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Abstract: As a most attractive renewable resource, biomass has the advantages of low pollution,
wide distribution and abundant resources, promoting its applications in lithium ion batteries (LIBs).
Herein, cellulose-derived carbon nanospheres (CCS) were successfully synthesized by hydrothermal
carbonization (HTC) from corn straw for use as an anode in LIBs. The uniform distribution
and cross-linked structure of carbon nanospheres were obtained by carefully controlling reaction
time, which could not only decrease the transport pathway of lithium ions, but also reduce the
structural damage caused by the intercalation of lithium ions. Especially, obtained after hydrothermal
carbonization for 36 h, those typical characteristics make it deliver excellent cycling stability as well
as the notable specific capacity of 577 mA h g−1 after 100 cycles at 0.2C. Hence, this efficient and
environment-friendly method for the fabrication of CCS from corn straw could realize the secondary
utilization of biomass waste, as well as serve as a new choice for LIBs anode materials.

Keywords: biomass; corn straw cellulose; hydrothermal carbonization; carbon nanospheres; lithium
ion battery

1. Introduction

With the shortage of fossil fuels and the emergence of environmental problems, there is a booming
demand for clean energy to meet current and future energy needs [1–5]. There are many kinds of
biomass resources, among which cellulose, hemicellulose and lignin are the main forms. Biomass is an
economical and promising carbon material for the anode of lithium ion batteries (LIBs), which has
attracted the attention of many experts and scholars [2,3,5]. At present, it is crucial to realize the
comprehensive utilization of biomass for the development of the LIBs system [5–9]. In recent years,
with the rapid development of new energy technology, it is a trend to prepare carbonaceous LIBs
anode materials using biomass as raw materials [9–13]. As a kind of farmland waste, corn straw is a
kind of non-pollution renewable resource. Using corn straw-derived carbon material as an electrode
not only realizes the re-using of agricultural waste, but also provides a novel environment-friendly
way to obtain negative carbon material for LIBs.

In order to enhance the energy density, cycle performance and rate performance of LIBs, many
efforts have been made on the structure of anode carbon materials, such as carbon nanotube, carbon
nanowire, carbon nanosphere, carbon nanorod and carbon nanocapsule [14,15]. Carbon nanosphere is
an important structure of negative carbon materials, which is considered as a promising precursor of
carbon electrode materials owing to the higher bulk density and higher volume specific capacity than
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natural graphite and other flake materials. Moreover, the spherical structure exhibits excellent thermal
and chemical stability of insertion and extraction of lithium ions [16–20].

At present, hydrothermal carbonization is the main method to prepare carbon nanospheres, as
well as an effective way to realize the thermochemical conversion of biomass. HTC has the advantages
of a simple operation process, mild synthesis conditions and renewable raw materials, providing a
broad prospect for the large-scale production of carbon nanospheres [21–24]. Zhao et al. prepared
well-dispersed micrometer-sized carbon nanospheres from cellulose by citric acid catalysed HTC
(200–240 ◦C), and the diameter of carbon nanospheres became wider with the increase of citric acid
concentration, reaction temperature and reaction time [25]. Hao et al. reported a new technique for
preparing porous carbon nanospheres by the HTC of waste sugar solution followed through KOH
activation. The specific capacity of the carbon nanospheres delivered good cycle life (296.1 F g−1

at a current density of 40 mA g−1) and superior rate capability (1.5 A g−1 after 5000 cycles) [26].
Inada et al. prepared carbon nanospheres by HTC from glucose at 800 ◦C; the obtained carbon
nanospheres possessed a highly specific surface area, low resistance and high capacitance (higher than
commercial activated carbon electrode) [27]. Remarkably, the work published by Xie and coworkers
reported the preparation of homogeneous nanospheres (120, 360 nm) by introducing a small amount
of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) into the hydrothermal system.
Nanospheres with an adjustable size in the range of 1.4 to 5.2 µm were prepared in the presence of
PSSMA and hydrochloric acid and showed good performance in catalytic hydrogenation [28].

Up to the present, although great progress has been made in the preparation of carbon
nanospheres, the application of carbon nanospheres in LIBs is still a great challenge. Complex
preparation processes and low yield have become significant drawback for LIBs anodes, which hinder
the commercial development of carbon nanospheres [6,13,29]. To address these issues, it is highly
desirable to develop an economical and efficient method to prepare carbon nanospheres, which will
circumvent these limitations, especially for large batteries. We propose, herein, an environmental and
simple route to obtain cellulose-derived carbon nanospheres by using corn straw as raw material.
Through controlling the reaction time, the cellulose-derived carbon nanospheres after HTC for 36 h
display an excellent electrical conductivity and rate performance, opening up a new opportunity for
LIBs anodes.

2. Materials and Methods

2.1. Materials Synthesis

Corn straw was collected from a farmland in Jilin Province, China. Corn straw was washed
with deionized water and dried in oven at 60 ◦C for 24 h. The dried corn straw was pulverized into
powder by a pulverizing machine. Thirty grams of corn straw power was added to 4% H2SO4 at 1:10
solid-liquid ratio at 90 ◦C water bath. The xylose acid solution and filtrate residue were obtained by
separating the solution from the filter residue after the reaction. Filter residue I was washed to neutral
and dried with deionized water. Then Lignin was removed from filter residue I and 50 g L−1 NaOH
at 99 ◦C water bath at 1:15 solid-liquid ratio. Lignin lye solution and filter residue II were obtained
by separating the reaction solution from the filter residue. The filter residue II was washed to neutral
and dry with deionized water. After filtering, the solid was transferred to a stainless steel autoclave
with water treated at 200 ◦C. The reaction time was carried out for 24, 36, 48 and 60 h, respectively.
The powder was carbonized in a tubular furnace at 600 ◦C under argon atmosphere at a heating rate of
5 ◦C min−1. The obtained samples were washed with deionized water and ethanol to remove tar and
other organics, and then were dried in an oven at 60 ◦C. The samples were labeled as CCS-24, CCS-36,
CCS-48, CCS-60, respectively.
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2.2. Material Characterizations

X-ray diffraction patterns of samples were measured with X-ray diractometer (Siemens D5000,
Munich, Germany) with nickel-filtered Cu K radiation (λ = 0.15406 nm) at 4◦ min−1. Raman spectra
was tested on a Renishaw inVia instrument (wavenumber range: 200–2000 cm−1, λ = 514 nm).
Thermogravimetric analysis (TGA) of corn straw was accomplished on Q500 thermogravimetric
analyzer (TA Instruments, New Castle, PA, USA) at a scanning rate of 5 ◦C min−1 from 20 ◦C to 800 ◦C
under N2 atmosphere. The specific surface area and pore diameter were carried out using nitrogen
adsorption–desorption measurements (Micromeritics, ASAP2420, Micromeritics Instrument, Norcross,
GA, USA). The morphology of samples was characterized by scanning electron microscopy (SEM,
JEOL-JSM-6700F, JEOL Ltd, Tokyo, Japan) and transmission electron microscopy (TEM, JEM-2100F,
JEOL Ltd, Tokyo, Japan). The superficial area and pore size distribution of the carbons were observed
through Micromeritics ASAP2420.

2.3. Electrochemical Measurement

The slurry was prepared by mixing CCS, acetylene black and PVDF with a mass ratio of 8:1:1 in a
mixing bottle. After grinding evenly, N-methyl-2-pyrrolidone was added into the mixture and then
magnetically stirred for 6 h. The agitated paste was smeared on the copper foil, followed by drying in
a vacuum oven at 120 ◦C for 12 h. The dried anode plate was punched on the sheet press to form a
circular plate with a diameter of 10 mm; the circular electrode plates were weighed and numbered.
The electrode loading mass was 0.13 mg cm−2. Coin-type (CR2025) cells were assembled in a glove
box filled with argon. The opposite electrode and reference electrode used a lithium metal sheet,
and polypropylene microporous membrane was used as the diaphragm. EC and DMC were used as
the electrolyte solvent with a volume ratio of 1:1; LiPF6 was used as electrolyte solute at 1 mol L−1.
The electrochemical performance was tested after 12 h of battery assembly. Cyclic voltammograms
and impedance curve were performed on an electrochemical workstation (CHI660C) within a voltage
window of 0–3.0 V at a scan rate of 0.1 mV s−1. The charge–discharge performance was tested between
0.02 V and 3.0 V at a 0.2C (1C = 372 mA g−1) on a LAND (CT2001A) battery system.

3. Results

3.1. Preparation of CCS

Up to now, Lamer’s “nucleation-diffusion control” model has been widely used to explain the
formation of carbon nanospheres in the hydrothermal process, including nucleation and growth [30,31].
At first, the aromatic nuclei are formed in the solution. When the concentration reaches the saturation
critical value, the nucleation is produced, and then the crystal nuclei will grow under the joint action of
diffusion and adsorption [29–32]. During the preparation of CCS, the morphology of carbon materials
changed greatly from corn straw to carbon nanospheres. Figure 1 shows the schematic illustration of
the formation of CCS. The corn straw was hydrolyzed under the action of acid to remove hemicelluloses
and then boiled with alkali to remove lignin to obtain cellulose. After acidizing hydrolysis and alkali
boiling of corn straw, cellulose with a block structure was obtained. The subsequent hydrothermal
carbonation stage is the key to the formation of carbon nanospheres. Firstly, at a high temperature
and high pressure, cellulose molecules hydrolyze in aqueous solution to form glucose. Soluble
5-hydroxymethylfurfural (HMF) was formed by condensation of hydroxaldehyde between glucose
molecules, which is considered to be an important unit of the next step of the reaction. HMF is
condensed by dehydration between molecules to form soluble polymers, then the aromatization
reaction took place in the dehydrogenation of polymers. The aromatization products formed aromatic
clusters through intermolecular dehydration [22,29–37]. The resulting aromatic compounds are
thought to be the core of carbon nanospheres. When the aromatic group in the solution reaches
the critical value, explosive nucleation will occur and the resulting carbon nucleus grows in the
aqueous solution isotropic through diffusion. According to the principle of similarity, hydrophilic
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groups (such as hydroxyl groups, carboxyl groups) and hydrophobic substances (such as aromatic
rings and ethers) are covalently bonded to form carbon nanospheres [35,38–40].
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Figure 1. Schematic illustration of the CCS preparation.

3.2. Characterization of CCS

Figure 2 shows the X-ray diffraction pattern of CCS-24, CCS-36, CCS-48 and CCS-60 samples.
Two peaks can be observed near 22◦ and 44◦, corresponding to the crystal plane (002) and (100)
of typical disordered carbon. The intense peak (002) is commonly associated to the carbon
interlayer-stacking structure and (100) to the interlayer reflection of the hexagonal carbon structure [41].
With the increase of reaction time in the HTC stage, the peak strength did not change obviously,
which indicates that the reaction time has no obvious influence on the formation of amorphous carbon.
Figure 2b displays the Raman spectrum of CCS-24, CCS-36, CCS-48 and CCS-60 samples. Although
reaction time had no obvious influence on amorphous carbon, it changed the disorder degree of
samples. The two characteristic peaks at 1340 and 1590 cm−1 correspond to the D and G bands. The D
band is caused by the defects and disorder in the carbon material, and the G band is caused by the
stretching of the C–C bond in the graphite. The ID/IG ratio of the CCS-36 sample was 0.87, significantly
lower than that of CCS-24 (ID/IG = 0.92), CCS-48 (ID/IG = 0.96) and CCS-60 (ID/IG = 0.90), indicating
the reduced disorder degree of the materials due to uniform distribution of carbon nanospheres.
Figure 2c shows a thermogravimetric curve of corn straw. The first weight loss at less than 300 ◦C can
be related to the presence of unbounded/physisorbed water. When the temperature exceeds 300 ◦C,
the loss of weight is due to thermal degradation. The residual weight at 800 ◦C is estimated to be
2.63 wt.%.
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In order to characterize the structure of carbon materials, the specific surface area and pore size
distribution of samples are also measured through N2. BJH adsorption–desorption. As depicted
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in Figure 3a, the isotherm of CCS samples belongs to the type IV adsorption isotherm. At lower
relative pressure, the curve rises upward, indicating the existence of micropores. These micropores
are produced during the carbonization and activation stage. When the relative pressure is about
0.3, capillary condensation occurs, and the desorption isotherm lags behind the adsorption isotherm.
The phenomenon of adsorption hysteresis that occur in CCS samples demonstrate the existence of
mesopores (2–50 nm). When the relative pressure is close to 1, the adsorption of the macropores
increases and the adsorption curve rises quickly. The specific surface areas of CCS-24, CCS-36, CCS-48
and CCS-60 are 183, 402, 201 and 339 m2 g−1, respectively. CCS-36 exhibits a larger specific surface
area due to a larger number of spheres and cross-linked structure, which is more favorable for the
intercalation and removal of lithium ions. Furthermore, the BJH (Barrett-Joyner-Halenda) pore size
distribution diagrams are shown in Figure 3b. The average pore sizes of CCS-24, CCS-36, CCS-48,
CCS-60 are 4.0, 4.1, 6.1 and 5.3 nm, respectively. The pore size of the four samples is mainly between
2–10 nm, the existence of these mesopores can promote the infiltration of the materials in the electrolyte
and facilitate the diffusion of lithium ions in the electrode materials. The total pore volumes of CCS-24,
CCS-36, CCS-48, CCS-60 are 0.20, 0.27, 0.22 and 0.35 cm3 g−1, respectively. Comparing the specific
surface area and total pore volume of CCS-48 and CCS-60, it is possible that with the increase of
reaction time, some carbon nanospheres grow up and finally break down.
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SEM and TEM are further used to characterize the morphology of materials. As presented in
Figure 4a, the microstructure of CCS-24 sample is a large carbon block and a few spheres on the surface
corresponding to the beginning of the carbon nanospheres formation after 24 h. Figure 4b shows a
large number of carbon nanospheres with relatively uniform size and cross-linked structure, which is
generated at 36 h. The cross-linked structure can shorten the distance between the lithium ion and
electron, and thus improve the transmission efficiency. When the reaction time continued to increase,
a large number of irregular-shaped carbon nanospheres generated together, as shown in Figure 4c,d.
The occurrence of agglomeration will reduce the specific surface area of carbon materials, leading
to the decrease of capacity. The TEM diagrams of CCS-24, CCS-36, CCS-48, CCS-60 are displayed in
Figure 5. After comparison, it is observed that the hollow structure gradually formed, which is obvious
with the increased reaction time. The hollow structure can reduce the structural damage caused by the
intercalation of lithium ions and the collapse of the structure during the transmission process, thereby
improving the cyclical stability of LIBs. In general, the formation of CCS occurs in the hydrothermal
stage after 24 h, and the obtained carbon nanospheres possess a cross-linked structure. When the
number of carbon nanospheres reached a certain level, the agglomeration appeared and became more
and more serious over time.
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3.3. Electrochemical Properties of CCS

The electrochemical cycling performance of CCS-24, CCS-36, CCS-48 and CCS-60 at 0.2C are
compared in Figure 6a. After 100 cycles, the specific discharge capacities of samples are stable at
489, 577, 450 and 386 mA h g−1, respectively. After 100 cycles, the specific charge–discharge capacity
increased from 24 h to 36 h. The specific charge–discharge capacity of CCS-36 remained at the highest
level due to the favorable distribution and uniform size of carbon nanospheres, showing excellent
battery-specific capacity and stable cycling performance. The specific charge and discharge capacity of
CCS-48 and CCS-60 decreased gradually. Although the specific surface area and total pore volume of
CCS-60 are larger than that of CCS-48, the pore size of CCS-60 is smaller than that of CCS-48, indicating
that the size of the pore may have a greater effect on the capacity with a considerable increase in time.
The charge–discharge curves of CCS samples do not coincide completely at the beginning of the first
10 cycles, while after 10 cycles, the charge–discharge curves basically coincide. This is due to the fact
that lithium ions are used to form a solid electrolyte interfacial film (SEI) in the early charge–discharge
stage, which causes the insertion and extraction of lithium ions in an unbalanced state. When a stable
SEI film is formed, the insertion and extraction of lithium ions reach equilibrium state. To further
evaluate the electrochemical performance of samples, the rate performance is also tested under various
current densities (Figure 6b). After charge and discharge at the rate of 0.2, 0.5, 1, 2 and 5C, the specific
capacities of the batteries almost returns to the initial one for the 0.2C rate. The unique spherical and
cross-linked structures have shortened the transport distance between lithium ions and electrons and
reduced the structural damage caused by the intercalation of lithium ions, leading to an excellent rate
performance of anode materials.
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Figure 6. (a) Cycling performance of CCS samples at 0.2C and (b) rate performance of CCS samples.

Figure 7 displays the cyclic voltammogram curve of CCS-24, CCS-36, CCS-48, CCS-60 samples.
The curves of the 2nd and 3rd laps basically coincide, which reflects the stability of electrochemical
properties of CCS samples. During the first cycle of the CCS-36 sample, three reduction peaks appear
near 0.2, 0.5 and 1.6 V. The peak near 0.2 V is formed due to lithium ion being embedded into the
electrode material. The reduction peak near 0.5 V appears to be attributed to the catalytic reduction of
electrolyte components on the surface of the active electrode to form SEI film. The reduction peak that
appears near 1.6 V is considered to be caused by the reaction of lithium ion with the oxygen-containing
functional group on the surface. In addition, there are two oxidation peaks near 0.25 V and 1.0 V.
The flat oxidation peak at 0.25 V is corresponding to the extraction of lithium ions from the electrode.
The hump at 1.0 V is formed by the adsorption and desorption of lithium ion in the mesopores of
the material.
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Figure 8 shows the charge–discharge curves of CCS-24, CCS-36, CCS-48, CCS-60 samples at
0.2C. The charge–discharge curve shows a weak discharge plateau near 0 V without another obvious
charge–discharge plateau, which is a typical characteristic of the charge–discharge curve of carbon
materials. In the first cycle, the specific discharge capacities of samples are 956, 1228, 1144 and
1285 mA h g−1, respectively. The coulombic efficiency of CCS-24, CCS-36, CCS-48 and CCS-60
are 48.1%, 51.0%, 53.1% and 45.4%, respectively. The coulombic efficiency of CCS samples is not
particularly high, which is mainly determined by the characteristic of amorphous carbon. After the
100th cycle, the charge–discharge curves of the 2nd, 10th, 50th and 100th laps are basically coincidence,
indicating that the unique spherical structure promotes the formation of stable SEI films to improve
electrochemical stability. The impedance curve of samples CCS-24, CCS-36, CCS-48 and CCS-60 are
shown in Figure 9. The semicircle diameter of CCS-36 is smaller than that of other samples, indicating
that the charge transfer resistance is the smallest. This is due to the fact that the cross-linked structure
and uniform distribution facilitate the transport of charge between the electrolyte and the interface of
the material.
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Table 1 shows biomass-derived carbons used as anodes in LIBs. From the comparison of different
kinds of biomass as the electrode, it is clear that the structure of carbon materials and raw materials
will lead to great differences in specific capacity. Table 2 presents the properties of different carbon
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nanospheres types. The structure and particle size of the carbon nanospheres have a great influence on
the specific capacity. Although the experimental results of carbon materials prepared from corn straw
have not been greatly improved due to the influence of the structure of raw materials, we still need to
improve the experimental scheme and explore better preparation methods.

Table 1. Biomass-derived carbons used as anodes in LIBs.

Material C Rate Specific Capacity/ mA h g−1 Reference

Porous carbon from peanut shell 0.1 180 [37]
Carbon particle from coffee waste 0.27 285 [41]

Honeycomb carbon from sisal fiber 0.1 530 [42]
Carbon particle from apple waste 0.1 245 [43]

Carbon from cherry stones 5 200 [44]
Carbon sheet from banana fiber 0.1 310 [45]

Table 2. Performance comparison of different carbon nanospheres.

Carbon Nanospheres Type Particle
Size/nm

Specific
Area/m2 g−1 C Rate Specific

Capacity/mA h g−1 Reference

Hollow nanospheres 50–150 369.44 0.2 489 [46]
Hollow microspheres 1000–3000 309.9 0.27 475 [47]

Hollow-in-hollow 350 1190.1 0.27 973 [48]
Nanoporous microspheres 700 2798.9 1.08 780 [49]

4. Conclusions

In summary, CCS is successfully synthesized through HTC from corn straw by carefully
controlling the reaction time. Owing to the uniform distribution and cross-linked structure, CCS-36
has delivered excellent rate performance (577 mA h g−1 at 0.2C). When the current was restored
to 0.2C again, the specific charge and discharge capacity quickly recovered to the initial value.
Cellulose-derived carbon nanospheres provide more active sites for the intercalation of lithium
ions by increasing the specific surface area, and thus, could further improve the specific capacity
of LIBs. Meanwhile, the cross-linked structure not only shortens the distance between lithium ion
and the electron, but also reduces the structural damage caused by the intercalation of lithium ions.
In conclusion, we developed an environmental and efficient route to obtain cellulose-derived carbon
nanospheres from corn straw, which not only realizes the secondary utilization of biomass waste,
but also opens up a new opportunity for LIBs anodes.
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