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Abstract: Poly(vinylpyrrolidone)-stabilized Pt nanoparticles (PVP-PtNPs) were produced in a
continuous-flow reaction-discharge system by application of direct current atmospheric pressure glow
discharge (dc-APGD) operated between the surface of a flowing liquid anode (FLA) and a pin-type
tungsten cathode. Synthesized PVP-PtNPs exhibited absorption across the entire UV /Vis region.
The morphology and elemental composition of PVP-PtNPs were determined with transmission
electron microscopy (TEM) and energy dispersive X-ray scattering (EDX), respectively. As assessed
by TEM, PVP-PtNPs were approximately spherical in shape, with an average size of 2.9 + 0.6 nm.
EDX proved the presence of Pt, C, and O. Dynamic light scattering (DLS) and attenuated total
reflectance Fourier transform-infrared spectroscopy (ATR FI-IR) confirmed PtNPs functionalization
with PVP. As determined by DLS, the average size of PtNPs stabilized by PVP was 111.4 & 22.6 nm.
A fluid containing resultant PVP-PtNPs was used as a heat conductive layer for a spiral radiator
managing heat generated by a simulated internal combustion chamber. As compared to water, the
use of PVP-PtNPs enhanced efficiency of the system, increasing the rate of heat transfer by 80% and
30% during heating and cooling, respectively.

Keywords: direct current atmospheric pressure glow discharge; heat transfer; nanostructures;
plasma-liquid interactions; stabilizer

1. Introduction

Plasma is one of the four states of matter [1]. Due to the unique properties of atmospheric pressure
plasmas (APPs), for example, their highly non-equilibrium state, this type of plasma has been used
in many fields of science. These applications include, for example, treatment of skin diseases or
tissue engineering in biomedicine [2—4], detection of elements in analytical chemistry [5], activation of
seeds to stimulate plant growth in agriculture [6], decomposition of diluted organic compounds
in air in environmental protection [7], and fabrication of nanomaterials in nanotechnology and
material engineering [1,8,9]. One area of application in material engineering is synthesis of inorganic
nanoparticles (NPs), such as platinum nanoparticles (PtNPs), which display special physicochemical,
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thermal, and catalytic properties [10]. PtNPs are widely utilized as catalysts in numerous chemical
reactions, such as conversion of hydrocarbons [11] and oxygen reduction reactions [12].

Application of APP-mediated methods for production of PtNPs has numerous advantages. These
methods rely on generation of reactive oxygen and nitrogen species (RONS), solvated electrons, as well
as UV radiation and heat. All these factors facilitate formation of NPs through reduction of metallic
precursor compounds, eliminating the need for additional reducing agents, such as hydrazine [13] or
sodium borohydrate [14]. To the best of our knowledge, only a few research groups have attempted to
synthesize PtNPs by APP [15-20]. Koo et al. [15] and Shim et al. [16] produced Pt nanostructures using
atmospheric pressure alternating current (ac) H, /He discharge generated in contact with a solution
of HyPtClg. Synthesized PtNPs exhibited an average size of 2 nm and 3-5 nm, respectively [15,16].
Hu et al. [17] synthesized carbon-supported PtNPs by plasma sputtering in water. Similar to PtNPs
obtained by Koo et al. [15], PtNPs produced by Hu et al. [17] were 2 nm in size. Comparable results were
obtained by Sato et al. [18], who produced PtNPs of 3-10 nm in size by applying microwave-induced
plasma generated in liquid. Ichin et al. [19] reported deposition of PtNPs on carbon nanoballs in an
aqueous solution of HyPtCls using poly(vinylpyrrolidone) (PVP) or sodium dodecyl sulfate (SDS)
as protection agents. The size of PtNPs produced with the aid of PVP and SDS were, on average,
17.5 and 23.0 nm, respectively. Finally, Dao et al. [20] applied radio frequency (rf) atmospheric
pressure discharge operated in Ar for production of nanomaterials for flexible dye-sensitized solar
cells. Designed nanomaterials consisted of 2-3 nm PtNPs synthesized by a two-step protocol. In the
first step, the PtNPs precursor was partially reduced by alcoholic reduction to Pt atoms, following
which the reduction process was completed with the aid of APP [20].

The main limitation of all abovementioned reaction-discharge systems used for production of
PtNPs is that they worked in a non-continuous-flow mode. To increase the rate of production of metallic
nanostructures, our group has developed continuous-flow reaction-discharge systems. These systems
relied on either direct current atmospheric pressure glow discharge (dc-APGD) or pulse-modulated
radio frequency atmospheric pressure glow discharge (pm-rf-APGD) as APP sources. Both types of
APP were operated between the surface of solutions of flowing liquid electrodes and pin-type tungsten
electrodes [8,9,21-23].

A necessary consideration in synthesis of NPs is to ensure that they are highly stable in the
dispersing medium. Aggregation, agglomeration, and coalescence are inconvenient processes that
commonly result from short interparticle distances between NPs, leading them to attract each other
through van der Waals interactions [24]. To prevent these phenomena, repulsive forces in the colloidal
phase are necessary to counter van der Waals interactions and increase the stability of isolated NPs [24].
This can be accomplished through selection of a proper capping agent.

Successfully stabilized PtNPs can be used as nanofluids (NFs) for improved transfer of energy in
heat management systems (HMSs) [25,26]. HMSs are applied in internal combustion engines, where
combustion chambers must operate at extremely high temperatures, reaching 2500 K [27], which result
in the oxidation and degradation of the materials used in engines [28]. HMSs can help protect engines
by dissipating all waste heat, or by recovering it by transformation into yet another form of energy.

The most popular HMS, used for cooling internal combustion chambers, involves application
of a cooling liquid that circulates between header tanks and a radiator [29]. Performance of this type
of HMS is achieved by passing the cooling liquid through the combustion chamber block and a set
of narrow channels, where it is air-cooled. To increase efficiency of this system, the surface of heat
exchange has to be increased; however, this approach is limited because the radiator has to be compact.
An alternative route is to apply water-based cooling liquids of improved heat transfer, including
NFs [30,31]. For instance, AlO3 or CuNPs might facilitate cooling of the internal combustion block
by increasing waste heat transfer from 45% to 80%, as compared to water [29,32]. This increased
heat transfer efficiency results in increased combustion efficiency and decreased fuel consumption.
However, the volume of NF-based cooling liquid required to manage heat of internal combustion
engines often exceeds 5 L, while the volume needed to manage heat of internal combustion chambers
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in power plants can be counted in tens of thousands of liters. This may raise serious problems related
to the large scale of such systems and their proper sealing that can prevent potential emission of
NPs to the environment. For this reason, a suitable HMS should be characterized by great efficiency
and a limited concentration of NPs present in cooling liquid. The answer to these problems may be
application of NFs containing NPs of noble metals, because they are extremely effective heat conductors
even at ultra-low concentrations, i.e., 0.001% [26,33]. In our previous work, it was demonstrated that
polymer-supported AuNPs facilitated heat transfer at a 300% higher rate than water [8]. It could be
believed that application of PtNPs could also provide enhanced heat transfer, while their stabilization
with PVP would make suitable NFs for cooling combustion chambers. Since the price of Pt is relatively
high, PtNPs-based NFs seems to not be suitable for application as cooling liquids on a large scale.
Therefore, a HMS is proposed in the present study, where the NF is used not as a mobile phase but as a
heat conductive layer, immobilized and sealed within a radiator.

The main objective of this work was to develop a fast and effective plasma-mediated method for
synthesis of stable-in-time and monodisperse PVP-coated PtNPs on the basis of dc-APGD, generated
between the surface of a flowing liquid anode (FLA) solution and a pin-type tungsten cathode, and
operated in a continuous-flow reaction-discharge system. Synthesized PtNPs were characterized
by UV /Vis absorption spectrophotometry (UV/Vis) and transmission electron microscopy (TEM)
supported by energy-dispersive X-ray scattering (EDX). To confirm surface functionalization of
resultant PtNPs by PVP, dynamic light scattering (DLS) and attenuated total reflectance Fourier
transform-infrared spectroscopy (ATR FT-IR) were used. PVP-PtNPs were then applied in the form of
a NF in a HMS of simulated internal combustion chambers. The NF was used as a conductive layer for
dissipating heat from a circulating liquid used for two scenarios: (i) managing heat of the simulated
combustion chamber, and (ii) emergency cooling thereof. To the best of our knowledge, this is the
first work in which PVP-PtNPs were produced by dc-APGD generated in a continuous-flow reaction
discharge-system and then applied in the HMS for internal combustion chambers.

2. Materials and Methods

2.1. Reagents and Solutions

Chloroplatinic acid hydrate (H,PtCls-H,O, Sigma-Aldrich, Steinheim, Germany) was used to
prepare a stock solution of 1000 mg L~! of Pt(IV) ions. A working solution of 50 mg L~! of Pt(IV) ions
was prepared by appropriately diluting the stock solution. Next, 0.25 g of solid poly(vinylpyrrolidone)
(PVP, MW = 40,000, Sigma-Aldrich, Steinheim, Germany) was mixed with 1000 mL of the working
solution of Pt(IV) ions, giving a final PVP concentration of 0.25% (m/v). All reagents were of analytical
grade or better. Re-distilled water was used throughout.

2.2. One-Step Synthesis of PVP-PtNPs

The mixed working solution of the PtNPs precursor (as Pt(IV) ions at 50 mg L~!) and PVP
(at 0.25%) was treated by dc-APGD operated in the continuous-flow reaction-discharge system
previously reported by Dzimitrowicz et al. [21]. To find the optimal concentration of PVP, the effect of
three concentrations of this polymer were examined, i.e., 0.10, 0.25, and 0.50% (m/v). It was observed
that in the presence of PVP at 0.10% (m/v), visible sedimentation of PtNPs occurred. On the other hand,
at 0.50% (m/v) of PVP, even aggregates occurred. At 0.25% (m/v) of PVP, no sedimentation, aggregation,
nor coalescence of produced PtNPs was observed. Stable dc-APGD was sustained between the surface
of the FLA solution and the sharpened pin-type tungsten cathode (Figure 1) in a 90 mm (height) by
40 mm (radial) quartz chamber. The gap between both electrodes was ~5.0 mm. A dc-HV supply (Dora
Electronics Equipment, Wroclaw, Poland) was used to provide a HV-positive potential (1100-1300 V)
to liquid electrode. The discharge current was maintained at a constant value of 55 mA by applying
a ballast resistor with resistance of 10 k() (Tyco Electronics, Berwyn, IL, USA). The mixed working
solution was introduced to the reaction-discharge system through a quartz-graphite tube at a flow
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rate of 3.0 mL min~! by using a four-channel peristaltic pump (Masterflex L/S, Cole-Parmer, Vernon
Hills, IL, USA), and dc-APGD-treated solutions overflowing the quartz-graphite tube were collected
for subsequent analyses.

Figure 1. A continuous-flow reaction-discharge system for synthesis of poly(vinylpyrrolidone)-stabilized
Pt nanoparticles (PVP-PtNPs); (1) the mixed working solution containing the PtNPs precursor and the
PVP capping agent (FLA), (2) a four-channel peristaltic pump, (3) high-voltage wires, (4) a collector
for the direct current atmospheric pressure glow discharge (dc-APGD)-treated solution, (5) a tungsten
cathode, (6) graphite, and (7) quartz tubes.

Detailed characteristics of the plasma reaction-discharge system with APP generated in contact
with a FLA are given elsewhere [34]. The rotational temperature of N molecules, determined in the
liquid-discharge interfacial zone, was considered an approximation of kinetic gas temperature and
was about 1400 K, while the vibrational temperature of N, molecules (~5300 K) and the excitation
temperature of H atoms (~5200 K) were considerably higher. Differences between temperatures
indicated that the developed APGD-based reaction-discharge system was in a high non-equilibrium
state. In the spectral range of 200-800 nm, NO, N;, N,*, and OH species were easily excited.
Additionally, H and O atomic lines were identified.

2.3. Characterization of PVP-PtNPs

Optical properties of PVP-PtNPs present in dc-APGD treated solutions were determined using a
Specord 210 (Analytic Jena AG, Jena, Germany) spectrophotometer. The UV /Vis spectra were acquired
in the spectral range from 350 to 700 nm at a scanning speed of 20 nm s~! and a step of 0.2 nm. These
spectra were recorded 24 h after dc-APGD treatment of mixed working solutions.

Granulometric properties (size, shape, and elemental composition) of synthesized PVP-PtNPs
were assessed using a Tecnai G220 X-TWIN TEM instrument (FEI, Hillsboro, OR, USA), equipped with
an EDX microanalyzer (FEI, Hillsboro, OR, USA). TEM and EDX measurements were carried out as
follows: one drop of dc-APGD-treated solution was placed onto a Cu grid (CF400-Cu-UL, Electron
Microscopy Sciences, Hatfield, PA, USA) and left to dry on air. The average size of PVP-PtNPs was
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calculated on the basis of the diameters of 100 single nanostructures using FEI Software (version 3.2
SP6 build 421, FEI, Hillsboro, OR, USA).

2.4. Surface Functionalization of PENPs by PVP

To confirm surface functionalization of PtNPs by PVD, plasma-synthesized Pt nanostructures
included in collected solutions were characterized using DLS and ATR FT-IR. DLS measurements
were performed applying a Zetasizer Nano-ZS instrument (Malvern Instrument, Malvern, UK) with
an optical arrangement of the detector at 173° (backscatter angle) and a HeNe laser (633 nm). DLS
analyses were carried out in optically homogenous polystyrene cuvettes at temperature of 25 °C.
Results (size by number) were evaluated using the ZetaSizer Software (Malvern Dispersion Technology
Software, version 7.11) and averaged for three independent runs. ATR FT-IR spectra were acquired
in the range from 4000 to 400 cm ™!, with resolution of 4 cm~! and 64 scans by using a Vertex 70v
FTIR spectrophotometer (Bruker, Bremen, Germany). The instrument was equipped with a diamond
ATR accessory.

2.5. Application of PVP-PtNPs in the HMS

The NF containing PVP-PtNPs at a concentration of 0.0008% (m/m) was used as a conductive
layer within a radiator to cool a liquid circulating between the radiator and a simulated internal
combustion block. Figure 2 schematically shows the designed HMS.

Figure 2. A 3D model of the heat management system (HMS) composed of (1) a cooling liquid
reservoir, (2) a peristaltic pump, (3) a spiral radiator filled with (4) a conductive layer (the NF containing
PVP-PtNPs or water).

The system, as displayed in Figure 2, was composed of a container with cooling liquid (100 mL),
a peristaltic pump, and a radiator (150 mm long, diameter 22.5 mm) containing 60 mL of a heat
conductive layer (water or the NF). To simulate cooling of the internal combustion block, the container
with the liquid was placed on an IKA MAG HS 7 heating plate (Warsaw, Poland), which played the
role of the internal combustion chamber, and transferred heat to the liquid. The heating plate was
set at a constant power of 200 W, as preliminary tests indicated that this value was sufficient to heat
the system to 80 °C. The heated liquid was circulated within the system by a peristaltic pump at a
flow rate of 50 mL min~!. To monitor the simulated HMS, the procedure was divided into two parts:
(i) assessment of the system to control temperature of the cooling liquid at a constant power of the
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combustion chamber, and (ii) emergency cooling thereof. In the case of heat management, a container
filled with water was placed on a heating plate and heated to 80 °C, which was defined as a theoretical
border after which a further increase in temperature could cause overheating of the system. Therefore,
when the system reached 80 °C, the peristaltic pump was turned on to simulate the HMS. This caused
water to be circulated through the system, and resulted in cooling down of the heated water. When it
was heated back up to 80 °C, the second part of the procedure was initiated, i.e., emergency cooling.
In this case, after the system returned to 80 °C, the heating plate was immediately turned off, and a fan
attached to the radiator was turned on to simulate emergency cooling of the internal combustion block.
Water was circulated until it was cooled down to 30 °C. The procedure was carried out at ambient
temperature (25 °C). Temperatures of water and the heat conductive layer (either the NF or water) were
constantly monitored. Recorded temperatures and duration of heating/cooling were used as variables
in a simplified version of Newton’s relation between temperatures of the heated /cooled liquid and
the surrounding environment [35], defined as dT(t)/dt = k(h/c)-AT(t)—where T(t) is temperature at
a given time; k(h/c) is the rate of temperature changes, i.e., heating or cooling (s~!); and AT(t) is a
difference in temperature over time t.

3. Results and Discussion

3.1. Application of dc-APGD for Synthesis of PVP-PtNPs

The first evidence that dc-APGD operated between the surface of the FLA solution and the
pin-type tungsten cathode effectively led to continuous-flow synthesis of PVP-PtNPs was the change
in color of the mixed working solution treated by the discharge in the studied reaction-discharge
system. In these conditions, the solution was observed to change from colorless to black (Figure 3A).
According to Wang et al., it was likely associated with formation of PtNPs nuclei in this solution [36].
Moreover, neither aggregation, agglomeration, nor sedimentation of resultant Pt nanostructures was
observed (Figure 3A). This first visual observation confirmed successful production of PtNPs stabilized
by PVP in the continuous-flow reaction-discharge system used.

B 0.40- A

Absorbance
o
N
o
L 1 L

400 500 600 700
Wavelength (nm)
Figure 3. dc-APGD-mediated synthesis of PVP-PtNPs. (A) Color exhibited by the mixed working

solution after dc-APGD treatment and related to production of PVP-PtNPs; (B) the UV /Vis spectrum
of PVP-PtNPs.
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3.2. Characterization of PVP-PtNPs

Figure 3B displays the UV /Vis absorption spectrum of the mixed working solution treated by
dc-APGD. As can be seen, it presents typical features for Pt nanostructures, i.e., the absorption band
occurred across the entire UV /Vis region. Furthermore, absorption increased as the wavelength
decreased. As was suggested by Yang et al., this was consistent with the optical properties of PtNPs,
and hence, supported the presence of Pt nanostructures synthesized due to plasma-liquid interactions
(PLIs) [37].

The morphology and element composition of PVP-PtNPs was determined using TEM and EDX,
respectively. On the basis of TEM measurements, the average size of PtNPs was 2.92 nm with a
relatively narrow size distribution, i.e., 0.6 nm as standard deviation. TEM images also indicated
that the PVP-PtNPs formed were monodisperse, and approximately spherical in shape (Figure 4A-C).
Based on the EDX spectrum, the presence of Pt, C, O, and Cu was identified (Figure 4D). Occurrence of
metallic Pt resulted from reduction of PtClg2~ ions to Pt(0) of nanometric size by dc-APGD-mediated
processes in the applied continuous-flow reaction-discharge system. Detection of C and O was likely
associated with the chemical structure of PVP. Occurrence of Cu was due to deposition of samples on
Cu grids prior to TEM analysis. All these data confirmed that it was possible to produce small (average
size of approximately 2 nm) PtNPs through PLIs in the studied reaction-discharge system. This was
coincident with results reported by others, who produced PtNPs of ~2 nm in size using different
types of APPs [15,17,20]. Nevertheless, the unquestionable advantage of the plasma-based method
developed here over other APP-based methods reported in the literature was its continuous-flow
character, resulting in high production efficiency of PVP-PtNPs. Accordingly, it was possible to produce
180 mL of PVP-PtNPs per hour in the proposed continuous-flow reaction-discharge system.

Surface functionalization of PtNPs with PVP was examined using DLS and ATR FT-IR. Size
measurements of resultant Pt nanostructures, as determined by DLS, were much larger than those
calculated on the basis of TEM micrographs; the average size by number was 111.4 & 22.6 nm (Figure 5).
This discrepancy in the size of PVP-PtNPs determined using both mentioned techniques was consistent
with successful functionalization of Pt nanostructures with PVP [38]. This was because DLS enabled
measurement of the hydrodynamic diameter of entire structures, i.e., PtNPs plus attached compounds,
whereas TEM measurements were solely based on metallic cores of Pt nanostructures. ATR FI-IR
further supported surface functionalization of PtNPs (Figure 6). A sharp, intensive absorption band at
1677 cm~! was observed in the spectrum, and was attributed to C=O stretching vibrations v from the
carbonyl group. Absorption bands at 2950, 1423, and 1286 cm~! were assigned to CH, asymmetric
stretching vibrations of the aliphatic methylene group and C-N stretching vibrations v of the PVP
! was previously
recognized as indicative of the PVP ring oriented towards PtNPs [36]. Moreover, all absorption bands
observed in the ATR FT-IR spectrum were shifted by about 20 cm~! in relation to standard charts
used for evaluation of characteristic groups and moieties [41]. This effect was already observed [39]

ring, respectively [39-41]. Furthermore, occurrence of the absorption band at 845 cm™

and explained by coordination of metallic species by PVP [42]. All these observations confirmed the
presence of PVP in Pt NFs, and the role of this capping agent in steric stabilization and functionalization
of plasma-synthesized PtNDPs.
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Figure 4. Granulometric properties of PVP-PtNPs synthesized with the aid of de-APGD. (A-C)
Representative TEM photomicrographs; (D) the EDX spectrum.

TEM micrographs further suggested that the PVP matrix could encapsulate PtNPs. In this case,
PtNPs seemed to be purposely dispersed, that is, grouped in approximately spherical regions of over
60 nm in diameter. Formation of PVP capsules containing PtNPs, as opposed to formation of individual
PtNPs coated with PVP, could also partly explain differences in the size as measured by TEM and DLS.
DLS could measure the size of entire capsules, whereas TEM would reveal the size of individual PtNPs
within these capsules. Formation of capsules might be related to physicochemical properties of PVP.
This polymer contains N and O atoms bearing free electron pairs that could have ability to chelate
surface-active compounds such PtNPs [39,43].
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Figure 5. A histogram displaying size by number distribution of PVP-PtNPs as determined by DLS.
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Figure 6. The ATR FT-IR spectrum of PVP-PtNPs.

3.3. Mechanism of PtNPs Formation

1000

9of 15

The use of dc-APGD generated in contact with liquid for synthesis of PtNPs is extremely rarely
reported in literature. Only Koo et al. and Shim et al. reported to use ac-APGDs operated with the aid
of Hy /He jets in contact with bulky solution reservoirs containing PtCls>~ ions for plasma-mediated
synthesis of PtNPs [15,16]. These authors hypothesized that PtCls?>~ ions were possibly reduced
by H atoms formed in the solution. This could only be partly correct because much more reactive
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species, capable of reducing the PtNPs precursor, would be formed as a result of PLIs [44]. In the
present work, dc-APGD, fully sustained in surrounding air atmosphere (with no additional gas) and
operated in contact with the FLA solution, was used for continuous-flow reduction of PtCl62_ ions
and synthesis of PtNPs through PLIs. Detailed characteristics of this reaction-discharge system have
been previous published, and the produced reactive species characterized [34], allowing us to provide
a putative mechanism for the formation of PtNPs. In case of the reaction-discharge system proposed
in the present work, there was no voltage fall at the liquid surface and hence, a large flux of electrons
from the discharge column bombarded the surface of the FLA solution, leading to production of a
very high concentration of interfacial solvated electrons (eaq ) [45]. These electrons are both highly
reactive, and have an anomalously high diffusion constant [45]. Therefore, they could take part in
direct reduction of PtCls?~ ions in the FLA solution (e.g., PtClg?~ + deyq” = Pt + 6C17), resulting
in formation of a large number of Pt” nuclei in a very short period of time. Such large number of
Pt seeds reached in the FLA solution certainly helped in obtaining smaller in size NPs, as indicated
by their morphology as assessed by TEM. Other reactive species could also be formed due to the
decomposition of water molecules (in the interfacial zone as well as in the liquid phase, i.e., the FLA
solution), including H atoms, OH radicals, or H;O, molecules. However, yields of reactions leading to
formation of these species should be much lower than observed for the liquid cathode, as reported for
dc-APGDs operated using gaseous jets in contact with ionic liquids (ILs) [46].

The role of PVP in the stabilization of the small-sized PtNPs synthesized could be related to their
adhesion to nanoparticles through charge-transfer interactions between pyrrolidone rings and the
surface of Pt atoms, and formation of >C=0-Pt coordination bonds [47,48]. In this way, PVP-capped
PtNPs could be stabilized in two different ways, that is, a polymeric shell could be formed, leading to
a structure that prevents further growth and/or agglomeration [47]; in addition, charge transfer could
occur [48], making PtNPs negatively charged, and hence, repulsing them in the solution.

3.4. Enhanced HMS

To the best of our knowledge, no research on the evaluation of the suitability of NFs containing
noble metal NPs for cooling internal combustion chambers have been reported so far. For that reason,
a HMS composed of a cooling liquid (water) circulating between a reservoir and a spiral radiator
within a layer of the NF containing PVP-PtNPs synthesized by dc-APGD (see Figure 2 for more details)
was proposed, and studied in detail. Design of the HMS used in the present work corresponded to
common designs of popular liquid-cooling systems applied for managing temperature of combustion
blocks [29]. The HMS examined here particularly simulated two scenarios, i.e., (i) suppression of an
increase in temperature of the cooling liquid, and (ii) emergency cooling of the internal combustion
chamber (see Section 2.4 for more details). The temperature of heating/cooling (T) was measured as a
function of time (t), and plotted as shown in Figure 7, for both the cooling liquid (water) and the heat
conductive layer (water or the NF with PVP-PtNPs).

When the cooling liquid reached a temperature of 80 °C, the medium of the conductive layer began
to circulate within the system, resulting in a decrease in temperature of the cooling liquid. Circulation
was continued until the cooling liquid was heated back up to 80 °C. As a result, temperature of the
medium of the conductive layer in the radiator also increased; this is shown in Figure 7A,C. As can
be seen in Figure 7C, initial temperature (80 °C) within the water reservoir rapidly decreased at the
beginning of circulation, because the medium of the conductive layer initially had room temperature.
The same phenomenon usually takes place in internal combustion engines, however, valves placed
between internal and external circuits of the circulation system allow for proper control of the extent
of cooling. Afterwards, the temperature of the cooling liquid was increased, as it is done by internal
combustion chambers. As can be seen in Figure 7C, if the medium of the conductive layer in the radiator
was water, the cooling liquid in the reservoir was heated back to 80 °C within 25 min. By contrast,
when the medium of the conductive layer was the NF containing synthesized PVP-PtNPs, the system
was unable to reach 80 °C (provided by a heating plate at 200 W), and instead of this, it reached
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equilibrium at 78 °C within 43 min. Similar differences were also observed for temperature of the
medium of the conductive layer. When the temperature of the circulating cooling liquid increased,
the temperature of water in the radiator leveled at 75 °C while temperature of the NF of PVP-PtNPs
reached just 67 °C.
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Figure 7. Time-dependent changes of temperature obtained for (A) heating, and (B) cooling of the
conductive layer; (C) heating, and (D) cooling of the circulating liquid.

When the artificial overheating border was reached, the procedure of emergency cooling was
engaged (see Section 2.5 for more details). Although the system with the NF containing PVP-PtNPs
did not reach this temperature, the procedure of cooling was initiated at its equilibrium temperature of
78 °C. As can be seen in Figure 7D, the cooling liquid circulating in the system was cooled down to 30 °C
within 21 min when the NF containing PVP-PtNPs was applied. This was 14 min faster than when water
was used as the medium of the conductive layer. The same tendency was observed when monitoring
temperature of water and the NF placed within the radiator (see Figure 7B). All these observations
indicated that application of the NF as the conductive layer in the spiral radiator prevented overheating
of the system in a fast and effective way. Certainly, the NF-containing PVP-PtNPs displayed an
increased heat conductivity within the radiator, as compared to water. To evaluate the efficiency of the
system, rate constants of heating (k},) and cooling (k.) of the liquid circulating within the system were
assessed (see Table 1).
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Table 1. Rate constants of heating (ky) and cooling (k.) of the circulating liquid.

—3 —1
Medium of the Conductive Layer Rate Constants [X107 s

kp ke
Water 4.88 2.55
PVP-PtNPs 2.70 3.41

When the NF containing PVP-PtNPs was used as the conductive layer, the rate constant
responsible for the increase of temperature (ky,) was almost half the value of this assessed for water,
ie., 2.70 x 10% s~! versus 4.88 x 10% s~!. This meant that the presence of the NF significantly extended
operation of the system against overheating, as compared to water placed in the radiator. On the other
hand, the rate constant of cooling (k.) was greater when the NF of PVP-PtNPs was used instead of water,
which was responsible for the reduced time needed to cool down the whole system. These differences
were certainly reflected by ability of the system to operate within safe temperature. The circulating
liquid cooled by water placed in the radiator achieved overheating temperature within 25 min, while
the NF containing PVP-PtNPs conveniently prevented overheating of the system.

Based on all observations, it appeared that application of PVP-PtNPs would efficiently facilitate
both temperature control of the cooling liquid circulating in the internal combustion block, and
emergency cooling thereof. It was previously reported that application of a NF containing 1.5% of Cu
and Al,O3 NPs led to increased heat exchange up to 80%, as compared to water [29,32]. As found in the
present work, utilization of the NF containing 0.0008% of PVP-PtNPs resulted in increasing efficiency
of the system by 80% during heating, and 30% during cooling, as compared to water. However, it must
be remembered that the medium containing PVP-PtNPs was used only as the heat-conductive layer
located in the radiator, not as the cooling liquid itself. This significantly reduced the required amount
of the NF; hence, the expense for such a system might meet economic requirements. The applied
approach overcame two barriers of such systems. Firstly, (1) application of PtNPs led to a significant
reduction in the concentration of NPs in the NF needed to successfully manage heat, as compared
to already reported systems. Secondly, (2) stabilization of PtNPs by PVP allowed for sealing and
immobilization of NF in the radiator; this led to a reduction of the volume of the NF, addressing a
potential issue with emission of NPs into the environment.

4. Conclusions

It was established that the action of dc-APGD, completely operated in surrounding air only, onto
the continuously flowing solution of PtClg>~ ions with admixed PVP, led to on-line formation of
monodisperse and nearly spherical PVP-capped PtNPs in the liquid phase, with the average diameter
of 2.9 & 0.6 nm. Since the solution of the PtNPs precursor was positively charged and acted as the FLA,
it was supposed that solvated electrons were the most important species responsible for reduction of
PtCls?~. Functionalization of the surface of reduced Pt by PVP resulted in high stability of continuously
synthesized and uniformly sized PtNPs. It was also found that the NF containing just 0.0008% of
PVP-capped PtNPs could serve as a very promising heat conductive medium for a spiral radiator that
efficiently manages heat generated by a simulated combustion chamber. As compared to water, the
NF containing PVP-PtNPs resulted in increasing efficiency of such system by 80% and 30% during
heating and cooling, respectively.
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