system for intracellular miRNA detection and PTT and PDT therapy is
presented at the top of Figure 4e (the molecular beacon (MB) is the detection probe for miRNA-155).
After monitoring and detecting a cancer, highly effective and reliable treatment is crucial. Synergistic
cancer cures such as drug delivery, magnetic hyperthermia, photothermal therapy, gene therapy, and
radiotherapy have been spotlighted [225-230]. To accomplish safe and successful treatment, Yao et al.
suggested a multifunctional platform with GQD-capped magnetic mesoporous silica nanoparticles
(MMSNS); a composite of GQDs was used for caps and local photothermal generators, and MMSNs
were used for controlled drug release and magnetic hyperthermia [231]. Drug release can be handled
by changing the interaction between drug molecules and carriers and by controlling the state (open or
closed) of the outlets of mesoporous channels [232,233]. Monodisperse MMSN/GQD nanoparticles
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(particle size of 100 nm) can carry doxorubicin (DOX), provoke DOX discharge and adequately
generate heat in an alternating magnetic field (AMF) or by near-infrared irradiation. An integrated
graphene-based chemo-magnetic hyperthermia therapy or chemo-photothermal therapy platform
for destroying breast cancer 4T1 cells (the model cellular system) represents a remarkable synergistic
effect. As a result, the MMSN/GQD nanoparticles have excellent potential for efficient and accurate
cancer therapy.

3.2.2. Energy Management Systems

Efficient heat management systems have become extremely important in various fields, such
as electronic, optoelectronic, and thermoelectric applications, with the fast-growing development
of state-of-the-art technologies to transport heat to the field environment; a high power heating
density is required, or excessive heat must be prevented from deteriorating the device reliability,
lifetime, and performance [234,235]. In this regard, the development of materials with high thermal
conductivity is urgently needed. Heat management systems are normally based on metallic materials
such as Al and Cu because of their relatively high thermal conductivity, approximately 200 to 400 W
m~! K1, and low cost [236,237]. However, these materials show insufficient thermal conductivity
when fabricated with nm thickness due to the linear relation between the thickness and thermal
conductivity [238]. Therefore, graphene, which has superior thermal conductivity, is a promising
alternative for use in practical heat management systems. Seo et al. studied the pool boiling of hybrid
graphene/single-walled carbon nanotubes (SWCNTs), graphene, and SWCNT films deposited on ITO
surfaces to prove that the hybrid graphene/SWCNT material is the layer with the most enhanced heat
transfer coefficient [200]. The authors tested four types of heating surfaces: (1) a bare ITO surface, (2)
SWCNTS5, (3) graphene, and (4) hybrid graphene/SWCNT layers deposited on an ITO surface. CVD
was used to deposit graphene on the ITO surface, and SWCNTs were spray-coated on the surface
to fabricate hybrid graphene/SWCNTs. The critical heat flux (CHF) of the SWCNT5, graphene, and
hybrid graphene/SWCNT heaters were measured to be 123.0, 130.5, and 141.6 kW /m?, respectively.
The CHF of the hybrid graphene/SWCNT heater showed the greatest improvement of 18.2% compared
to that of the bare ITO heater. As shown in Figure 4f, the maximum heat transfer coefficient (HTC)
values of the bare ITO, SWCNT, graphene, and hybrid graphene/SWCNT heaters were found to be
4.41,5.31,4.49, and 6.83 kW/m2 K, respectively. The HTC of the hybrid graphene/SWCNT heater
improved by 55% compared to that of the bare ITO heater. These improvements are attributed to the
deposition of SWCNTs on the graphene, which compensates the disconnected areas and wrinkles of
the graphene. Han et al. introduced a high-performance heat spreader to manage excessive heat [239].
Graphene-based films (GBFs) were used in this experiment because of their high thermal conductivity
of 1600 Wm~! K~ [240]. With a heat flux of 1300 W cm 2, the temperature of the hotspot decreased
by 17 °C with a GBP deposited on nonfunctionalized GO. In addition, 3-amino-propyltriethoxysilane
(APTES) functionalization resulted in an additional decrease in temperature of 11 °C, or a total decrease
of 28 °C. Bernal et al. proposed edge-functionalized graphene nanoplatelets (GnPs) to improve the
thermal conductivity [241]. The diazonium reaction was exploited to synthesize phenol-functionalized
GnPs (GnP-OH) and dianiline-bridged GnPs (E-GnPs). The in-plane thermal conductivity of both
GnP-OH and E-GnPs was enhanced by 20% compared to that of GnPs. Even the cross-plane thermal
conductivity of E-GnPs was remarkably increased by 190% compared to that of GnPs. Ma et al.
conducted research on the relation between the thermal conductivity and grain size of graphene [242].
Segregation adsorption CVD (SACVD) was exploited to grow high-quality graphene films with a
controllable grain size ranging from ~200 nm to ~1 um. The experimental results demonstrated that
the thermal conductivity increased exponentially from ~610 to ~5230 W m~! K~!, with grain sizes
ranging from ~200 nm to 10 pm. The thermal conductivity of graphene was found to be significantly
decreased with the decreasing grain size by a small thermal boundary conductance of ~3.8 x 10° W
m~2 K~!. Ding et al. proposed graphene nanosheets (GNSs) exhibiting high dispersibility in water
and thermal conductivity [243]. Graphite powder and a modifier of sodium lignosulfonate (LS) were
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used to fabricate the GNSs by a ball-milling method. The GNSs fabricated with this method exhibited
a high thermal conductivity of 1324 W m~! K1

Currently, with the rapid development of industry, the energy consumption of mainly fossil
fuels is causing dramatic depletion worldwide [244]. Additionally, various environmental problems,
such as desertification, the greenhouse effect, and pollution, are accompanied by the excessive use
of energy [245,246]. In this regard, the development of sustainable energy is urgently required, and
heat, which is approximately 60% of all energy waste, is rising as a promising candidate [247]. Thus,
thermoelectric materials are of high interest. As mentioned above, the figure of merit ZT is defined
as ZT = S%0T/ (Kph + Kap); thus, enhancing the Seebeck coefficient and electrical conductivity and
reducing the thermal conductivity are essential to achieving a higher efficiency. Cho et al. proposed
multidimensional nanomaterials based on organic thin films exhibiting a high thermoelectric power
factor at room temperature [248]. The thin film consists of the organic materials polyaniline (PANi),
PEDOT:PSS-stabilized graphene, and PEDOT:PSS-stabilized double-walled nanotubes (DWNTs).
These materials are deposited as a quad-layer of PANi/graphene-PEDOT:PSS/PANi/DWNT. The
quad-layer film showed a gradual increase in the electrical conductivity and Seebeck coefficient
with the increased number of layers. The electrical conductivity and Seebeck coefficient of the film
were found to be 1.9 x 10° Sm~! and 120 uV K~! at 80 QLs, respectively. These results led to a
high value of the thermoelectric power factor (PF) (~2710 uW m~! K=2), where PF = S?0. Ma et al.
doped bromine (Br) onto graphene fibers to enhance the thermoelectric properties [27]. The porous
structure of the Br-doped graphene fibers enhances phonon scattering and leads to limited thermal
conductivity compared to that of other graphene materials [249,250]. Additionally, doping with Br
induces a downshift in the Fermi level, which causes an increased Seebeck coefficient and increased
electrical conductivity [251,252]. As a result, the experiment exhibited a maximum figure of merit
of 2.76 x 1073 and room-temperature PF of 624 uW m~! K~2. These values are better than those of
materials composed of solely graphene and CNTs. Lin et al. observed the enhanced thermoelectric
effect of lanthanum strontium titanium oxide (LSTO) upon adding graphene [253]. The addition of
graphene to LSTO led to enhancements in the electrical conductivity, the Seebeck coefficient and power
factor. It was found that LSTO integrated with 0.6 wt % graphene exhibited the best figure of merit
and power factor. The figure of merit was over 0.25 at room temperature.

4. Conclusions

In this paper, we presented a review of the electronic and thermal properties of graphene and its
up-to-date applications. Graphene has exceptional physical characteristics compared to other usual
metals and semiconductors and has the potential for extensive applications. The ambipolar electric
field effect in SLG proves that charge carriers have higher mobilities than those of semiconductors.
Additionally, the QHE, the unique phenomenon observed with LL, is explained by graphs and unique
geometrical phases. Using the experimental results of graphene crystal samples, the visual transparency
of graphene was characterized by the fine-structure constant «. In addition to its electronic features, the
superior thermal properties of graphene were reviewed. The specific heats of graphene and graphite
were derived, and the thermal conductivity of carbon allotropes containing graphene was explained.
Graphene has high thermoelectric power, which suggests its potential for use in energy-harvesting
applications. These remarkable properties of graphene can be incorporated into versatile systems in
various application fields: optical devices, electronic and thermal sensors and energy management
systems. Here, state-of-the-art examples based on graphene were presented. Despite the development
of many graphene-based electronic systems with unique properties, challenges and problems related
to the development of materials for commercial electronics still exist and need to be studied further.
By resolving such challenges and problems, graphene will be in the limelight as an active material for
future electronics.
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Acronym

Acronym Word Original Word

2D two-dimensional

QDs quantum dots

QHE quantum Hall effect

D (DOS) density of states

BZ Brillouin zone

DFT Density Functional Theory
SdHOs Shubnikov-de Haas oscillations
B magnetic field

o Hall conductivity

p longitudinal resistivity

LL Landau level

c speed of light

G high-frequency conductivity
T transmittance

R reflectance

InSb indium antimonide

HgCdTe mercury cadmium telluride
Pbs lead sulfide

PbSe lead selenide

CVD chemical vapor deposition
LEDs light-emitting diodes

EQE external quantum efficiency
TCEs transparent conductive electrodes
ITO indium tin oxide

NWs nanowires

OLEDs organic light-emitting diodes
PMMA poly(methyl) methacrylate
HILs hole injection layers

SPP surface plasmon polariton
GO graphene oxide

RGO reduced graphene oxide
AgNWs silver nanowires

A-2GE two-step growth method
OTR oxygen transmission rate
PET polyethylene terephthalate
PCEs power conversion efficiencies
PSCs perovskite solar cells

ETLs electron transport layers
HTLs hole transport layers

GRMs graphene and related two-dimensional materials
GQDs graphene quantum dots

PEDOT:PSS poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)
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f-RGO functionalized reduced graphene oxide
ABL active buffer layer

FF fill factor

GO-Li lithium-neutralized graphene oxide flakes
FETs field-effect transistors

HFTCVD hot-filament thermal chemical vapor deposition
WGF wrinkled graphene film

IDEs interdigital electrodes

PVA polyvinyl alcohol

CNTs carbon nanotubes

CMOS complementary metal-oxide-semiconductor
EOG Electrooculography

GET graphene electronic tattoo

CTCs circulating tumor cells

AA ascorbic acid

DA dopamine

NO2 nitrite

Trp tryptophan

UA uric acid

WHO World Health Organization

DNA deoxyribonucleic acid

DEP dielectrophoresis

MC-LR microcystin-LR

GE/PET graphene film/polyethylene terephthalate
S-RGOH sulfonated reduced graphene oxide hydrogel
TBLI two-beam-laser interference

GPA-FET graphene-Pd-Ag-gate FET

IoT Internet of Things

C Specific heat

K thermal conductivity

HOPG highly oriented pyrolytic graphite

RIE reactive ion etching

SEM scanning electron microscopy

TEP thermoelectric power

ZT the figure of merit

E-skins Electronic skins

HMIs human-machine interfaces

TRC temperature coefficient of resistance

TS transparent stretchable

PUD PU dispersion

SLG single-layer graphene

SiNx silicon nitride

hBN hexagonal boron nitride

P porphyrin derivative

PEG polyethylene glycol

miRNA microRNA

PTT photothermal therapy

PDT photodynamic therapy

MCTS multicellular tumor spheroids

MB molecular beacon

MMSNs magnetic mesoporous silica nanoparticles
DOX doxorubicin

AMF alternating magnetic field

SWCNTs single-walled carbon nanotubes
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CHF critical heat flux

HTC heat transfer coefficient

GBFs Graphene-based films

GnPs graphene nanoplatelets

SACVD segregation adsorption CVD

GNSs graphene nanosheets

LS lignosulfonate

PANi polyaniline

DWNTs double-walled nanotubes

PF power factor

LSTO lanthanum strontium titanium oxide
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