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Abstract: This article discusses specific quantum transitions in a few-particle hole gas, localized in a
strongly oblate lens-shaped quantum dot. Based on the adiabatic method, the possibility of realizing
the generalized Kohn theorem in such a system is shown. The criteria for the implementation of
this theorem in a lens-shaped quantum dot, fulfilled in the experiment, is presented. An analytical
expression is obtained for the frequencies of resonant absorption of far-infrared radiation by a
gas of heavy holes, which depends on the geometric parameters of the quantum dot. The results
of experiments on far-infrared absorption in the arrays of p-doped Ge/Si quantum dots grown
by molecular beam epitaxy (MBE) with gradually increasing average number of holes in dot are
presented. Experimental results show that the Coulomb interaction between the holes does not affect
the resonant frequency of the transitions. A good agreement between the theoretical and experimental
results is shown.

Keywords: quantum dots; Kohn theorem; adiabatic approximation; few-particle interaction; far-IR
absorption; Ge/Si

1. Introduction

Quantum dots (QD) remain intensively studied objects of semiconductor nanostructure
physics [1–3]. Since the spectrum of charge particles in QD can be flexibly controlled, the physical
characteristics of such systems also become controllable. Significant role in the formation of the
spectrum of charge carriers in QD is played by its geometry and sizes on the one hand, and the
physicochemical characteristics of QD and the environment on the other [4]. Indeed, the energy
spectrum of QD is determined by both the size and geometric form, and the component composition
of the structure under study, as well as its environment. From the theoretical standpoint, the geometry
of the QD identifies the symmetry of the Hamiltonian of the system, and the physicochemical
characteristics of the structure under study form the profile of the confining potential of the QD.
At the same time, the construction of a realistic Hamiltonian of the QD is extremely important, since
this will provide the opportunity to bring the theory to the experiment.

Currently, QD of various geometric forms have been implemented: spherical [5,6], cylindrical [7,8],
ellipsoidal [9,10], lens-shaped [11,12], ring-shaped [13,14], etc. Of these geometries, spherical and
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cylindrical QD have the simplest mathematical description, since in such cases the symmetry of the
systems often allows the separation of variables in the corresponding Schrödinger equations [15–17].
However, for QD with a more complex geometry, even in the case of single-particle states, one has to
use either approximate analytical or numerical methods [18–20].

At the first stage of the theoretical description of QD, it is necessary to determine the
wavefunctions and the spectrum of charge carriers. Furthermore, based on the results obtained,
one can proceed to the calculation of various physical parameters of the QD: absorption coefficient,
relaxation time of particles, orbital current, etc. [21–25]. A particularly important role is played by
the mathematical form of the confining potential of QD. When modeling the confining potential, it is
necessary to take into account both the symmetry of the system under study and the mechanism of
its growth. For example, if the growth method is such that it is necessary to take into account the
effects of mechanical stress at the boundary of the QD—surrounding medium, then this circumstance
should be considered when choosing the type of confining potential. This situation arises in the case of
pyramidal QD [26,27]. On the other hand, if during the growth of QD, diffusion occurs between the
components of the QD and the environment, then the profile of the confining potential is smoothed
and it can be modeled by a parabolic potential or Wood-Saxon, Kratzer potential, etc. [28–31]. Special
attention was paid to the parabolic confining potential. From a mathematical point of view, QD with
a parabolic confining potential can be described analytically, including the case with the presence
of external electric and magnetic fields [32–35]. At the same time, one of the most interesting and
beautiful effects found in parabolic QD was the discovery of Kohn’s theorem in such systems [36–40].
Initially, this theorem was proved by the W. Kohn’s for the case of an electron gas in an external
magnetic field [41]. A generalization to the case of a parabolic quantum well was given by the authors
of reference [42]. Chakraborty and Maxim showed the implementation of this theorem in the 2D
parabolic QD of circular section [36]. A similar problem for the case of two-dimensional asymmetric
parabolic QD was considered by Peeters in reference [37].

The content of this theorem lies in the fact that the frequency of resonant absorption of longwave
radiation from a pair-interacting electron gas localized in a parabolic QD doesn’t depend on the
number of particles. In other words, single-particle transitions are realized in a multiparticle system.
Mathematical proof is based on the possibility of representing the Hamiltonian of a pair-interacting gas
as a sum of Hamiltonians, characterizing on one side the motion of the center of mass of the system,
and on the other the relative motion of the gas under study. Since the incident perturbation depends
only on the center of mass coordinates of the system, the resonant frequencies of the transitions don’t
depend on the internal degrees of freedom, and therefore on the interparticle (in particular, Coulomb)
interaction. Note that the parabolic profile of the confining potential is of fundamental importance,
since in this case the variables of the center of mass and relative motion are separated.

As we mentioned above, the parabolic type of the confining potential can be formed due to the
diffusion effect. However, a parabolic confinement may also arise due to the specific geometry of QD.
In references [43–45], it was shown that for strongly oblate and prolated ellipsoidal QDs, the conditions
for the realization of the generalized Kohn theorem can also be satisfied. At the same time, unlike other
works, a confining potential doesn’t have a parabolic form initially: it is zero inside the QD and goes
to infinity at the QD boundary. The specific form of the QD geometry allows the adiabatic method to
be used to describe one-electron states in such systems [46].

As was shown in references [43,44], in the case of a strongly oblate ellipsoidal QD in the
QD plane, the gas is localized in a two-dimensional parabolic quantum well. Given that size
quantization in the Z-direction (the direction of compression of the ellipsoid) is much stronger than
the Coulomb interaction between particles (electrons or holes), then this interaction can be considered
effectively two-dimensional. Thus, the conditions for the generalized Kohn theorem can be fulfilled in
such systems.

The possibility of controlling the parameters of QDs allows one to create nano- and optoelectronic
devices with predetermined physical parameters. Among all possible material systems where the
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formation of quantum dots is possible, the MBE grown Ge dots in silicon matrix are of the great
practical importance due to the compatibility with the well-developed silicon technology, in particular
with the standard CMOS process [47]. Currently, most studies of structures with self-assembled
MBE Ge/Si quantum dots in the silicon matrix are motivated by their wide potential applications
in optoelectronics and are now divided into two large trends related to optical and photoelectric
phenomena in the near infrared (IR) and mid infrared spectral regions. The electroluminescence and
photoconductivity associated with interband transitions of charge carriers in quantum dots were
observed in overlapping near-IR spectral regions below the silicon bandgap in silicon p-i-n structures
with embedded Ge/Si QD layers in Refs [48,49].

Recent research [50–54] describes new experimental results on the mid-IR photoresponse of Ge/Si
QDs that are important for instrumental applications. In particular, photoconductivity was observed in
reference [50] under the conditions of electron delocalization, in reference [51] the phonon bottle-neck
effect was discussed, in reference [52] the influence of structure doping on the characteristics of
photodetectors was studied, and in references [53,54] the multifold enhancement of the intraband
photocurrent of holes due to interaction with surface plasmons in a structure coated with a gold film
with ordered nanoholes was experimentally revealed.

Recent advances in MBE growth technology demonstrate a significant increase in the surface
density of the Ge/Si quantum dots in self-assembled arrays with help of surfactant-mediated
epitaxy [55,56]. In this case, a thin layer of Sb remains on the growing surface during the entire growth
process, and the size and shape of quantum dots can be controlled with the growth temperature and
deposition rate. This method allows one to obtain the quantum dots in the form of Ge (or GeSi solid
solution) islands in the silicon matrix with the typical size in the growth direction being much smaller
than the typical size in the surface plane.

In the present work, we present the general analytical theory of the few-particle system confined
in an asymmetric biconvex quantum lens and lowest optical resonances in this system, and also
show the supposed realization of the generalized Kohn theorem. We present the results of direct
measurements of optical absorption spectra in far-IR range in the MBE grown self-assembled Ge/Si
quantum dot arrays with an increasing average number of holes in dots and discuss the applicability
of the presented general theory to the Ge/Si quantum dots with a few holes inside.

2. Materials and Methods

The Ge/Si quantum dot structures were grown by MBE using the Sb-mediated technology
described in detail in Refs [55,56]. We studied four structures with 10 layers of quantum dots separated
with 15 nm Si barrier layers. Structures were grown by the same receipt but differ in the boron doping
level in the δ-layer 5 nm below each QD layer. The nominal doping levels of the QDs in four structures
were 6, 4, 2, and 0 holes per 1 QD (the last structure was undoped). The dot material is GexSi1−x

solid solution with Ge content about 60%. The effective mass of heavy holes in QDs was estimated as
µ = xmGe + (1− x)mSi, where mGe = 0.33m0 and mSi = 0.49m0 are the heavy hole masses for Ge and
Si respectively [57]. The shape and average size of the QDs was determined with the XTEM and AFM
pictures and can be estimated as lens-shaped islands with (2.75 ± 0.2) nm height and (14 ± 4) nm base.

The optical transmission spectra were measured with the Fourier-transform infrared spectrometer
Bruker Vertex 80v (Bruker Optik GmbH, Ettlingen, Germany). Globar was used as a source of the
broadband far-IR radiation. The liquid-helium-cooled Si bolometer was used as a detector of the
radiation. The samples for optical measurements were prepared in multipass geometry [58] and
mounted in liquid-nitrogen-cooled optical cryostat with polyethylene input and output windows.
The overall accessible spectral range of the spectrometer with the Mylar beamsplitter was 100–500
cm−1 (approx. 10–60 meV). The spectral resolution was 16 cm−1.

In equilibrium transmission measurements of the doped samples the undoped sample was used
as a reference. In addition, we also studied the far-IR photoresponse of undoped sample related to
photoexcited holes under conditions of external interband optical excitation with CW YAG:Nd laser
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with frequency doubling, that was mechanically chopped at 90 Hz. In this experiment, the difference
in far-IR optical transmission related to interband photoexcitation was measured at the chopping
frequency with the SR830 Lock-In amplifier (Stanford Research Systems, Sunnyvale, CA, USA).

In order to check the correspondence of the nominal doping and the real average number of holes
in the QDs, we have also measured the mid-infrared absorption spectra of all the structures in the
spectral range corresponding to the valence band offset energy. We have observed the absorption
peak close to 300 meV photon energy that corresponds to the optical transitions of holes from the
QD ground state to the continuum above the barrier, that was also proved by the lateral mid-IR
photoconductivity measurements [58]. The absorption coefficient related to these transitions is found
to linearly increase with the increase of the nominal doping level, as was expected since in this spectral
range the transition energy is much larger than the energy of the Coulomb attraction of the holes inside
QD and the usual absorption cross-section can be introduced. Therefore, we have Ge/Si QD structures
with a sequentially increasing number of holes in QD, i.e., there are charged quantum dots with the
charge equal to several elementary charges e.

3. Theoretical Model for Asymmetric Biconvex Quantum Lens

To construct the theoretical model, we note those important provisions, which underlie the
proposed theory and are implemented in the experiment:

(1) QD contains few-particle gas (particularly, gas of heavy holes);
(2) The effective mass of particles is scalar;
(3) The QD has specific geometry, which allows dividing the particle’s motion into “fast” and “slow”;
(4) The incident perturbation on the system is long-wavelength.

It is important to note that QDs in the experiment are MBE grown Ge dots in Si matrix with a
deep potential well in the valence band for holes. Special attention should be paid to possible coupling
of the heavy and light hole states in this case, as was shown in Ref. [59] for GaAs-based QDs. However,
numerical estimations show that in case of Ge/Si QDs, the low-level QD states are formed mainly by
the heavy hole states and the intermixing effects of the heavy and light hole states can be neglected
due to both the small value of the light hole effective mass in Ge and the strong vertical confinement.
As a result, one can consider the holes in QD as a heavy hole gas characterized by the scalar effective
mass, non-interacting with light hole band, and thus one can write the multiparticle Hamiltonian with
scalar effective mass µ.

Let’s consider pair-interacting electronic gas, localized in asymmetric biconvex quantum lens
(ABCQL), shown in Figure 1. The interparticle Coulomb interaction in z direction can be considered
weak in comparison with the size quantization, taking into account the small thickness of the
system in this direction, and therefore, we will consider the interaction operator between particles as
two-dimensional:

V̂int(1, 2, . . . , N) = ∑
i<j

υ
(∣∣∣→ρ i −

→
ρ j

∣∣∣). (1)

For the relatively low levels of charge carriers the confinement potential of QD can be
approximated by a rectangular infinitely deep well:

Ucon f (ρ, z) =

{
0, M ∈ QD
∞, M /∈ QD

. (2)

Taking into account (1) and (2), the N-particle Hamiltonian of the system has the following form:

Ĥ(1, . . . , N) =
1

2µ

N

∑
j=1

P̂2
j +

N

∑
j=1

Ucon f (j) + V̂int(1, . . . , N). (3)
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Figure 1. Schematics of the asymmetric biconvex quantum lens under consideration.

We will not specify the type of interparticle interaction potential, and we only suppose the fact
that it depends on the interparticle distance modulus only. The ABCQL’s finesse condition

{h1, h2} � ρ0 (4)

makes it possible to use the adiabatic method for the description of the electronic or hole gas in such
a system.

The description will be implemented in two stages:

• First we will consider single-particle states in ABCQL.
• On the basis of the single-particle model we will describe pair-interacting gas.

3.1. Single-Particle States in ABCQL

The Schrodinger equation for the particle, localized in ABCQL with confining potential (2), has
the form:

− }2

2µ

(
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂2

∂ϕ2 +
∂2

∂z2

)
ψ(ρ, ϕ, z) + Ucon f (ρ, z)ψ(ρ, ϕ, z) = Eψ(ρ, ϕ, z). (5)

The motion along the axis OZ occurs much faster than in the plane of the section XOY. According
to the adiabatic approach, in this case the wave function of the system can be represented as a product

ψ(ρ, ϕ, z) = f
(→

ρ
)

χ(z; ρ), (6)
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where χ(z; ρ) describes one-dimensional motion along the axis OZ at a fixed value of the radial
coordinate ρ, f

(→
ρ
)

is the particle’s wave function in the plane of the section of ABCQL. By fixing the
value ρ one can show that the particle carries out the motion along OZ, being in a rectangular infinitely
deep quantum well with boundary points

Z+ =
√

R2
1 − ρ2 + h1 − R1, (7)

and
Z− = −

√
R2

2 − ρ2 − h2 + R2. (8)

Meanwhile, the thickness of the one-dimensional well will be equal to:

a(ρ) =
√

R2
1 − ρ2 +

√
R2

2 − ρ2 + (h1 + h2)− (R1 + R2), (9)

where R1(2) are radiuses of spheres, the intersection of which forms the surface of ABCQL.
The solution of the one-dimensional Schrödinger equation is the function

χ(z; ρ) =

√
2

a(ρ)
sin

πn
a(ρ)

(
z +

√
R2

2 − ρ2 + h2 − R2

)
. (10)

For the spectrum we will get

Ez
n(ρ) =

π2}2n2

2µa2(ρ)
≡ Ue f f

n (ρ), (11)

where n is an axial quantum number.
According to the adiabatic approximation [46], the energy of the “fast” subsystem Ez

n(ρ), which
parametrically depends on the coordinate of the “slow” subsystem ρ, plays a role of the effective
potential energy for the “slow” subsystem. Hence, for the wave function f

(→
ρ
)

we will get the
two-dimensional Schrodinger equation:

− }2

2µ

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂ϕ2

)
f
(→

ρ
)
+ Ue f f

n (ρ) f
(→

ρ
)
= Eρ f

(→
ρ
)

. (12)

The Equation (12) with potential (11) doesn’t have an exact analytic solution, but if we assume
that the particle is mainly localized around the geometric center of the QD, when ρ � ρ0, then the
potential function Ue f f

n (ρ) can be expanded in a Taylor series [46]:

Ue f f
n (ρ) ≈ π2}2n2

2µ(h1 + h2)
2

(
1 +

R1 + R2

(h1 + h2)(R1R2)
ρ2
)
=

π2}2n2

2µ(h1 + h2)
2 +

µΩ2
nρ2

2
, (13)

where
Ω2

n =
R1 + R2

µ2(h1 + h2)
3(R1R2)

· π2}2n2. (14)

In other words, the particle is in a two-dimensional parabolic well in the plane of the QD’s
cross-section with a frequency Ωn. Finally, for the full energy of the system we will get:

En,nosc =
π2}2n2

2µ(h1 + h2)
2 + }Ωn(nosc + 1), (15)

where nosc is oscillator quantum number.
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3.2. Multiparticle States in ABSQL

Let us turn to the many-particle problem. Taking into account strong quantization in the z
direction, N-particle wave function can be presented in the form of the following product [44]:

Ψ
(→

r 1, . . . ,
→
r N

)
= χn1,...,nN (z1(ρ1), . . . , zN(ρN))F

(→
ρ 1, . . . ,

→
ρ N

)
, (16)

where F
(→

ρ 1, . . . ,
→
ρ N

)
is the wave function, characterizing the gas in the plane of the cross-section of

ABCQL, and χn1,...,nN (z1(ρ1), . . . , zN(ρN)) is the wave function, characterizing the gas in z direction.
As the interparticle interaction in the z direction can be neglected, then the function χn1,...,nN can

be represented as a product of single-particle wave functions (10):

χn1,...,nN (z1(ρ1), . . . , zN(ρN)) =
N

∏
j=1

√
2

a
(
ρj
) sin

πnj

a
(
ρj
)(z +

√
R2

2 − ρ2
j + h2 − R2

)
. (17)

The corresponding energy Ez
n1,...,nN

(ρ1, . . . , ρN) has the form:

Ez
n1,...,nN

(ρ1, . . . , ρN) =
N

∑
j=1

π2}2n2
j

2µa2
(
ρj
) . (18)

Based on (18), for the wave function F
(→

ρ 1, . . . ,
→
ρ N

)
we will get the following equation:

{
N

∑
j=1

1
2µ

(
P̂2

xj + P̂2
yj

)
+

N

∑
j=1

π2}2n2

2µa2
(
ρj
) + ∑

i<j
υ
(∣∣∣→r i −

→
r j

∣∣∣)}F
(→

ρ 1, . . . ,
→
ρ N

)
= EF

(→
ρ 1, . . . ,

→
ρ N

)
. (19)

If we consider few-particle gas, then this system will be localized around the geometric center
of the QD due to the repulsion of the walls. Consequently, the effective potential energy (18) can be
expanded in a Taylor series by analogy with single-particle case. As the size quantization along the
Z axis is strong, then one can assume that all particles are in the ground states in this direction with
Ω ≡ Ω1, where

Ω ≡ Ω1 =
π}
µ

(
R1 + R2

R1R2
· 1

(h1 + h2)
3

)1/2

. (20)

Thus, the hole gas in the plane of the section of ABCQL will be described by two-dimensional
Hamiltonian

Ĥ2D =
1

2µ

N

∑
j=1

(
P̂2

xj + P̂2
yj

)
+

µΩ2

2

N

∑
j=1

(
x2

j + y2
j

)
+ ∑

i<j
υ
(∣∣∣→r i −

→
r j

∣∣∣). (21)

It is well known that the non-interacting part of Hamiltonian

Ĥ2D
0 =

1
2µ

N

∑
j=1

(
P̂2

xj + P̂2
yj

)
+

µΩ2

2

N

∑
j=1

(
x2

j + y2
j

)
, (22)

can be exactly diagonalized and represented with the help of creation and annihilation operators:

Ĉ±x(y) =
(

µΩ
2}

)1/2 N

∑
j=1

(
xj
(
yj
)
∓ i

P̂xj(yj)

µΩ

)
. (23)

Hamiltonian in terms of creation and annihilation operators has the form:

Ĥ2D
0 = }Ω

(
Ĉ+

x Ĉ−x +
1
2

)
+ }Ω

(
Ĉ+

y Ĉ−y +
1
2

)
. (24)
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A direct calculation shows that the following commutations take place:[
V̂int, Ĉ±x

]
=
[
V̂int, Ĉ±y

]
= 0. (25)

[
Ĥ2D

0 , Ĉ±x
]
= ±}ΩĈ±x ,

[
Ĥ2D

0 , Ĉ±y
]
= ±}ΩĈ±y . (26)

Based on (25) and (26) one can write the following relations:[
Ĥ2D, Ĉ±x

]
=
[(

Ĥ2D
0 + V̂int

)
, Ĉ±x

]
= ±}ΩĈ±x , (27)

and [
Ĥ2D, Ĉ±y

]
= ±}ΩĈ±y . (28)

Suppose Fnx ,ny is an eigenfunction of the operator Ĥ2D. With the help of (25)–(28) one can show
that Ĉ+

x Fnx ,ny is also an eigenfunction of Ĥ2D. At that if Fnx ,ny corresponds to the energy Enx ,ny , then
Ĉ+

x Fnx ,ny will correspond to the energy Enx ,ny + }Ω. The similar reasoning takes place for the operators
Ĉ−x , Ĉ+

y , Ĉ−y . It is noteworthy that in the case of the Hamiltonian Ĥ2D
0 the following similar reasoning

takes place too:
F(0)

nx ,ny → E(0)
nx ,ny

Ĉ+F(0)
nx ,ny → E(0)

nx ,ny + }Ω.
(29)

Here F0
nx ,ny is the eigenfunction of the operator Ĥ2D

0 .

In other words, the energy of the system under the influence of the operator Ĉ+
x increases by }Ω

both for pair-interacting and non-interacting gases.
Suppose now that the long-wave radiation is incident on the system perpendicular to the plane of

the QD section:

Ĥ1 = −e

{
N

∑
j=1

→
ρ j

}
→
E(t), (30)

where the electric field of a light wave with amplitude
→
E0

→
E(t) = e−iωt

→
E0. (31)

A direct calculation shows that

N

∑
j=1

xj
(
yj
)
=

(
}

µΩ

)1/2(
Ĉ+

x(y) + Ĉ−x(y)
)

. (32)

Based on (30) and (32) it follows that if Ĥ1 acts on F(0)
nx ,ny from one side and on Fnx ,ny from the other

side, then in both cases, there will be resonant transitions with the same energy under the influence of
long-wave radiation:

∆E = }Ω. (33)

Consequently, the energy of the resonant transitions caused by the action of long-wave radiation
does not depend on the interparticle interaction. Thus, the conditions for the realization of the
generalized Kohn theorem in the system take place.

4. Experimental Results and Discussion

In order to observe the manifestation of the generalized Kohn theorem in real experiments,
we selected the structure with Sb-mediated self-assembled Ge/Si quantum dots. This material system
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is uniquely suitable for such types of experiments in comparison with any quantum dot structures in
an A3B5 material system.

First, the typical lattice vibration frequencies are in the same range as the frequencies of the
confinement resonances Ω. The strong coupling of the charge carriers with the optical phonons in polar
A3B5 materials makes the initial problem formulation radically different and leads to consideration
of the polaron size quantization. However, in homeopolar Ge and Si materials the optical phonon
coupling is negligible and one can expect the clear multi-particle effects in the quantization of the
charge carriers.

Second, the large valence band offset in Ge/Si heterointerface leads to strong enough confinement
of holes inside QDs. The typical lowest size resonance energies are about one order of magnitude
smaller then the overall confinement energy. Together with the specific shape of these QDs with
a large aspect ratio, it creates the conditions required for the adiabatic separation of the motion of
holes in the directions of strong and weak confinement. It should be also noted, that the relatively
large QDs density provided with the Sb-mediated MBE growth process simplifies the experimental
measurements of the QDs optical response.

In our experiment, we directly studied the optical transmission spectra of the Ge/Si quantum
dot structures with different doping level in the far-IR range corresponding to the expected resonant
frequencies Ω.

Measured transmission spectra of doped QD samples are plotted in Figure 2 together with the
experiment schematics. All doped samples demonstrate a broadened absorption peak with the center
at about 30 meV. Moreover, the shape and position of the absorption peaks seems to be the same for
the structures with nominal doping of 2, 4, and 6 holes per dot, or, in other words, independent of the
number of holes in the QDs.
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Let us discuss the application of the presented general theory to the Ge/Si QDs. First of all,
the shape of the QDs can be described as a flat-convex-lens and the adiabatic separation (6) can
be applied.

The far-IR transition energy is one order of magnitude smaller than the valence band offset that
forms the real confinement potential, thus the approximation (2) can be used for confinement in the
energy range of interest.

Also we should neglect the intermixing of the light and heavy hole states and consider only
the heavy holes since they form the lowest states of size quantization. There are several works that
show the coupling of the center-of-mass and relative motion due to the mixing of the basis states of
the multiband Hamiltonian of the valence band (see, for example, ref. [60] and references therein).
The most relevant work [59] describes the effect of the heavy and light hole coupling under the
conditions of relatively weak vertical confinement and small enough splitting of the corresponding
energy terms. However, in the case of Ge/Si QDs studied in the experiment, the simple estimations
show more than 500 meV splitting of the heavy and light holes for largest dots in ensemble due to
strong vertical confinement, which in turn leads to negligible contribution of the light hole states to the
QD ground state. Taking into account the strain of the QD and surrounding matrix will result only in a
change of the splitting of the heavy and light holes, since the shear components of the strain in similar
QDs are found to be very small [61]. Thus, considering only a heavy-hole gas in QD is an assumption
of the same order as an infinite-barrier approximation.

Next, in spite of the complicated distribution of the holes over the inhomogeneously broadened
QD ensemble, at low temperatures the largest dots in the ensemble are expected to be occupied with
holes, since both the Coulomb attraction and size quantization energy decrease with the increase in
characteristic confinement length. The shape of the absorption band is determined by the number of
dots in the ensemble with hole(s) inside having a certain size corresponding to the certain resonant
frequency. It is a challenging task to calculate this number for the ensemble with size dispersion,
because the QD ground state energy depends on both QD size and the number of holes inside. But,
qualitatively, an increase in total number of holes in the system should lead to an increase in population
of smaller dots with higher resonant energies. Thereby, we can attribute the weak broadening of the
measured absorption band to the short-wavelength region with the increase of doping level to the
increase in probability of population of smaller dots.

Therefore, we can now apply the presented general theory of long-wave absorption by a hole
gas, localized in ABCQL, to the plane-convex quantum lens, that represents the shape of the Ge/Si
quantum dots studied in experiment, with the following parameters: h1 = 2.95 nm, h2 = 0, ρ0 = 9 nm,
R = (h1

2 + ρ0
2)/2h1 = 15.2 nm, and µ = 0.39m0, corresponding to the real size of the largest dots in

the ensemble.
From the general formula (20) for resonant frequencies Ω in the case of a plane-convex lens,

we can immediately write:

Ω =
π}
µ

(
1

R1h3
1

)1/2

. (34)

For the parameters given above, the theoretically calculated energy (based on (34)) gives the value:

}Ωtheor ' 31meV. (35)

In turn, the experimentally measured value of the energy of the resonant transitions in the center
of the broadened absorption band that, again, corresponds to large dots, is

}Ωexp ' 30meV. (36)

Thus, there is very good consistency between the experimentally found and theoretically
calculated values of the resonant transition energies.
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Therefore, we observe the single-particle-like optical transitions in the multi-particle system with
the pair Coulomb interaction.

Let us now consider the far-IR photoresponse of the undoped QDs related to the photoexcited
holes created by the external interband excitation with a 532 nm laser radiation. In this case,
the interband excitation creates electron-hole pair in the silicon. The holes can be captured to the
quantum dots, but electrons can only be localized at the weak potential wells at the Si side of the
QD heterointerface induced by the built-in strain (see, for example reference [62] and references
therein). Figure 3 shows the experiment schematics and the spectral dependence of the relative change
∆T/T of sample transmission induced by the interband photoexcitation both for undoped and doped
structures, which actually gives the photoinduced optical absorption curve. The photoresponse of the
undoped sample caused by the occupation of the QDs with nonequilibrium holes is very similar to
the equilibrium optical transmission spectra and demonstrates the same broadened resonance due to
optical far-IR transition to the lowest excited state of the multi-particle system.
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Figure 3. Experiment schematics and the measured spectra of the change of far-IR transmission due to
external interband photoexcitation at 80 K. Data are plotted for undoped Ge/Si quantum dot structure
(red curve) and doped structure (blue curve) with nominal doping of 6 holes/dot.

The photoresponse of the doped sample demonstrates only the contribution of the quantum dots
that are not occupied with resident carriers, since the addition of the non-equilibrium photoexcited
hole to the dot that already have a hole inside doesn’t provide any change in the far-IR photoresponse
due to the generalized Kohn theorem. As we have mentioned above, in doped samples the largest dots
with lower resonance energies Ω are occupied with resident holes. As a result, only the response of
small dots with higher resonance energies Ω contributes to the measured spectra. Consequently, there
is a noticeable “blue shift” of the photoiduced far-IR absorption spectra of doped sample with respect
to undoped one. However, the overall spectral shape of the photoiduced absorption peak of doped
quantum dots can also be influenced by the difference in the capture rate of holes to the charged and
empty QDs.

5. Conclusions

Experimental results suggesting feasibility of the implementation of the generalized Kohn theorem
for a gas of heavy holes in the lens-shaped Ge/Si QD are presented. In the framework of the adiabatic
method, it was theoretically shown that the specific geometry of a QD leads to the formation of a
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two-dimensional parabolic confining potential in the sectional plane of the ABCQL. Considering the
interaction between heavy holes as paired and depending only on the modulus of distance between
particles, the single-particle nature of the far-IR absorption is shown. For this QD model, the analytical
expression for the resonant absorption frequencies gives a good quantitative agreement with the results
of the far-IR spectroscopy.
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