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Abstract: Traditionally, inorganic nanoparticles (SiO2, TiO2) have been utilized to tune the optical
haze of optoelectronic devices. However, restricted to complex and costly processes for incorporating
these nanoparticles, a simple and low-cost approach becomes particularly important. In this work,
a simple, effective, and low-cost method was proposed to improve optical haze of transparent
cellulose nanofibril films by directly depositing micro-sized 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO)-oxidized wood fibers (“coating” method). The obtained films had a high total transmittance
of 85% and a high haze of 62%. The film samples also showed a high tensile strength of 80 MPa
and excellent thermal stability. Dual sides of the obtained films had different microstructures: one
side was extremely smooth (root-mean-square roughness of 6.25 nm), and the other was extremely
rough (root-mean-square roughness of 918 nm). As a reference, micro-sized TEMPO-oxidized wood
fibers and cellulose nanofibrils were mixed to form a transparent and hazy film (“blending” method).
These results show that hazy transparent films prepared using the “coating” method exhibit superior
application performances than films prepared using the “blending” method.
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1. Introduction

Tuning optical performances including transparency and optical haze play a critical role in
preparing optoelectronic devices with varying optical requirements. For outdoor display [1] or solar
cells [2,3], high transmittance and high optical haze are essential. Optical haze is defined as the
ability to scatter incident light, presenting as translucent or opaque. In general, methods for preparing
hazy transparent films can be classified into two types: the particle-diffusing type, which relies on the
transparent particles inside the transparent films to scatter light, and the surface-relief type, which relies
on microstructures on the surface of the transparent films to scatter light [4,5]. For the particle-diffusing
type, transparent SiO2 and TiO2 nanoparticles and silver nanowires have been utilized for hazy
transparent film fabrication due to the difference in the refractive coefficient between transparent
substrates and inorganic nanoparticles [6,7]. For the surface-relief type, polydimethylsiloxane (PDMS)
replica molding [8], the silver halide sensitized gelatin method [9], holographic recording [10], the 3D
diffuser lithograph [11], photofabrication [12], hot embossing [13], and roller extrusion [4] have been
developed to replicate the microstructures onto the surface of plastic films. However, most methods
employ complex processes and require expensive equipment.
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As a side effect of the incorporation cost, novel “green” methods have attracted much attention
in recent years. Recently, transparent papers with high haze have attracted abundant attention as
a potential bulk substrate for fabricating flexible transparent devices. Flexible and transparent films
made of cellulose fibers or cellulose nanofibers are emerging as a substrate in optical electronic
devices. Fang et al. (2013) reported a low-cost method for the preparation of a transparent substrate
with better shape stability via filling cellulose nanofibrils (CNF) into opaque mesoporous wood
fiber-based paper [14]. Zhu et al. (2015) achieved >90% total transmittance and >90% light scattering
when the microfibers were in situ, nanowelded in ionic liquid [15]. An effectively light coupling
and antiglare effect was demonstrated for the application of Organic Light Emitting Diode (OLED)
lighting. Nogi et al. (2017) introduced a hazy transparent nanopaper consisting of cellulose nanofibers
and some microsized cellulose fibers with a total transmittance of 89.3–91.5% and haze values
of 4.9–11.7% [16]. In these methods, the highly optical haze was mainly achieved through the
serious light scattering of the micro-sized fibers within the transparent films, which is similar to
particle-diffusing type. Herein, the surface-relief type was presented to fabricate microstructures onto
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCNs) film surfaces to
achieve high optical haze. Micro-sized TEMPO-oxidized wood fibers were utilized to coat on TOCN
film surfaces to achieve surface-relief microstructures.

In the present study, a highly transparent and hazy TOCN film was fabricated by a simple coating
of micro-sized fibers. Dual sides of the hazy transparent films had different microstructures: one
side was smooth and the other was rough. The serious light scattering induced by the rough surface
endows a high haze for transparent TOCN films. The extremely smooth surface with root-mean-square
(RMS) roughness of 6.25 nm is suitable for continuous conducting thin layer depositing. As a reference,
micro-sized TEMPO-oxidized wood fibers and cellulose nanofibrils were mixed to form a hazy
transparent film (“blending” method). The influence of preparation methods on the transmission haze
and surface morphology was investigated.

2. Materials and Methods

2.1. Materials

Softwood bleached kraft pulp was used as the original cellulose, purchased from Suzanno.
TEMPO-oxidized wood fibers (TOWFs) and TEMPO-oxidized cellulose nanofibrils (TOCNs) were
prepared according to previous reports [17,18]. According to previous measurements, the size of
TOWFs was around 63.0 µm length and 18.6 µm width. The TOCNs used in this study had a surface
carboxylate content of 1.633 mmol/g with a diameter of 6–8 nm and a length around 500 nm.

2.2. Fabrication of Hazy Transparent Films via “Blending” Method

The mixture of TOCNs/TOWFs with the mass ratio of 10/3 was prepared from a TOCNs
suspension (0.5 wt %) and a TOWFs suspension (0.5 wt %). The obtained mixture was carefully
mixed to ensure good dispersion and to prepare hybrid films via the solution-casting method.
The solution-casting method was conducted by pouring the mixture slurry into plastic Petri dishes
(diameter 60 mm) and dried at room temperature for a few days until a dried film formed. The obtained
dried films were denoted as TOCNs/TOWFs-B films with the basis weight of 65 g/cm2.

2.3. Fabrication of Hazy Transparent Films via “Coating” Method

The TOCNs suspension was diluted to approximately 0.5 wt % and stirred at room temperature
overnight to guarantee the uniform dispersion. Then, the homogeneous 0.5 wt % TOCNs aqueous
suspension in a plastic petri dish (diameter 60 mm) was dried until a thin TOCNs gel formed.
Continuously, the TOWFs suspension with 0.5 wt % was directly coated onto the TOCNs gel and dried
under room temperature until a dried film formed. The obtained hazy transparent films were denoted
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as TOCNs/TOWFs-C films with the basis weight of 65 g/cm2. The mass ration of the TOCNs/TOWFs
was still 10/3 to ensure comparability.

2.4. Analysis

2.4.1. Surface and Cross-Sectional Morphology

Surface and cross-sectional morphology were analyzed by field emission scanning electron
microscope (FE-SEM, JSM-7600F, JEOL Ltd., Tokyo, Japan) and atomic force microscopy (AFM,
Dimension Edge, Bruker, Hamburg, Germany). For FE-SEM characterization, film samples were
mounted on the well-polished metal stub and then coated with gold, using Agar HR sputter coater.
For AFM measurements, film samples were placed on the mica plate. Images were acquired in tapping
mode in air using a silicon cantilever, which was in vibrating mode at 160–225 kHz.

2.4.2. Optical Properties

The light transmittance and optical haze were measured using a Ultraviolet/Visible/Near infrared
(UV/VIS/NIR) spectrophotometer (Lambda 950, PerkinElmer, Waltham, MA, USA) at a wavelength
range from 400 nm to 1100 nm according to the ASTM1003-13 standard method [19].

2.4.3. Thermal Properties

Thermal properties of film samples were analyzed using a thermos-gravimetric analyzer (TGA)
(Q5000IR, TA Instruments, New Castle, DE, USA). About 5 mg was heated from 35 ◦C to 600 ◦C with
a heating rate of 10 ◦C/min under an inert atmosphere of nitrogen at a gas flow of 20 mL/min.

Thermal stabilities of the film samples under air atmosphere were tested in a muffle furnace.
The samples were heated from room temperature to 600 ◦C while the morphology of the film samples
was observed.

2.4.4. Mechanical Properties

Mechanical analysis of film samples was carried out using a tensile tester (H25KT, Tinius Olsen,
Horsham, PA, USA) with a 500 N load cell at 1 mm/min at room temperature, according to ASTM
D638-03. The samples had a typical dimension of 5 mm in width and 40 mm in length. Prior to the
test, all samples were pre-conditioned at 50% relative humidity (RH), 23 ◦C for at least 24 h. Three
measurements were carried out for each sample.

2.4.5. Resistance to Corrosive Chemicals Property

The chemical stability of film samples in diluted hydrochloric acid (0.1 mol/L, pH = 1.0) was
estimated by investigating the mechanical properties of film samples before and after treatment.
The samples had a typical dimension of 5 mm in width and 40 mm in length.

2.4.6. Resistance to Photodegradation Property

The resistance to photodegradation of film samples under UV radiation was estimated by
investigating the mechanical properties of film samples before and after treatment. The samples
had a typical dimension of 5 mm in width and 40 mm in length.

3. Results and Discussion

3.1. Optical Properties

In comparison with micro-sized fibers, TOCNs with nano-sized dimensions have extremely low
scattering for the visible light. The reason for this phenomenon is that the dimension of TOCNs
(6–8 nm) is much smaller than the wavelength of the visible light (390–760 nm). The compact structure
and low porosity weakens the light scattering between fibers and air, endowing high transparency
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for the TOCN films [20]. TOCN films, as a bulk optical material for optoelectronics, have attracted
abundant attention due to their excellent optical transmittance [21]. However, their low haze is not
suitable for preparing some optoelectronics such as outdoor display and solar cells, which need high
optical haze. Herein, micro-sized TOWFs with strong light scattering were used to improve optical
haze of the TOCN films via the “blending” method or “coating” method. The visual appearance
of TOCN films, TOCNs/TOWFs-B films, and TOCNs/TOWFs-C films in close contact with a color
pattern is shown in Figure 1a–c, respectively. It can be seen that all the films had high transparency,
and the pattern under the transparent films can be clearly observed by human eyes. These results
indicated that the existence of TOWFs has a weak influence on the transparency of TOCNs/TOWFs
hybrid films. As shown in Figure 2a, all film samples exhibited high transmittance, ranging from
83–89%.

Figure 1. (a–c) Visual appearance of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose
nanofibril (TOCN) films, TOCNs/ TEMPO-oxidized wood fibers B (TOWFs-B), and TOCNs/TOWFs-C
films in close contact with underneath color pattern. (d–f) Digital photographs of TOCN films,
TOCNs/TOWFs-B films, and TOCNs/TOWFs-C films were lifted up to 6 cm above color pattern.

Figure 2. (a) Transmittance of TOCN films, TOCNs/TOWFs-B films, and TOCNs/TOWFs-C films and
(b) Optical haze of TOCN films, TOCNs/TOWFs-B films, and TOCNs/TOWFs-C films.

Transparency is a significant optical parameter for most transparent electronic devices [22].
However, for some specific devices such as indoor and outdoor displays and solar cells, optical haze
is also an important indicator that cannot be ignored. As the Figure 1d–f shows, the pattern behind
the TOCN films was clearly observed, while for TOCNs/TOWFs-B and TOCNs/TOWFs-C films,
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the bottom patterns look obscure. According to the optical haze data (Figure 2b), the neat TOCN films
had an extremely low optical haze of 3.8% at 600 nm. After incorporating TOWFs, the composite
films exhibited a high optical haze of 50% for TOCNs/TOWFs-B and 62% for TOCNs/TOWFs-C
films. This may be due to TOWFs having prominent light scattering, which had been confirmed
by previous studies [23]. Simultaneously, TOCNs/TOWFs composite films had a rougher surface
than neat TOCN films. The rough surface caused substantial light scattering, which led to a high
transmission haze [24,25]. In comparison to the “blending” method, the hazy film prepared by the
“coating” method exhibited higher optical haze. The higher transmission haze could be ascribed to
higher surface roughness.

Figure 3 illustrates the mechanism of light scattering for TOCNs/TOWFs composite films. For the
“blending” method (similar to particle-diffusing type), high optical haze was mainly achieved through
the serious light scattering of the micro-sized fibers within the transparent films (Figure 3a). For the
“coating” method (similar to surface-relief type), the forming of the surface-relief microstructures via
the deposition of micro-sized TOWFs induced strong light scattering and endowed high optical haze
for the transparent films (Figure 3b).

Figure 3. Mechanism of light scattering of (a) TOCNs/TOWFs-B films and (b) TOCNs/TOWFs-C films.

3.2. Surface and Cross-Sectional Morphology

As shown in Figure 4a,b, two types of TOCNs/TOWFs hybrid films had a condensed structure and
no obvious holes, which endowed a high total transmittance for these transparent films [26]. For the
TOCNs/TOWFs-B films, TOCNs and TOWFs were tightly intertwined together to form a uniform and
compact structure. As the top-view SEM images show, only a few micro-sized fibers were observed on
the surface of the hybrid films. For the TOCNs/TOWFs-C films, TOWFs were directly coated on the
TOCN film surface to form surface-relief morphology. Additionally, a randomly intertwined TOWFs
network was observed clearly in the top-view SEM images (Figure 4b). To further investigate the
surface roughness, atomic force microscopy (AFM) was used to analyze TOCNs/TOWFs hybrid film
surfaces. The particular values are shown in Table 1. The dual sides of the TOCNs/TOWFs-B films
had a similar surface roughness of 279 nm (Figure 4c). The TOCN films consisting nano-sized TOCNs,
prepared by the solution-casting method, had an extremely smooth surface with RMS of 6.25 nm. Then,
the TOWFs were coated on the one side of the TOCN films to form a rough TOWF layer with RMS
of 918 nm, and the other one was kept smooth. Hence, the dual sides of the TOCNs/TOWFs-C films
had different surface morphologies; one side was smooth, and the other one was rough. The rough
surface endowed high optical haze for the transparent films, and simultaneously the smooth surface
was suitable for continuous conductive thin layer (~100 nm) depositing. Under the same addition of
TOWFs, the hazy film prepared by “coating” method exhibited a rougher surface morphology than
the “blending” method. As our previous study showed, the rough surface caused substantial light
scattering, which led to a higher optical haze. Hence, the TOCNs/TOWFs-C film had a higher optical
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haze than TOCNs/TOWFs-B film. As the TOCNs and TOWFs were tightly intertwined with each other,
the blade-cut cross-sections were very smooth, and the internal structures could not be clearly observed
(Figure 4e,f). The dense structure endowed TOCNs/TOWFs hybrid film’s high light transmittance.

Figure 4. (a) FE-SEM image of TOCNs/TOWFs-B films, (b) FE-SEM image of TOCNs/TOWFs-C films,
(c) 3D AFM image of TOCNs/TOWFs-B films surface, (d) 3D AFM image of the rough surface of
TOCNs/TOWFs-C films, (e) cross-sectional structure of TOCNs/TOWFs-B films, and (f) cross-sectional
structure of TOCNs/TOWFs-C films.

Table 1. Thickness, surface roughness, and optical properties of TOCN films, TOCNs/TOWFs-B films,
and TOCNs/TOWFs-C films.

Sample Thickness
(µm)

Upper Surface
Roughness (nm)

Bottom Surface
Roughness (nm)

Transmittance
(%) Haze (%)

TOCN films 34.6 6.25 6.25 89 3.8
TOCNs/TOWFs-B

films 69.2 279 279 83 50

TOCNs/TOWFs-C
films 80.5 918 6.25 85 62
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3.3. Thermal Property

TOCN films are more suitable for manufacturing transparent electronic devices than common
plastic materials due to their excellent thermal stability and degradation behaviors [27]. Thermal
stability is one of the most crucial properties of polymer materials, which can influence the processing
and service life performance of these materials [28,29]. Thermogravimetric analysis (TGA) and
derivative thermogravimetry (DTG) curves of the transparent films are presented in Figure 5, and the
corresponding characteristic data are listed in Table 2. All the film samples had a small weight loss in
the low temperature (<100 ◦C), due to the evaporation of absorbed water. The thermal transition of
the films includes the tow phase: (1) the decomposition of carboxyl groups occurred at about 250 ◦C
and (2) the decomposition of cellulose occurred at about 320 ◦C [30]. Among the three samples, the
Stage I maximum thermal degradation temperature (Tmax) of the TOCN films occured at 244 ◦C
with a maximum weight loss rate (WLRmax) of 4.7%/min, and the corresponding data for Stage II
are 319 ◦C and 4.7%/min. The thermal stability of TOCNs/TOWFs-B and TOCNs/TOWFs-C films
(“blending” method and “coating” method) is similar to that of TOCN films. TOCNs/TOWFs-B and
TOCNs/TOWFs-C films only had a higher char yield than neat TOCN films. Although the thermal
stability of the TOCNs/TOWFs hybrid films (degradation at around 250 ◦C) was lower than the
natural cellulose fibers (degradation at around 300 ◦C [31]), it was still higher than most of the flexible
plastics, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polycarbonate
(PC) [32].

Figure 5. Thermogravimetric analysis (TGA) (a) and derivative thermogravimetry (DTG) (b) curves of
TOCN films, TOCNs/TOWFs-B films, and TOCNs/TOWFs-C films.

Table 2. TGA and DTG data measured at a heating rate of 10 ◦C/min.

Sample Stage I Stage II CY (%)

Tmax (◦C) WLRmax
(%/min) Tmax (◦C) WLRmax

(%/min)

TOCN films 244 4.7 319 4.7 12.7
TOCNs/TOWFs-B

films 250 4.8 318 5.7 22.0

TOCNs/TOWFs-C
films 250 4.6 327 5.9 28.7

To further demonstrate the thermal stability of the samples, TOCN films and TOCNs/TOWFs
films were tested in a muffle furnace while the morphology of the film samples before and after thermal
treatment was observed. The morphology of the film samples is shown in Figure 6. When temperature
reached 200 ◦C, the morphology of the film samples remained unchanged. As the temperature was
further increased, the film samples began to carbonize and eventually burned to ash. These results
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indicated that the hazy and transparent film has an excellent morphology stability under a relatively
low temperature (less than 200 ◦C).

Figure 6. Thermal stability of TOCN films, TOCNs/TOWFs-B films, and TOCNs/TOWFs-C films
under air atmosphere.

3.4. Mechanical Property

The mechanical properties of transparent substrates play a significant role in flexible and
transparent devices [33]. A comparative study of the mechanical properties of TOCNs/TOWFs
hybrid films prepared by different fabrication methods was carried out. The tensile properties of film
samples are listed in Table 3. Mechanical properties relate directly to the single fibril and interfibrillar
bonding, which also could be affected by the fabrication processes. The TOCN films, comprised
of nano-scale TOCNs, exhibited a remarkably high strength of 92 MPa, high Young’s modulus of
9.81 GPa due to the tightly intertwined nanofibrillar network, and numerous hydrogen bonds [34].
In comparison with TOCNs, TOWFs had a bigger dimension and smaller specific surface area, resulting
in a loose stricture for TOCNs/TOWFs hybrid films. Hence, TOCNs/TOWFs-B and TOCNs/TOWFs-C
films (“blending” method and “coating” method) showed a lower tensile strength of 75 MPa and
80 MPa, respectively, than neat TOCN films. However, the stiffness of the TOCNs/TOWFs-B and
TOCNs/TOWFs-C films was greater than neat TOCN film. In general, the tensile property is still much
higher than those of common synthetic polymer films [35].

Table 3. Tensile properties of the polyethylene terephthalate (PET) films, TOCN films,
TOCNs/TOWFs-B films, and TOCNs/TOWFs-C films.

Sample Tensile Strength (MPa) Young’s Modulus
(GPa) Strain at Break (%)

TOCN films 92 ± 6.5 9.81 ± 1.3 0.98 ± 0.2
TOCNs/TOWFs-B films 75 ± 3.5 10.49 ± 2.1 0.75 ± 0.1
TOCNs/TOWFs-C films 80 ± 0.1 15.30 ± 1.1 0.78 ± 0.2
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3.5. Resistance to Corrosive Chemicals and Photodegradation Properties

It is very important to identify the stability of film samples in extreme conditions when they are
applied to outdoor displays or solar cells. The corrosion- and photodegradation-resistant properties
of the film samples were estimated by measuring the mechanical properties of the film samples
after dilute acid or UV radiation treatments. Figure 7 shows the mechanical properties of the film
samples after dilute acid (0.1 mol/L, pH = 1.0) or UV radiation treatments for 24 h. In the case of
immersion in 0.1 mol/L hydrochloric acid, the tensile strength of TOCNs/TOWFs-C films decreased
from 80 MPa to 58 MPa; simultaneously, Young’s modulus decreased from 15.30 GPa to 10.18 GPa.
These results indicated that the mechanical property of the TOCNs/TOWFs-C films was reduced by
immersion in the acid solution. In the case of UV radiation for 24 h, the mechanical property was kept
almost constant. These results indicated that the TOCNs/TOWFs-C films were not acid-resistant but
ultraviolet radiation-resistant. As a reference, the corrosion- and photodegradation-resistant properties
of PET films were studied. In the case of dilute acid treatment or UV radiation for 24 h, the mechanical
properties of the PET films were kept almost constant. Hence, in comparison with traditional PET
plastic films, TOCNs/TOWFs-C films are not acid-resistant, which needs to be further improved to
meet the requirements of the outdoor application.

Figure 7. Mechanical properties of the TOCNs/TOWFs-C films and PET films without treatment, with
acid or UV radiation treatment, (a) Tensile strength, (b) Young’s modulus.

4. Conclusions

In this study, highly transparent and hazy films (85% total transparency and 62% optical haze
at 600 nm wavelength) were prepared by coating micro-sized TEMPO-oxidized fibers onto TOCN
film surfaces. The TOCNs/TOWFs-C films had dual sides with different microstructures: one side
was smooth (root-mean-square roughness of 6.25 nm) and the other was rough (root-mean-square
roughness of 918 nm). The rough surface endowed a high haze for films without seriously decreasing
total transmission. The optical haze property of TOCNs/TOWFs-C films was exceptionally good,
and much superior to TOCNs/TOWFs-B prepared by blending TOCNs and TOWFs. In addition,
the smooth surface of TOCNs/TOWFs-C was more suitable for the conductive thin layer depositing
than TOCNs/TOWFs-B films. Both TOCNs/TOWFs-B and TOCNs/TOWFs-C films exhibited good
thermal stability and mechanical properties. The resulting films also showed excellent ultraviolet
radiation resistance but not acid resistance. Our work provided insight into the preparation of high
performance transparent and hazy films for the fabrication of green optoelectronics.
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