## Three-dimensional stable alginate-nanocellulose gels for biomedical applications: towards tunable mechanical properties and cell growing

Priscila Siqueira<sup>*a*</sup>, Éder Siqueira<sup>*b*</sup>, Ana Elza de Lima<sup>*b*</sup>, Gilberto Siqueira<sup>*c*</sup>, Ana Délia Pinzón Garcia<sup>*b*</sup>, Ana Paula Lopes<sup>*b*</sup>, Maria Esperanza Cortés Segura<sup>*d*</sup>, Augusta Isaac<sup>*e*</sup>, Fabiano Vargas Pereira<sup>*b*</sup>\*, Vagner Roberto Botaro<sup>*f*</sup>\*



Figure S1: Conductometric titration curves for TEMPO-oxidized cellulose nanofibers (CNFT) and TEMPO-oxidized cellulose nanocrystals (CNCT)



Figure S2: Zeta potenctial ( $\zeta$ ) measurements obtained by electrophoretic mobility for CNC, CNCT, CNF and CNFT.



Figure S3: SEM images of the cross-section for crosslinked gels (a) alginate/CNC 50 wt% and 500 x magnification; (b) alginate/CNF 50 wt% 500 x magnification. The inset represents a magnification of 1500 x.



Figure S4: Pore sizes distribution and standard mean values obtained by SEM micrographs for CNC, CNCT, CNF and CNFT.



Figure S5: Influence of the nanocellulose concentration on the thermal stability of aginate-gels: (a) CNC (10, 36 and 50 wt%); (b) CNCT (10, 36 and 50 wt%); (c) CNF (10, 36 and 50 wt%); (d) CNFT (10, 36 and 50 wt%).